基于超微结构探讨松毛虫属部分种的亲缘关系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为给松毛虫属(Dendrolimus)部分种类分类地位的争议提供佐证与补充,尤其是进一步探讨油松毛虫D. tabulaeformis Tsai et Liu与马尾松毛虫D. punctata punctata (Walker)的亲缘关系,对松毛虫属部分种类的雌、雄蛾前后翅面鳞片的超微结构及雄蛾触角与触角感器的超微结构进行了观察及其形态表征统计与系统聚类分析,主要结果如下:
     1、雌雄蛾前后翅面鳞片的超微结构研究表明:①松毛虫的鳞片都属于镂空型鳞片,且为二型双层鳞片;②鳞片的长宽与翅长不存在显著相关性;③雌雄间、前后翅及翅正反面鳞片均无显著差异;④种间鳞片宽度、脊间距无显著差异,而长度、最宽处脊数均存在显著差异;⑤同一种松毛虫的不同地理种群之间鳞片大小相似性较高,即同种松毛虫的不同地理种群通常聚为一类;⑥单从翅面鳞片的超微形态特征不能确定油松毛虫与马尾松毛虫的亲缘关系。
     2、雄蛾触角及触角感器超微结构研究表明:①共发现6种感器类型,即毛形感器、刺形感器、栓锥感器、腔锥感器、Bohm氏鬃毛、脚形感器;②除赤松毛虫外,其它6种松毛虫与栗黄枯叶蛾所具感器类型相同,为毛形、刺形、栓锥、腔锥、Bohm氏鬃毛5种,但感器亚型有差异;赤松毛虫D. spectabilis Butler除有以上5种感器类型分布外,还存在脚形感器;③同一种昆虫不同地理种群间感器类型无差异,但亚型有异。④触角柄节、梗节、鞭亚节及侧枝的宽度均无显著性差异,鞭亚节数量及柄节、梗节、鞭亚节、侧枝的长度存在显著性差异,且各类型触角感器的长度与基部直径均无显著性差异;⑤同一种类不同地理种群间,触角及感器的形态表征均无显著性差异存在。⑥马尾松毛虫、油松毛虫、文山松毛虫与赤松毛虫四者不能显著区分,应为同一物种。
     综合前人与本研究的结果,认为油松毛虫D. tabulaeformis Tsai et Liu是马尾松毛虫D. punctata punctata (Walker)的地理亚种。
In order to support some research on the phylogenetic relationship of Dendrolimus species, especially the relationship between D. tabulaeformis Tsai et Liu and D. punctata punctata (Walker), the ultrastructures and characteristics, which of fore-and hind-wing scales of both male and female moths, and which of antennae and antennal sensilla of male moths, were observed by light microscope and scanning electronic microscope and analyzed with SPSS18.0. The results are stated below.
     1. The ultrastructures and characteristics of fore-and hind-wing scales of both male and female moths leads to the result that, there are ground scales and cover scales, both of them are hollow scales and their type of covering are type-2bilayer scale covering. There are no obvious correlations existed between the length and width of scales and the length of wings. There are no significant differences in scales between male and female moths, forewings and hind wings, upside-wings and underside-wings either. The discrepancies existing in the width and the ridge-distance of the scales among the5species moths are inconspicuous while the corresponding part of the length and the mix-ridge-number of scales between species are striking. Through the graph generated by hierarchical cluster analysis, the similarity of wing scales between different geographic populations of the same moth is higher. That is, different geographic populations of the same species usually cluster together. Research just by wing scales cannot ensure the relationship between D. punctata punctata and D. tabulaeformis.
     2. The morphology and ultrastructure of the antennae and sensilla of male Dendrolimus species and a male Trabala vishnou gigantina Yang (Lepidoptera:Lasiocampidae) were studied to show the result that, six morphological types of sensilla (S. trichoder, S. chaetica, S. styloconica, S. coeloconica, Bohm bristles, and foot-like sensilla) were identified. Six of the Dendrolimus moths and Trabala vishnou gigantina Yang share the same morphological sensilla type, as do various geographic populations of the same species. The exception, Dendrolimus spectabilis Butler, has foot-like sensilla. However, the sensilla subtypes were significantly different among species and/or populations. There were no remarkable differences in the width of the scape, pedicel, subflagellum, and the side-branches between the male species studied. However, we observed significant differences in the number of flagellomere and the length of scape, pedicel, sub-flagellums, and side-branches. The length and basal diameter of various types of sensilla did not vary significantly among Dendrolimus moths. Beyond that, there were no differences among populations of the same kind of species. Hierarchical cluster analysis suggest that D. punctata punctata, D. punctata wenshanensis, D. tabulaeformis, and D. spectabilis should be the same species as they cannot be clearly distinguished.
