基于树型拓扑的缆系海底观测网供电接驳关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传统的基于科考船、水下机器人、离线式观测设备的海洋观测手段难以满足日益增长的海洋科学研究和发展需求,缆系海底观测网因具有较强的连续电能供给能力和高带宽通信能力,可提供一种长期的、连续的、实时的、原位观测的海洋科学研究手段。为此,近十年来,欧美、日本等国家和地区相继研究和发展了缆系海底观测网。而具有辽阔海洋面积的我国的缆系海底观测网技术非常薄弱,几乎处于空白状态,大大制约了我国海洋科学事业的发展,研究缆系海底观测网关键技术具有极大的科学意义和广泛的应用前景。本文针对建设缆系海底观测网面临的电能供给的结构和方式,高低压电能变换与分配,水下电能系统散热,供电故障诊断与隔离,以及可靠性分析等几个关键核心技术和难点展开研究。
     本文在分析海底观测网应用环境和需求上,对其供电系统的输电方式和结构展开讨论,综合考虑输电技术特点、应用功率需求、环境特点、敷设成本等多方面因素选择了负高压、直流、单极、单线的输电方式和树型扩展的输电网络结构。并对远距离输电的单节点海底观测网的供电稳定性展开研究,得出影响最大输电功率、动态稳定性的影响因素,并推导出多节点树型观测网供电系统的稳态与动态特性的分析方法。
     针对主级接驳盒的应用需求,提出了采用基于共占空比控制策略的多模块堆叠的电能变换系统设计方案。系统分析了基于共占空比控制策略的多模块ISOS式、ISOP输出电容并联式、ISOP输出交错并联式等三种拓扑结构的均压均流稳定性特征,分析比较了各自优缺点。并基于三种拓扑结构设计开发了一套2kV@2kW和一套10kV@10kW的高中压电能变换器。为使封装在密闭腔体内的高中压电能变换器能长期稳定运行,设计了一种具有缓压功能的充油式散热结构,通过实验验证了主级接驳盒电能转换及散热系统的可行性和可靠性。
     论文在分析传统直流电能输配电拓扑结构特点基础上,针对海底观测网的次级接驳盒中低压电能变换需求,提出了一种隔离式的模块化电能变换系统设计方案。同时设计了一套具有外廓自适应特性的散热结构,实现了中低压电能变换系统的有效散热。通过样机试验验证了次级接驳盒电能变换及散热系统可行性和可靠性。
     可靠性是海底观测网设计的重要指标,采用可靠性框图和故障树分析方法分别对其供电系统的基本可靠性、任务可靠性和故障进行研究,建立了供电系统的可靠性框图模型和故障树模型,并基于故障树模型设计了仿真分析方法,并以中低压电能变换系统为例进行了仿真分析。同时,针对影响海底观测网电能供给系统可靠性的关键因素,提出了海底观测网电能传输故障诊断与隔离设计方案,通过在输电线上供给不同幅度的电平和极性实现故障诊断和对故障隔离的控制,有效提高了接驳盒电能供给系统的可靠性。
     论文开发研制了基于2kV供电和10kV供电的两套不同的观测网供电接驳系统样机,并进行了实验室试验、浅海试验和深海试验研究。实验室环境测试验证了相应的单节点直流输电技术、高中压和中低压电能变换技术、散热方式、接驳盒供电故障诊断与隔离等关键技术的可行性,浅海试验则验证了相应技术在实际海洋环境中的实用性,而深海试验则验证了相应技术满足海底观测网组网要求和长期运行的可靠性。
     海底观测网系统样机的成功研制以及海试充分说明了本文所研究的直流输电结构、电能变换、水下密封腔体散热、故障诊断与隔离等工程技术方面具有较强的实用性和可靠性,可为今后更深入的研究和建设长期实用性的海底观测网提供了可靠地理论依据和技术支持。
Long-term, continuous, real-time and in situ observation is becoming an urgent requirement of many scientists. While the traditional ocean observation approaches which are mostly through ship based cruise, underwater robotics and off-line equipments are unable to satisfy the increasingly requirements, cabled ocean observatories system that enables large amount of power and broad bandwidth to seafloor becomes an innovation approach. During the last decade, cabled ocean observatories systems have been or being developed in north American, Europe and Japan, but it is almost a vacant field in China, which will dramatically restrict the domestic ocean science research, so developing cabled ocean observatories system will have great scientific significance and broad application prospect. In this thesis, some key technologies and difficulties faced in building cabled system such as power structure and method, power conversion and distribution, heat dissipation, fault detection and isolation, reliability analysis are discussed, respectively.