     Take perior researchers'results and our consequences into comprehensive consideration, we make a conclusion that D. tabulaeformis is a geographic subspecies of D. punctata punctata.
引文
[1]蔡邦华,刘友樵.中国松毛虫属(Dendrolimus Germar:Lasiocampidae)的研究及新种述[J].昆虫学报,1962,11(3):237-251.
    [2]蔡邦华,侯陶谦,宋士美.松毛虫的种间杂交及杂种生物学的初步观察[J].昆虫学报,1965,14(4):347-359.
    [3]蔡邦华,侯陶谦.中国松毛虫属及其近缘属的修订(枯叶蛾科)[J].昆虫学报,1976,19(4):443-454.
    [4]查玉平,骆启桂.现代技术在昆虫分类中的应用[J].江西林业科技,2005,1:34-36.
    [5]曾今尧,刘丙万,郑咏梅,等.美国白蛾及其他5种灯蛾鳞片超微结构的比较[J].林业科学,2010,46(6):97-103.
    [6]陈阿兰.六种夜蛾卵形态的比较研究[J].青海大学学报:自然科学版,2003,21(2):33-35.
    [7]陈昌洁.松毛虫综合管理[M].北京:中国林业山版社,1990:5-25.
    [8]陈德明,马淑芳.汕松毛虫雄蛾触角毛状感受器细微结构的观察[J].电子显微学报,2002,21(4):402-405.
    [9]陈健,高祖钏,余虹.斜脉蝠蛾卵的形态及卵壳超微结构的观察[J].浙江农业大学学报,1991,17(1):6-8.
    [10]陈文武,宋凯,张明.鳞翅目昆虫精子的发生和形成[J].黑龙江农业科学,2007,(2):52-54.
    [11]程起群.中国鲚鱼的形态变异、遗传多样性及系统发育研究[D].上海:复旦大学,2005.
    [12]杜艳丽,宋士美,武春生,等.斑螟亚科(鳞翅目:螟蛾科)系统分类学研究进展[J].北京农学院学报,2007,22(1):72-75.
    [13]范忠民,刘振陆.辽宁三种松毛虫的寄主、地理分布及自然杂种的发现[J].林业实用技术,1978,5:20.
    [14]房岩,孙刚,王同庆,等.蝴蝶翅膀表面非光滑鳞片对润湿性的影响[J].吉林大学学报:工学版,2007,37(3):582-586.
    [15]房岩,王同庆,孙刚,等.蛱蝶翅鳞片的超微结构观察[J].昆虫学报,2007,50(3):313-317.
    [16]高宝嘉,高立杰,侯建华,等.三种松毛虫不同地理种群遗传多样性[J].生态学报,2008,28(2):842-848.
    [17]高宝嘉,张学卫,周国娜,等.基于Cyt b基因序列分析的松毛虫种群遗传结构研究[J].生态学报,2011,31(6):1727-1734.
    [18]高立杰,高宝嘉.松毛虫地理种群遗传多样性及其与生态因子的相关性研究[D].河北:河北农业大学.2007.
    [19]高明媛.昆虫表皮中碳氢化合物在昆虫分类中的应用[J].昆虫学报,2001,44(1):119-122.
    [20]韩桂彪,马瑞燕.黄斑长翅卷蛾触角感觉器的扫描电镜研究[J].林业科学研究,1996,9(3):300-304.
    [21]韩瑞东,何忠,戈峰.影响松毛虫种群动态的因素[J].昆虫知识,2004,41(6):504-511.
    [22]韩志武,邬立岩,邱兆美,等.紫斑环蝶鳞片的微结构及其结构色[J].科学通报,2008,53(22):2692-2696.
    [23]郝家胜,殷先兵,苏成勇,等.12科国产蝶类代表种类触角的扫描电镜观察及其系统学意义[J].安徽师范大学学报:自然科学版,2007,30(3):354-360.
    [24]洪健,胡萃,叶恭银.七种天蚕蛾科昆虫卵壳气孔的扫描电镜观察[J].电子显微学报,1992,4:275-280.
    [25]洪健,叶恭银,胡萃.茶尺蠖成虫触角感觉器的扫描电镜观察[J].浙江农业大学学报,1993,19(1):53-56.
    [26]洪健,叶恭银,胡萃,等.四种虎凤蝶翅面斑纹特征及鳞片的超微结构[J].浙江农业大学学报,1998,24(S):45-50.
    [27]侯陶谦.中国松毛虫[M].北京:科学出版社,1987:6-31.
    [28]黄小富,张泽钧.大熊猫与小熊猫生态习性的比较:食物、体型大小及系统发育的影响[J].四川动物,2008,27(4):687-692.
    [29]贾玉迪,孔祥波,张真,等.基于线粒体COI基因部分序列探讨4种松毛虫的亲缘关系[J].东北林业大学学报,2011,39(11):1-5.
    [30]贾玉迪.基于线粒体COI基因研究松毛虫部分种类的亲缘关系[D].北京:中国林业科学研究院,2011.
    [31]蒋国芳,何达崇,颜增光.金斑喙风蝶雄虫触角感觉器的扫描电镜观察[J].广西科学,2000,7(2):144-146,149.
    [32]金萍,赵善欢,潘小军.印楝种核提取物AZAL-S对致倦库蚊蛹体壁超微结构的影响[J].寄牛虫与医学昆虫学报,1994,1(3):63-64.
    [33]孔祥波,赵成华,高伟.4种松毛虫性信息素成分及在近缘种生殖隔离中的作用[J].科学通报,2001,46(17):1435-1439.
    [34]孔祥波,赵成华,孙永平等.赤松毛虫信息素次要组分的鉴定——组分、电生理和山间效果[J].昆虫学报,2003,46(2):131-137.
    [35]孔祥波,赵成华,张真,等.松毛虫性信息素共轭双键定位方法的研究[J].色谱,2004,22(2):97-100.
    [36]孔祥波,张真,王鸿斌,等.松毛虫性信息素微量成分鉴定方法的研究[J].色谱,2005,23(4):370-373.
    [37]孔祥波,张真,工鸿斌,等.枯叶蛾科昆虫性信息素的研究进展[J].林业科学,2006,6(42):115-123.
    [38]冷海楠,迟德富,肖放.松毛虫属部分地理种群CO I基因序列分析[J].东北林业大学学报,2010,38(11):105-132.
    [39]李朝达,杨大荣,沈发荣,等.玉龙蝠蛾触角感觉器的扫描电镜观察[J].动物学研究,1990,11(1):83-86.
    [40]李青青,段焰青,李佛琳,等.线粒体基因在鳞翅目昆虫分子系统学中的研究进展[J].昆虫知识,2009,46(3):372-382.
    [41]李青青,段焰青,李地艳,等.鳞翅目昆虫线粒体DNA的研究进展[J].云南农业大学学报,2009,24(5):746-753.
    [42]李怡萍,刘惠霞,袁向群.昆虫气管系统统的超微结构[J].西北农林学报,2002,11(1):57-60.
    [43]李竹,陈力.触角感器特应应用于昆虫分类的研究进展[J].昆虫分类学报,2010,32:113-118.
    [44]刘慧平.韩巨才,汤仿德.日本龟蜡蚧成虫蜡腺及精子的超微结构观察[J].山西农业大学学报,1992,12(2):153-154.
    [45]刘利军,蒋锦昌.黑蝉发声膜的超微结构及其声学功能[J].昆虫学报,1992,35(4):422-427.
    [46]刘文.速度适应金枪鱼和灰鲭鲨的趋同进化[J].科技中国,2004,8:88.
    [47]刘旭.齿爪鳃金龟属幼虫近似种触角超微结构研究[J].西南农业大学学报,1996,18(6):507-510.
    [48]刘友樵,武春生.中国动物志:第47卷,鳞翅目,枯叶蛾科[M].北京:科学出版社,2006:158-168.
    [49]刘玉滨.铜绿丽金龟幼虫血细胞的超微结构研究[J].动物学报,1993,39(2):217-218.
    [50]卢宝廉,甘雅玲,刘笑燕,等.昆虫呼吸系统的超微结构[J].昆虫知识,1988,1:41-42.
    [51]鲁成,向仲怀,刘灼均.樗蚕蓖麻及柞蚕卵壳表面构造的研究[J].西南农业大学学报,1988,10(3):318-323.
    [52]罗礼智,李光博.粘虫蛾飞行肌超微结构的研究[J].昆虫学报,1996,39(2):141-147.
    [53]马瑞燕,杜家玮.昆虫的触角感器[J].昆虫知识,2000,37(3):170-183.
    [54]孟智启.天蚕丝素基因及丝腺超微结构研究进展[J].蚕桑通报,1991,22(3):28-33.
    [55]莫容.蝴蝶与蝴蝶文化[M].北京:燕山出版社,2010:1-20.
    [56]南宫自艳,高宝喜,刘军侠,等.四种松毛虫不同地理种群遗传多样性的等位酶分析[J].昆虫学报,2008,51(4):417-423.
    [57]南宫自艳,高宝嘉,徐志娥,等.松毛虫属5种不同地理种群RAPD遗传多样性分析[J].农业生物技术学报,2009,17(1):178-179.