     Power structure and method for cabled ocean observatories system affect the structure design of the observation node. The observation requirements and environments are discussed, as well as the technique, power requirements, cost for deployment and maintenance. Negative high voltage, direct current, monopole and single line are adopted for power delivery, and tree topology power structure is used. The power system stability analysis starts from the scenario of a single node structure with long-cable. Results show that the parasitical inductance, capacitance and resistance of the cable impact the maximum power capacity and dynamical stability. The analysis method for multi-node system is also simply introduced.
     According to the application requirements of the primary Junction Box (JBox), module stacking method based on common duty ratio control strategy is introduced to build its power conversion system. Voltage and current sharing characteristics of three topologies, including input series output series (ISOS), input series output parallel (ISOP) by paralleling capacitors and ISOP by sharing output filters, are theoretically analyzed based on common duty ratio control strategy, as well as the impact factors are discussed together. Basic tests are carried out to validate the analysis. Two prototypes with one is2kV@2kW converter and the other is10k V@10kW are realized based on the three introduced topologies. At the same time, according to the heat dissipation mechanism of the power conversion system, filling oil in vessel and fixing pressure-release facility are introduced to cool the power conversion system. Experiments validates that the methods for building the conversion system are applicable, as well as the heat dissipation method.
     Secondary JBox is the key facility of secondary node for cabled observatories system and the low voltage power conversion and distribution is the heart of its power system. As it is the terminal junction facility, its design should concern users' requirements and features and require strong reliability against faults. An isolated modular power system is presented after analyzing the merit and demerit of three traditional DC power distribution systems and a prototype are realized. Moreover, dissipating heat via the arc wall of pressure vessel is introduced for its heat dissipation, and an adaptable outer profile structure for it is designed.
     For poor maintainable of underwater power system, reliability is an important performance index. According to the power tree topology for cabled system, its basic reliability, task reliability and fault tree analysis are discussed based on the theory of reliability block diagram (RBD) and fault tree analysis (FTA). The corresponding models of single node system are built as well. Moreover, a simply simulative method based on fault tree model is presented and used on the topology selection of the low voltage power conversion system. To enhance the reliability of this power system, technologies on fault detection and isolation against cable delivery faults and power faults of JBox are studied, respectively. Due to the deficiency of communication, different voltage levels and polar are used to transmit commands when faults occur at power cable. Corresponding circuits for cable fault detecting and isolating are designed and simply validated. As for the faults occur at JBox, the potential faults are discussed, and corresponding methods are introduced and applied on the JBox prototype.
     Finally, according to the mentioned theories and technologies, two different cabled observatories system prototypes based on2kV and10kV powered methods were built, and they were tested in tank in laboratory, in shallow water in East China Sea and in deep water in USA. The laboratory tests validated the introduced technologies on power delivery, power conversion, heat dissipation, fault detection and isolation at JBox were feasible. The shallow water experiments validated that the corresponding technologies were able to use in real sea. The successful operation of connecting the prototype to MARS in USA validated the corresponding technologies satisfied the requirements of building a cabled network underwater and also validated its long-term operative reliability.
     The successful development and sea trails show that the discussed technologies such as power structure, power conversion, heat dissipation, fault detection and isolation have good practicability and reliability. The study achievements can provide theoretical and technical basis for further research in building the practical cabled ocean observatories system.
引文
[1]陈鹰,杨灿军,陶春辉.海底观测系统[M].海洋出版社,2006.
    [2]汪品先.走向深海大洋:揭开地球德隐秘档案[M].2005,pp.24-27.
    [3]上海海洋科技研究中心, 海洋地质国家重点实验室.海底观测-科学与技术的结合[M].上海:同济大学出版社,2011.
    [4]Berta, M., Gasparoni, F., Capobianco, M. Abyssal BEnthic Laboratory (ABEL):a novel approach for long-terminvestigation at abyssal depths [J]. Journal of Marine Systems,1995, 6(3):21.1-225.
    [5]Favali, P., Beranzoli, L. Seafloor Observatory Science:a review [J]. Annals of Geophysics, 2006,49:515-567.
    [6]苏纪兰.如何正确认识Argo计划[J].海洋技术,2001,20(3):1-2.
    [7]Roemmich, D., Owens, W. B. The Argo Project:Global Ocean Observations for Understanding and Prediction of Climate Variability [J]. Oceanography 2000,13(2):45-50.
    [8]Chave, A. D., Waterworth, G, Maffei, A. R., Massion, G. Cabled ocean observatory systems [J]. Marine Technology Society Jounal,2004,38(2):30-43.
    [9]Person, R., Aoustin, Y., Blandin, J., Marvaldi, J., Rolin, J. F. From bottom landers to observatory networks [J]. Annals of Geophysics,2006,49(2-3):581-593.
    [10]Isern, A. R., Clark, H. L. The Ocean Observatories Initiative:A continued presence for interactive ocean research [J]. Marine Technology Society Journal,2003,37(3):26-41.
    [11]Isern, A. R. The ocean observatories initiative:Wiring the ocean for interactive scientific discovery [C]. Oceans 2006,2006, pp.1924-1930.
    [12]Clark, H. L., Isern, A. Cabled observatories for ocean research:a component of the ocean observatories initiative [C].3rd International Workshop on Scientific Use of Submarine Cables and Related Technology,2003, pp.209-214.
    [13]Howe, B. M., McGinnis, T. Sensor networks for cabled ocean observatories [C]. International Symposium on Underwater Technology,2004, pp.113-120.
    [14]Forrester, N. C, Stokey, R. P., vonAlt, C., Allen, B. G.,.Goldsborough, R. G, Purcell, M. J., Austin, T. C. The LEO-15 Long-term Ecosystem Observatory:Design and installation [C]. Oceans '97 MTS/IEEE Conference,1997, pp.1082-1088.
    [15]VonAlt, C., DeLuca, M. P., Glenn, S. M., Grassie, J. F., Haidvogel, D. B. LEO-15: Monitoring & managing coastal resources [J]. Sea Technology,1997,38(8):10-16.
    [16]http://marine.rutgers. edu/cool/leo15. htm.
    [17]Creed, E. L., Glenn, S., Schofield,O. M., Barrier, H., Petrecca, R. F., Dobarro, J. A., McLean, S. D., Barnard, A. H., Brown, K. M., Adams, R. S., Feener, S. LEO-15 observatory - The next generation [C]. Oceans,2005, pp.657-661.
    [18]http://mvcodata. whoi. edu/cgi-bin/mvco/mvco.cgi.
    [19]Austin, T., Edson, J., McGillis, W., von Alt, C., Purcell, M., Petitt, R., McElroy, M., Ware, J., Stokey, R. The Martha's Vineyard coastal observatory:A long term facility for monitoring air-sea processes [C]. Oceans 2000 MTS/IEEE - Where Marine Science and Technology Meet,2000, pp.1937-1941.
    [20]http://4dgeo.whoi.edu/panama/.
    [21]Concimano, R. A comparison of AC and DC power feeding systems based on the NEMO experiences [J]. NUCLINSTRUM METH A,2009,602(1):171-173.
    [22]Duennebier, F. K., Harris, D., Jolly, J., Caplan-Auerbach, J., Jordan, R., Copson, D., Stiffel, K., Babinec, J., Bosel, J. HUGO:The Hawaii Undersea Geo-Observatory [J]. IEEE Journal of Oceanic Engineering,2002,27(2):218-227.
    [23]http://www.soest.hawaii.edu/HUGO/.
    [24]Butler, R., Chave, A. D., Duennebier, F. K., Yoerger, D. R., Petitt, R., Harris, D., Wooding, F. B., Bowen, A. D., Bailey, J., Jolly, J., Hobart, E., Hildebrand, J. A., Dodeman, H. Hawaii-2 Observatory pioneers opportunities for remote instrumentation in ocean studies [J]. Eos Trans. AGU,2000,81(15):157 and 162-163.
    [25]Chave, A. D., Bailey, J. W., Beaulieu, S., Butler, R., Duennebier, F. K., Filloux, J. H., Harris, D., Mandea, M., Orcutt, J. A., Smith, K., Stephen, R., Tarits, P., Vernon, F. L., Wooding, F. B., IEEE, I.2003-2004 upgrades and additions to the Hawaii-2 Observatory [C].3rd International Workshop on Scientific Use of Submarine Cables and Related Technology, 2003, pp.14-18.