    [58]南宫自艳,高宝嘉,杨君.松毛虫属(Dendrolimus)部分种类亲缘关系与遗传分化的等位酶分析[J].生态学报,2009,29(4):1661-1667.
    [59]潘鹏亮,沈佐锐,高灵旺,等.昆虫翅脉特征自动获取技术的初步研究[J].昆虫分类学报,2008,30(1):72-80.
    [60]樊永亮,赵章武,元景,等.印度谷螟触角感受感的扫抽电镜观察[J].山西大学学报:自然科学版,1993,16(4):444-448.
    [61]齐宝瑛,能乃扎布.内蒙古菊网蝽属成虫体表感觉结构的扫描电镜研究(异翅亚目:网蝽科)[J].内蒙古师大学报:自然科学版,1992,4:50-57.
    [62]齐宝瑛,杨晓英,马旭东,等.网蝽科十一属昆虫体表感觉结构的电镜观察[J].昆虫学报,1996,39(1):21-27.
    [63]秦玉川.昆虫行为学导论[M].北京:科学出版社,2006:28-47.
    [64]任自立,张清敏,郭淑华.亚洲玉米螟成虫触角的扫描电镜观察[J].昆虫学报,1987,30(1):26-29.
    [65]任树芝.蝽类昆虫卵形态细微结构扫描电镜观察(半翅目:蝽科)[J].南开大学学报:自然科学,2001,34(2):109-113.
    [66]邵奇妙,张龙,李文,等.东亚飞蝗触角感受器的外部形态及分布[J].中国农业大学学报,2002,7(1):83-88.
    [67]邵淑霞,姜波,蒲卫琼,等.井上蛀果斑螟触角感器的扫描电镜观察[J].昆虫知识,2008,45(6):932-936.
    [68]石奇光,赵祖培.鳞翅目昆虫性信息素与生殖隔离[J].生物防治通报,1986,2(4):178-181.
    [69]苏翠荣,蔡自力.大别山越南蜉触角感器的扫描电镜观察[J].昆虫学报,1994,37(3):382-384.
    [70]苏建伟,徐延熙,秦小薇,等.松毛虫雌性信息素的研究与应用[J].昆虫知识,2006,43(4):439-442.
    [71]王兴红,高宅嘉,南寓自艳,等.松毛虫AFLP反应体系的建立及引物筛选[J].河北农业大学学 报,2009,32(2):84-88.
    [72]王岩,马纪,刘小宁,等.苏氏宽漠甲Sternoplax souvorowiana卵的形态和卵壳超微结构[J].新疆农业科学,2010,47(9):1703-1708.
    [73]王振营,周大荣.欧洲玉米螟雌蛾鳞片提取液对玉米螟赤眼蜂寄主搜索行为的影响[J].植物保护学报,1996,23(4):373-375.
    [74]温衍生,赵冬香.豇豆荚螟触角感器扫描电镜观察[J].热带作物学报,2008,29(4):525-529.
    [75]伍德明.四种松毛虫对性外激素成分及其类似物的触角电位反应[J].森林病虫通讯,1982,1:24.
    [76]奚耕崽,郑哲民.蝗总科精子超微形态比较及其在系统分类上的意义[J].昆虫分类学报,1996,19(1):1-9.
    [77]夏邦颖.试论昆虫卵的分类特征[J].昆虫分类学报,1980,2(4):247-256.
    [78]夏邦颖.研究昆虫卵壳的实践意义[J].昆虫知识,1982,19(1):25-28.
    [79]向仲怀,鲁战,刘灼均,等.家蚕、野蚕与桑蟥卵壳表面构造的观察比较[J].蚕业科学,1988,14(4):215-217.
    [80]萧刚柔.中国森林昆虫(第2版)[M].北京:中国林业出版社.1992:944-966.
    [81]杨慧,严善春,李杰,等.落叶松重要枝梢害虫松瘿小卷峨触角感器的超微结构[J].林业科学,2008,44(2):93-98.
    [82]杨慧,严善春,彭璐.兴安落叶松鞘蛾触角及其感器的扫描电镜观察[J].昆虫知识,2008,45(3):405-417.
    [83]杨立军,李新岗.松果梢斑螟触角感受器的扫描电镜观察[J].西北林学院学报,2007,22(3):127-130.
    [84]杨志远,徐志成.从精子的超微结构看米象和玉米象的亲缘关系[J].中国粮汕学报,1988:40-44.
    [85]杨燕,杨茂发,杨再华,等.云南木蠹象触角感器的扫描电镜观察[J].林业科学,2009,45(2):72-74.