    [26]http://www.soest.ha.waii.edu/H2O/.
    [27]Kawaguchi, K., Araki, E., Kaneda, Y. A Design Concept of Seafloor Observatory Network for Earthquakes and Tsunamis [C]. Symposium on Underwater Technology and Workshop on Scientific Use of Submarine Cables and Related Technologies,2007, pp. 176-178.
    [28]Asakawa, K., Kshirasaki, Y., Yoshida, M., Nishida, T. Feasibility Study on Long-term Continuous Monitoring from Seafloor with Underwater Cable Network, [C].4th International Workshop on Very Large Floating Structures,2003, pp.350-357.
    [29]Clark, A. M., Sekino, H., Society. A Multidisciplinary deep sea long-term observatory in Japan [C]. Oceans 2001 MTS/IEEE,2001, pp.1290-1295.
    [30]Kojima, J., M.Howe, B., Asakawa, K., Kirkham, H. Power systems for ocean regional cabled observatories [C]. MTS/IEEE TECHNO-OCEAN,2004, pp.2176-2181.
    [31]Mikada, H., Asakawa, K. Development of Japanese Scientific Cable Technology [C]. Oceans,2008, pp.940-943.
    [32]Mitsuzawa, K., Iwase, R., Otsuka, R., Hirata, K., Mikada, H. Long-term deep current measurements by JAMSTEC cabled observatories [C]. MTS/IEEE Techno-Ocean '04,2004, pp.2206-2210.
    [33]Kasahara, J., Shirasaki, Y., Momma, H. Multidisciplinary geophysical measurements on the ocean floor using decommissioned submarine cables:VENUS project [J]. IEEE Journal of Oceanic Engineering,2000,25(1):111-120.
    [34]Kasahara, J., Sato, T., Momma, H., Shirasaki, Y. A new approach to geophysical real-time measurements on a deep-sea floor using decommissioned submarine cables [J]. Earth Planets Space,,1998,50:913-925.
    [35]Hirata, K., Takahashi, H., Geist, E., Satake, K., Tanioka, Y., Sugioka, H., Mikada, H. Source depth dependence of micro-tsunamis recorded with ocean-bottom pressure gauges: the January 28,2000 M-w 6.8 earthquake off Nemuro Peninsula, Japan [J]. Earth and Planetary Science Letters,2003,208(3-4):305-318.
    [36]Iwasaki, N., Momma, H. Direct observation of deep-sea animals using a deep seafloor observatory at the depth of 3,572 m in Nankai Trough, Japan [C]. International Symposium on Underwater Technology 2007,2007, pp.652-657.
    [37]Asakawa, K., Muramatsu, J., Kojima, J., Shirasaki, Y. Feasibility Study on Power Feeding System for Scientific Cable Netwrok ARENA [C]. Proc. of Scientific Submarine Cable, 2003, pp.307-314.
    [38]Kawaguchi, K., Kaneda, Y., Araki, E. The DONET:A real-time seafloor research infrastructure for the precise earthquake and tsunami monitoring [C]. Oceans 2008-Mts/Ieee Kobe Techno-Ocean,2008, pp.1-4.
    [39]Kojima, J., Asakawa, K. Simulation of power feeding system for the mesh-like scientific underwater cable network ARENA [C].4th International Symposium on Underwater Technology,2004, pp.375-380.
    [40]Shirasaki, Y., Yoshida, M., Nishida, T., Kawaguchi, K., Mikada, H., Asakawa, K. ARENA: A versatile and multidisciplinary scientific submarine cable network of next generation [C]. Proceedings of the 3rd International Workshop on Scientific Use of Submarine Cables and Related Technologies,2003, pp.226-231.
    [41]Pawlak, G., Carlo, E. D., Fram, J., Hebert, A., Jones, C., McLaughlin, B., McManus, M.. Millikan, K., Sansone, F., Stanton, T., Wells, J. Development, deployment, and operation of Kilo Nalu nearshore cabled observatory [C]. Proceedings of Oceans 2009 Europe,2009, pp.133-142.
    [42]http://www.soest.hawaii.edu/OE/KiloNalu/
    [43]Dewey, R., Tunnicliffe, V. VENUS:Future science on a coastal mid-depth observatory [C].3rd International Workshop on Scientific Use of Submarine Cables and Related Technology,2003, pp.232-233.
    [44]Dewey, R., Round, A., Macoun, P., Vervynck, J., Tunnicliffe, V. The VENUS cabled observatory:Engineering meets science on the seafloor [C]. Oceans,2007, pp.398-404.
    [45]Barnes, C. R., Tunnicliffe, V. Building the world's first multi-node cabled ocean observatories (NEPTUNE Canada and VENUS, Canada):science, realities, challenges and opportunities [C]. OCEANS 2008 MTS/IEEE Kobe Techno-Ocean,2008, pp.1213-1220.
    [46]Tunnicliffe, V., Barnes, C. R., Dewey, R. Major advances in cabled ocean observatories (VENUS and NEPTUNE Canada) in coastal and deep sea settings [C].2008 IEEE/OES US/EU-Baltic International Symposium 2008, pp.1-8.
    [47]Taylor, S. M. Transformative ocean science through the VENUS and NEPTUNE Canada ocean observing systems [J]. Nuc. Instr. Meth. Phys. Res. A,2009,602:63-67.
    [48]Woodroffe, A., Wrinch, M., Pridie, S. Power Delivery to Subsea Cabled Observatorie [C]. OCEANS 2008 MTS/IEEE,2008, pp.1-6.
    [49]Woodroffe, A., Round, A. Design and Operation of a Multi Node Cabled Observatory [C]. OCEANS 2008 MTS/IEEE,2008, pp.1-5.
    [50]Painter, H., Flynn, J. Current and future wet-mate connector technology developments for scientific sCabed observatory applications [C]. Oceans,2006, pp.881-886.
    [51]http://venus.uvic.ca/.
    [52]http://www.mbari.org/mars/[J].
    [53]Howe, B., Chan, T., El-Sharkawi, M., Kenney, M., Kolve, S., Liu, C. C., Lu, S., McGinnis, T., Schneider, K., Siani, C., Kirkham, H., Vorperian, V., Lancaster, P. Power system for the MARS ocean cabled observatory [C]. Scientific Submarine Cable 2006 Conf,2006, pp. 121-126.
    [54]http://www.oceanobservatories.org.
    [55]Fairley, P. Neptune rising [J]. IEEE Spectrum,2005,42(11):38-45.
    [56]Chave, A. D., Massion, G, Mikada, H. Science requirements and the design of cabled ocean observatories [J]. Annals of Geophysics,2006,49(2-3):569-579.
    [57]Delaney, J. R. NEPTUNE:transforming ocean and Earth sciences with distributed submarine sensor networks wired to next generation Internet [C]. International Symposium on Underwater Technology 2007,2007, pp.20-21.
    [58]Delaney, J. R., Heath, G R., Howe, B. M., Chave, A. D., Kirkham, H. NEPTUNE: Real-time, long-term ocean and earth sciences at the scale of a tectonic plate [J]. Oceanogr., 2000,13(2):71-79.
    [59]Beauchamp, P., Heath, G R., Maffei, A., Chave, A., Howe, B., Wilcock, W., Delaney, J., Kirkham, H. NEPTUNE:An under-sea plate scale observatory [C].2002 IEEE Aerospace Conference Proceedings,2002, pp.397-406.
    [60]Phibbs, P., Lentz, S. NEPTUNE stage I network architecture [C]. International Workshop on Scientific Use of Submarine Cables and Related Technologies,2007, pp.179-184.
    [61]Barnes, C. R., Best, M. M. R., Bornhold, B. D., Juniper, S. K., Pirenne, B., Phibbs, P. The NEPTUNE Project - a cabled ocean observatory in the NE Pacific:overview, challenges and scientific objectives for the installation and operation of Stage I in Canadian waters [C]. International Symposium on Underwater Technology 2007,2007, pp.308-313.
    [62]Barnes, C. R., Best, M. M. R., Zielinski, A. The NEPTUNE Canada regional cabled ocean observatory [J]. Sea Technology,2008,49(7):10-14.
    [63]Best, M. M. R., Bornhold, B. D., Juniper, S. K., Barnes, C. R. NEPTUNE Canada regional cabled observatory:Science plan [C].2007 Oceans,2007, pp.1344-1350.
    [64]NEPTUNE-website. http://www.neptunecanada.ca/.