    [86]尹姣,曹雅忠,罗礼智等.草地螟触角化学感受器的电镜观察[J].昆虫知识,2004,40(1):56-59.
    [87]尹文英,宋大祥,杨星科,等.六足动物(昆虫)系统发生的研究[M].北京:科学山版社:2008:14-27,168-169.
    [88]殷先兵,郝家胜,许丽,等.基于线粒体NDI和COI基因序列探讨锯眼蝶亚科主要类群的系统发生关系[J].动物学研究,2007,28(5):477-484.
    [89]袁锋.昆虫分类学[M].北京:中国农业出版社,1996.
    [90]翟宗昭,薛怀君,工书永,等.跳甲属(鞘翅目,叶甲科,跳甲亚科)同域分布种及其寄主关系探讨[J].动物分类学报,2007,32(1):137-142.
    [91]张爱兵,孔祥波,李典谟,等.中国松毛虫属八个种和亚种亲缘关系的DNA指纹证据[J].昆虫学报,2004,47(2):236-242.
    [92]张丽杰,薛怀君,杨星科.跳甲属7种卵扫描电镜形态比较[J].昆虫知识,2008,45(2):303-305.
    [93]张善干,马淑芳,付宏兰,等.马尾松毛虫雄蛾触角毛状感受器的细微结构[J].昆虫学报,1995,38(1):8-11.
    [94]张学卫,高宅嘉,周国娜.基于Cytb基因序列分析的松毛虫种群遗传结构研究[J].生态学报,2011,31(6):1727-1734.
    [95]张迎春,张莹,郑哲民.4种昆虫鞘翅表面超微结构的比较[J].西北大学学报:自然科学版,2001,31(6):522-524.
    [96]张真,李典谟,查光济.马尾松毛虫2、3代分化和干旱对种群时间动态的影响[J].昆虫学报,2002,45(4):471-476.
    [97]赵博光,黄金生,张飞龙.大袋蛾雄虫触角的细微结构[J].昆虫学报,1986,29(3):327-33.
    [98]赵成华,李群,郭星宇,等.马尾松毛虫性引诱外激素的新成分:化学结构鉴定和田间试验[J].昆虫学报,1993,36(2):247-250.
    [99]赵清山,邬文波,吕国平,等.松毛虫的杂交遗传试验[J].昆虫学报,1992,35(1):29-32.
    [100]赵清山,邬文波,吕国平,等.松毛虫的种间杂交及其遗传规律的研究[J].林业科学,1999,35(4):45-50.
    [101]赵玉敏,王艳平.黄钩蛱蝶触角感器的扫描电镜观察[J].通化师范学院学报,2007,29(12):45-46.
    [102]赵玉敏,姜秀,王艳萍.银斑豹蛱蝶触角感器的扫描电镜分析[J].通化师范学院学报,2008,28(10):37-39.
    [103]郑乐怡,归鸿.昆虫分类[M].南京:南京师范大学出版社,1999.
    [104]郑一平,暴学祥.蝗虫三种触角扫描电镜研究[J].东北师大学报:自然科学版,1995,27(2):86-88.
    [105]中国科学院动物研究所昆虫外激素组.马尾松毛虫成虫性引诱现象的初步观察[J].昆虫学报,1973,16(1):94-99.
    [106]中国科学院动物研究所昆虫外激素组,江西省森林病虫害防治试验站昆虫组,中国科学院吉林应用化学研究所松毛虫外激素组.马尾松毛虫性引诱外激素活性组分的柱层析分离[J].昆虫学报,1976,19(4):377-382.
    [107]中国科学院动物研究所昆虫外激素组,中国科学院吉林应用化学研究所松毛虫外激素组,江西省森林病虫害防治试验站昆虫组.马尾松毛虫性外激素的触角电位(EAG)活性组分E5,E7-12:OH的分离、鉴定与合成[J].科学通报,1979,21:1004-1008.
    [108]钟敏,沈佐锐.鳞翅目昆虫鳞片的结构发育与眼斑的形成[J].昆虫知识,2003,40(5):410-415.
    [109]周学权,张执中,李镇宇.松毛虫属一些种类血淋巴蛋白的研究[J].北京林业大学学报,1989,21(4):93-100.
    [110]Altner H, Tichy H, Altner I. Relationship between structure and function of antennal chemo-, hygro-, and thermoreceptive sensilla in Periplaneta americana [J]. Cell Tissue Res,1977,176: 389-405.
    [111]Ando T, Vu M H, Yoxhida S, et al. (5Z,7E)-5,7-Dodecadien-l-ol:female sex pheromone of the pine moth Dendrolimus spectabilis Butler[J]. Agricultural and Biological Chemistry,1982, 46(3):709-715.