    [65]Barnes, C. R., Team, N. C. Building the world's first regional cabled ocean observatory (NEPTUNE):Realities, challenges and opportunities [C]. Oceans,2007, pp.1363-1370.
    [66]Barnes, C. R., Best, M. M. R., Fern R. Johnson, P. P., Pirenne, B. Latest developments in building the world's first regional cabled observatory:NEPTUNE Canada [C]. Proceedings of the Sixth International Symposium on Underwater Technology,WuXi,China,2009, pp. 313-317.
    [67]Chan, T., Liu, C. C., Howe, B. M. Optimization based load management for the NEPTUNE power system [C].2007 IEEE Power Engineering Society General Meeting, 2007, pp.4138-4143.
    [68]Upadhye, A. Northeast Pacific Time Series Underwater Networked Experiment (Neptune): Power System Design, Modeling, and Analysis [MS, EE Thesis]. Seattle, University of Washington,2003,1-94.
    [69]Lancaster, P., Jacques, R., Nicol, G., Waterworth, G., Kirkham, H. NEPTUNE:dc power beyond MARS [C]. the Scientific Submarine Cable 2006 Conference,2006, pp.118-120.
    [70]Shuai, L., El-Sharkawi, M. A., Kirkham, H., Howe, B. M. NEPTUNE power system: startup power supply for 10 kV to 400 V Dc-Dc converters [C]. Twenty-First Annual IEEE Applied Power Electronics Conference and Exposition,2005, pp.1-5.
    [71]Woodroffe, A. M., Pridie, S. W., Druce, G. The NEPTUNE Canada Junction Box interfacing science instruments to sub-sea cabled observatories [C]. OCEANS 2008 MTS/IEEE Kobe Techno-Ocean,2008, pp.922-926.
    [72]Pirenne, B., Hansen, P. NEPTUNE Canada instruments interface requirements [C]. Oceans 2006, Vols 1-4,2006, pp.1183-1186.
    [73]Lentz, S. T. The NEPTUNE Canada communications network [C].2007 Oceans,2007, pp. 270-274.
    [74]Phibbs, P., Lentz, S. The implementation of the NEPTUNE Canada backbone network [J]. Oceans 2007,2007:1-5.
    [75]Kirkham, H., Howe, B. M., Vorperian, V., Bowerman, P. The design of the NEPTUNE power system [C]. Oceans 2001 MTS/IEEE,2001, pp.1374-1380.
    [76]Hansen. P., Phibbs, P. Connecting instruments to NEPTUNE Canada - Instrument connections to subsea interfaces on a scientific cabled ocean observatory [J]. Sea Technology,2007,48(2):15-19.
    [77]Schneider, K., Liu, C. C. Topology Error Identification for the NEPTUNE Power System Using an Artificial Neural Network [C]. IEEE PES Power Systems Conference and Exposition,2004, pp.60-65.
    [78]Schneider, K., Liu, C. C., Howe, B. Topology error identification for the NEPTUNE power system [J]. IEEE Transactions on Power Systems,2005,20(3):1224-1232.
    [79]El-Sharkawi, M., Upadhye, A., Lu, S., Kirkham, H., Howe, B., McGinnis, T., Lancaster, P. North East Pacific Time-integrated Undersea Networked Experiments (NEPTUNE):Cable Switching and Protection [J]. IEEE J. Ocean. Eng.,2005,30(1):232-240.
    [80]Chan, T., Liu, C. C., Howe, B. M., Kirkham, H. Fault location for the NEPTUNE power system [J]. IEEE Transactions on Power Systems,2007,22(2):522-531.
    [81]Bowerman, P., Kirkham, H., Fox, G., Lancaster, P., Lentz, S., Kemski, R., Howe, B. Engineering Reliability for the NEPTUNE Observatory [C].3rd International Workshop on Scientific Use of Submarine Cables and Related Technologies,2003, pp.25-27
    [82]Kirkham, H., Vorperian, V., Howe, B. Parallel Power for Undersea Application:The Basic Considerations [C].4th International Convention on Undersea Communications,2001, pp. 20-24.
    [83]Beranzoli, L., Santis, A. D., Etiope, G, Favali, P., Frugoni, F., Smriglio, G, Gasparoni, F., Marigo, A. GEOSTAR:aGEophysical and Oceanographic STation for Abyssal Research [J]. Physics of the Earth and Planetary Interiors,1998,108(2):175-183.