    [112]Atkinson L, Adams E S. Double-strand conformation polymorphism (DSCP) analysis of the mitochondrial control region generates highly variable markers for population studies in a social msect[J]. Insect Mol Biol,1997,6(4):369-376.
    [113]Baccetii B. Comparative spermatology in insect taxonomy and phylogeny [M]. Firenze:Proc XX Int Congr Entomo,1996,18-23.
    [114]Bland R G, Rentz D C F. Studies in Australian Gryllacrididae:the proventriculus as a taxonomic character[J]. Invertebrate Taxonomy,1991,5:443-455.
    [115]Brakefield P M, Liebert T G. Evolutionary dynamics of declining melanism in the peppered moth in the Netherlands[J]. Biol Sci,2000,267(1456):1953-1957.
    [116]Burghardt F, Knuttel H, Becker M. Flavonoid wing pigments increase attractiveness of female common the (Polyommatusicarus) butterflies to mate-searching males[J]. Naturwissenschaften, 2000,87:304-307.
    [117]Catala S. Sensilla associated with the Rostrum of eight species of Triatominae[J]. J morph,1996, 228:195-201.
    [118]Carroll S B, Gates J, Keys D N, et al. Pattern formation and eyespot determination in butterfly wings[J]. Sci,1994,265 (5168):109-114.
    [119]Common I F. Evolution and classification of the Lepidoptera [J]. Annu Rev Entomol,1975,20: 183-203.
    [120]Cuperus P L, Thomas G, Den O C J. Interspecific variation and sexual dimorphism of antennal receptor morphology, in European Yponomeuta (Latreille) (Lepidoptera:Yponomeutidae) [J]. Int J Insect Morphl Embry,1983,12(1):67-78.
    [121]Donley J M. Convergent evolution in mechanical design of lamnid sharks and tunas[J]. Nature, 2004,429:61-65.
    [122]Faucheuxa M J. Antennal sensilla in adult Agathiphaga vitiensis Dumbl. and A. queenslandensis Dumbl. (Lepidoptera:Agathiphagidae) [J]. Int J Insect Morphl Embry,1990,19(5-6):257-268.
    [123]Faucheuxa M J, Kristensen N P, Shen H Y. The antennae of neopseustid moths:Morphology and phylogenetic implications, with special reference to the sensilla (Insecta, Lepidoptera, Neopseustidae) [J]. Zoologischer Anzeiger,2006,245(2):131-142.
    [124]Friedlander M.Phylogenetic branching of Trichoptera and Lepidoptera:An ultrastructural analysis on comparative spermatology [J].J Ultrastr Res,1983,83:141-147.
    [125]Ghiradella H. Structure and development of iridescent Lepidopteran scales:The Papionidae as a show-case family [J]. Ann Entomol Soc Am,1985,78:252-264.
    [126]Ghiradella H. Structure and development of iridescent butterfly scales:lattices and laminae[J]. Morphol,1989,202:69-88.
    [127]Ghiradella H. Light and color on the wing:structural colors in butterflies and moths[J]. Appl Opt, 1991,30(24):3492-3500.
    [128]Ghiradella H. Hair, Bristles and Scales [M]. In Harrison FW, Locke M (Eds):Microscopical Anatomy of Invertebrates 11A (Insecta),1998:257-287.
    [129]Greenstein M E. The ultrastructure of developing wings in the giant silk moth, Hyalophora cecropia. Ⅱ. Scale forming and socket forming cells[J]. J Morphol,1972,136:23-52.
    [130]Grodnitsky D L. Form and function of insect wings[M]. Baltimore and London:The Johns Hopkins University Press.1999.
    [131]Hallberg E. Fine-structural characteristics of the antennal sensilla of Agrotis segetum (Insecta Lepidoptera) [J].. Cell Tissue Res,1981,218:209-218.
    [132]Hallerg E, Hansson B S, Steinbrecht R A. Morphological characteristics of antennal sensilla in European cornborer Ostrinia nubilalis (Lepidoptera:Pyralidae) [J]. Tissue Cell,1994,312 264-278.
    [133]Harbach R E, Larsen J R. Fine structure of antennal sensilla of the adult mealworm beetle, Tenebrio molitor L (Coleoptera:Tenebrionidae) [J]. Int J Insect Morphol Embry ol,1917,6:41-60.
    [134]Jamieson B G M, Dallai R, Afzelius B A. Insect:their Spermatozoa and Phylogeny [M]. New Hampshire:Science Publishers,2000.
    [135]Jamil K. Jyothi K N, Prasuna A L. Scanning electron microscopic studies on atennal sensilla of castor pests Achaea janata L. and Paralelliac algira L. (Lepidoptera:Noctuidae) [J]. Proc Indian natn Sci Acad,1989,55 (3):1949-1954.
    [136]Jefferson, R N, Rubin R E, Mcfatland S U, et al. Sex pheromones of noctuid moths XXII:The external morphology of the antennae of Trichoplusia ni, Heliothis zea, Prodenia ornithogalli and Spodoptera exigua [J]. Ann entomol Soc Amer,1970,63:1227-1238.
    [137]Ji Y J, Hua Y P, Y D. Ten polymorphic microsatellite markers developed in the mason pine moth Dedrolimus punctata Walker (Lepidoptera:Lasiocampidae) [J]. Mol Ecol Notes,2005,5:911-913.
    [138]Kellogg V L. The taxonomic value of the scales of the Lepidoptera[J]. Kansas Univ,1894,3(1): 45-89.
    [139]Kingsolver J G, Watt W B. Thermoregulatory strategies in Colias butterflies:thermal stress and the limits to adaptation in thermally varying environments[J]. Am Nat,1983,121:32-55.
    [140]Kong X B, Zhao C H, Gao W. Identification of sex pheromones of four economically important species in genus Dendrolimus[J]. Chin Sci Bull,2001.46:2077-2081.
    [141]Kristensen N P. A new familla of Hepialoidea from south America, with remarks on the phylogeny of the suborder exoporia (Lepidoptera) [J]. Entomol Germanic,1978a,4:272-294.
    [142]Kristensen N P. Studies on the morphology and systematics of primitive Lepidoptera (Insecta) [J]. Steenstrupia,1984,10:141-191.
    [143]Kumazawa K. Negita K, Hasegawa T, et al. Fluorescence from cover and basal scales of Morpho sulkowskyi and Papilioxuthus butterflies[J]. Exp Zool,1996,275:15-19.
    [144]Liang A P, Fletcher M J. Morphology of the antennal sensilla in four Australian spittlebug species (Hemiptera:Cercopidae) with implications for phylogeny [J]. Austral J Entomol,2002,41:39-44.
    [145]Li C D. Yang D R, Yang Y X, et al. SEM observations of antennal sensilla of Ghost moths [J]. Acta entomol sin,1994,37(1):59-62.
    [146]Lee J L, Strausfeld N J. Structure, distribution and number of surface sensilla and their receptor cells on the olfactory appendage of the male moth[J]. Manduca sexta J Neurocytol,1990,19 519-538.
    [147]Liepert C, Dettner K J. Role of cuticular hydrocarbons of aphid parasitoids in their relationship to aphid-attending ants[J]. Chem Ecol,1996,22(4):695-707.
    [148]Mallet J, Singer M C. Individual selection, kin selection, and the shifting balance in the evolution of warning colours:the evidence from butterflies[J]. Biol J Linn Soc Lond,1987,32:337-350.
    [149]Matthew RE, Symonds and Mark A, et al. The mode of pheromone evolution:evidence from bark beetles [J]. Proc R Soc Lond,2004,271:839-846.
    [150]Miller D R, Gibson K E, Raffa K F, et al. Geographic variation in response of pine engraver, Ipspini, and associated species to pheromone [J], lanierone J Chem Ecol,1997,3(23):2013-2031.
    [151]Nardi J, Ma G, Adms S M. Formation of scale spacing patterns in a moth wing. I. Epithelial feet may mediate cell rearrangement[J]. Dev Biol,1986,116:278-290.
    [152]Nijhout H F. The Development and Evolution of Butterfly Wing Patterns[M]. Washington/London: Random House (Smithsonian Inst Press),1991.
    [153]Odendaal F J, Ehrlich P R, Thomas F C. Structure and function of the atennae of Euphydryas editha (Lepidoptera:Nymphalidae) [J].J Morphl,1985,184(1):1-22.
    [154]Regier J C, Paukstadt U, Paukstadt L H, et al. Phylogenetics of eggshell morphogenesis in Antheraea (Lepidoptera:Saturniidae):unique origin and repeated reduction of the aeropyle crown[J]. Syst Biol,2004,54 (2):254-267.
    [155]Rentz C D F, John B. Studies in Australian gryllacrididae, taxonomy, biology, ecology and cytology[J]. Invertebrate Taxonomy,1990,3:1053-1210.
    [156]Rodrigues P D, Raymond J P, Carl W S. Taxonomic Differences in Some Sensory Structures of the Tingidae (Hemiptera:Heteroptera) [J]. J Kansas Ent Soc,1982,55(1):117-124.
    [157]Rydell J, Lancaster C W. Flight and thermoregulation in moths were shaped by predation from bats[J]. Oikos,2000,88:13-18.