    [84]Priede, I. G, Person, R., Favali, P. European Seafloor Observatory Network [J]. Sea Technology,2005,46(10):45-49.
    [85]Person, R., Beranzoli, L., Berndt, C. ESONET-An European sea observatory initiative [Cj. Proceedings of MTS/IEEE Kobe Techno-Ocean,2008, pp.1215-1220.
    [86]Waldmann, C., Diepenbroek, M., Thomsen, L., Boetius, A., Pfannkuche, O., Klages, M. The German contribution to ESONET-integrating activities for setting up an interoperable ocean observation system in Europe [C]. OCEANS 2007 - Europe,2007, pp.1-4.
    [87]Aguzzi, J., Manuel, A., Condal, F., Guillen, J., Nogueras, M., Rio, J. D., Costa, C., Menesatti, P., Puig, P., Sarda, F., Toma, D., Palanques, A. The new seafloor observatory (OBSEA) for remote and long-term coastal ecosystem monitoring. Sensors [J]. Sensors, 2011,11(6):5850-5872.
    [88]Barriga, F., Santos, R. S. The MOMAR Area:a prime candidate for development of a seafloor observatory [C].3rd International Workshop on Scientific Use of Submarine Cables and Related Technology,2003, pp.259-262.
    [89]Berger, J., Orcutt, J., O'Sullivan, J. F., Halkyard, J. The Extended Draft Platform:A Deep-Ocean Observatory [C]. Oceans 2008,2008, pp.2239-2248.
    [90]Favali, P., Beranzoli, L. EMSO:European multidisciplinary seafloor observatory [J]. Nuclear Instruments & Methods in Physics Research Section a-Accelerators Spectrometers Detectors and Associated Equipment,2009,602(1):21-27.
    [91]Grochow, K., Stoermer, M., Kelley, D., Delaney, J., Lazowska, E. COVE:a visual environment for ocean observatory design [J]. Journal of Physics:Conference Series,2008, 125(1):2-9.
    [92]Howe, B. M., Kirkham, H., Vorperian, V Power System Considerations for Undersea Observatories [J]. IEEE Journal of Oceanic Engineering,2002,27(2):267-275.
    [93]卢汉良.海底观测网络水下接驳盒原型系统技术研究 [博士学位论文].杭州,浙江 大学,2011,
    [94]许惠平,张德伟,徐昌伟.东海海底观测小衢山试验站[J].科学通报,2011,56(22):1839-1845.
    [95]Hsu, S. K., Lee, C. S., Shin, T. C. Marine Cable Hosted Observatory (MACHO) Project in Taiwan [C]. Symposium on Underwater Technology and Workshop on Scientific Use of Submarine Cables and Related Technologies,2007, pp.305-307.
    [96]http://macho.ncu.edu.tw.
    [97]王梅义,吴竞昌,蒙定中.大电网系统技术[M].北京:中国电力出版社,1995.
    [98]赵畹君.高压直流输电工程技术[M].北京:中国电力出版社,2004.
    [99]浙江大学发电教研组直流输电科研组.直流输电[M].北京:电力工业出版社,1982.
    [100]谢广润.电力系统接地技术[M].北京:中国电力出版社,1991.
    [101]詹奕,尹项根.高压直流输电与特高压交流输电的比较研究[J].高电压技术,2001,27(4):44-46.
    [102]Sakis, A. P. Effects of DC ground electrode on converte rtransformers [J]. IEEE Trans. on power Delivery,1994,9(1):50-58.
    [103]阿律莱加,任震(译).高压直流输电[M].重庆:重庆大学出版社,1998.
    [104]韩民晓,文俊, 徐永海.高压直流输电原理与运行[M].机械工业出版社,2009.
    [105]Ciezki, J. G., Ashton, R. W. Selection and Stability Issues Associated with a Navy Shipboard DC Zonal Electric Distribution System [J]. IEEE Trans. Power Delivery,2000. 15(2):665-669.
    [106]Kundur, P. Power System Stability and Control [M]. McGFraw-Hill Inc.,1993.
    [107]Lee, J. R., Cho, B. H., Kim, S. J., Lee, F. C. Modeling and Simulation of Spacecraft Power Systems [J]. IEEE Trans. Aerospace and Electronic Systems,1988,24(3):295-304.
    [108]刘益青.电力系统电压稳定性的动态分析方法综述[J].电力系统及其自动化学报,2003,15(1):105-108.