    [158]Schneider D. Insect Antennae[J].Annu Rev Entomol,1964,9:103-22.
    [159]Shambaugh G F, Frazier J L, Castell E M, et al. Antennal sensilla of seventeen aphiad species (Homoptera:Aphidinae) [J]. Int J Insect Morphol Embryol,1978,7 (5-6):389-404.
    [160]Shevtsova E, Hansson C, Janzen D H, et al. Stable structural color patterns displayed on transparent insect wings[J]. Sci.2011,108 (2):668-673.
    [161]Silva B K, Wahlberg N, Francini R, et al. Phylogenetic relationships of butterflies of the tribe Acracini and the evolution of host plant use [J]. Mol Phylogen Evol,2008,46(2):515-531.
    [162]Sonnenscheina M, Christoph L, Hausera. Presence of only eupyrene spermatozoa in adult males of the genus Micropterix hubner and its phylogenetic significance (Lepidoptera:Zeugloptera, Micropterigidae) [J]. Int J Insect Morphl Embry,1990,5-6(19):269-276).
    [163]Simonsen T J. The wing vestiture of the non-ditrysian Lepidoptera (Insecta):Comparative morphology and phylogenecic implications[J]. Acta Zool,2001,82(4):275-298.
    [164]Simonsen T J, Kristensen N P. Scale length/wing length correlation in Lepidoptera (Insecta) [J]:J Nat Hist,2003,37(6):673-679.
    [165]Sun X, Wang M Q, Zhang G A. Ultrastructural observations on antennal sensilla of Cnaphalocrocis medialis (Lepidoptera:Pyralidae) [J]. Microscopy research and technique,2011,74:113-121.
    [166]Seybold S J,Ohtsuka T. Wood D L, et al.Enantiomeric composition of ipsdienl:A chemotax onomic character for north american populations of Ips spp.in the pini subgeneric group (Coleoptera:Scolytidae) [J].J Chem Ecol,1995,21:995-1016.
    [167]Shields V D C, Jone G, et al. Recent advances in insect olfaction, specifically regarding the morphology and sensory physiology of antenna] sensilla of the female sphinx moth Manduca sexta [J]. Microscopy research and technique,2001,55:307-329.
    [168]Van Nieukerken E J, Dop H. Antennal sensory structures in Nepticulidae (Lepidoptera) and their phylogenetic implications[J]. J Zool Syst Evol Res,1986,25(2):104-126.
    [169]Volkovitsh M G. The comparative morphology of antennal structures in Buprestidae (Coleoptera): evolutionary trends, taxonomic and phylogenetic implications Part 1[J]. Acta Musei Moraviae Sci Biol (Brno),2001,86:43-169.
    [170]Vukusic P, Sambles J R, Lawrece C R. Quantified interference and diffraction in single Morpho butterfly scales[J]. Pro R Soc Lond B Biol Sci,1999,266:1403-1411.
    [171]Vukusic P, Sambles J R. Photonic structures in biology[J]. Nature,2003,424:852-855.
    [172]Wahlberg N, Brower A, Nylin S. Phylogenetic relationships and historical biogeography of tribes and genera in the subfamily Nymphalinae[J]. Biol J Linn Soc,2005,86(2):227-251.
    [173]Wysoki M, Scheepens M H M. The antennae and antennal sensilla of the giant looper, Boarmia (Ascotis) seienaris Schiffermuller (Lepidoptera, Geometridae) [J]. Zoologica Scripta,1986,15(2): 175-179.
    [174]Yang H, Yan S C, Liu D. Ultrastructural observations on antennal sensilla of Coleophora obducta (Meyrick) (Lepidoptera:Coleophoridae) [J]. Micron,2009,40(2):31-238.
    [175]Yao O, Zeng J Y, Zheng Y M, et al. Characteristics of echolocating bats auditory stereocilia length, compared with other mammals[J]. Sci Chin Ser C,2007,50(4):492-496.
    [176]Yoshida A, Aoki K. Scale arrangement pattern in a lepidopteran wing[J]. Dev Growth Deffer,1989, 31:601-609.
    [177]Zackaruk R Y. Ultrastructure and function of insect chemosensilla[J]. Ann Rev Ent,1980,25:27-47.
    [178]Zhang M, Cao T, Zhang R, et al. Phylogeny of Apaturinae butterflies (Lepidoptera:Nymphalidae) based on mitochondrial cytochrome oxidase I gene[J]. J Genet Genom,2007,34(9):812-823.
    [179]Zheng X M, Gao X F, Jiang L. Directional adhesion of superhydrophobic butterfly wings[J]. Soft Matter,2007,3:178-182.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700