    [109]倪以信,陈寿孙,张宝霖.动态电力系统的理论和分析[M].北京:清华大学出版社,2002.
    [110]汤涌.电力系统电压稳定性分析[M].北京:科学出版社有限责任公司,2011.
    [111]韦钢.电力系统分析基础[M].北京:中国电力出版社,2006.
    [112]夏道止.电力系统分析[M].北京:中国电力出版社,1995.
    [113]刘建.特高压长距离交流输电线路分布参数计算及线路模型的建立[J].电力学报, 2011,26(2):95-98.
    [114]张志涌,杨祖樱.MATLAB教程[M].北京:北京航空航天大学出版社,2010.
    [115]Lu, S. Infrastructure, Operations, and Circuits Design of an Undersea Power System [Thesis for P.H.D]. Washington, University of Washington,2006,157.
    [116]Glover, S. F., Lamm, P. T., Schmucker, D. H., Delisle, D. E. Admittance Space Stability Analysis of Power Electronic Systems [J]. IEEE Trans. Aerospace and Electronic Systems, 2000,36(3):965-973.
    [117]Liu, J., Feng, X., Lee, F. C., Borojevich, D. Stability Margin Monitoring for DC Distributed Power Systems via Perturbation Approaches [J]. IEEE Trans. Power Electronics, 2003,18(6):1254-1261.
    [118]Wildrick, C. M., Lee, F. C., Cho, B. H., Choi, B. A Method of Defining the Load Impedance Specification for A Stable Distributed Power System [J]. IEEE Trans. Power Electronics,1995,10(3):280-285.
    [119]贺益康,潘再平.电力电子技术[M].北京:科学出版社,2004.
    [120]刘凤君.现代高频开关电源技术及应用[M].电子工业出版社,2008.
    [121]Wheeler, P., Xu, L., Meng Yeong, L., Empringham, L., Klumpner, C., Clare, J. A review of multi-level matrix converter topologies [C].4th IET Conference on Power Electronics, Machines and Drives,2008, pp.286-290.
    [122]Wilkinson, R. H., Meynard, T. A., Mouton, H. d. T. Natural Balance of Multicell Converters:The General Case [J]. IEEE Transactions onPower Electronics,2006,21(6): 1658-1666.
    [123]Chen, W., Ruan, X., Yan, H., Tse, C. K. DC/DC Conversion Systems Consisting of Multiple Converter Modules Stability, Control,and Experimental Verifications [J]. IEEE Transactions on Power Electronics,2009,24(6):1463-1474
    [124]Huang, Y. H., Tse, C. K., Ruan, X. B. General Control Considerations for Input-Series Connected DC/DC Converters [J]. IEEE Transactions on Circuits and Systems I:Regular Papers,2009,56(6):1286-1296.
    [125]Chen, Y. M., Liu, Y. C., Lin, S. H. Double-input PWM dc/dc converter for high-/low-voltage sources [J]. IEEE Transactions on Industrial Electronics,2006,53(5): 1538-1545.
    [126]Chen, W., Zhuang, K., Ruan, X. B. A Input-Series- and Output-Parallel-Connected Inverter System for High-Input-Voltage Applications [J]. IEEE Transactions on Power Electronics,2009,24(9):2127-2137.
    [127]Giri, R., Ayyanar, R., Ledezma, E. Input-series and output-series connected modular DC-DC converters with active input voltage and output voltage sharing [C]. Apec 2004: Nineteenth Annual IEEE Applied Power Electronics Conference and Exposition,2004, pp. 1751-1756.
    [128]Giri, R., Ayyanar, R., Mohan, N. Common duty ratio control of input series connected modular DC-DC converters with active input voltage and load current sharing [C]. Eighteenth Annual IEEE Applied Power Electronics Conference and Exposition,2003, pp. 322-326.
    [129]Giri, R., Choudhary, V., Ayyanar, R., Mohan, N. Common-duty-ratio control of input-series connected modular DC-DC converters with active input voltage and load-current sharing [J]. IEEE Transactions on Industry Applications,2006,42(4): 1101-1111.
    [130]Vorperian, V. Synthesis of medium voltage dc-to-dc converters from low-voltage, high-frequency PWM switching converters [J]. IEEE Transactions on Power Electronics, 2007,22(5):1619-1635.
    [131]Pressman, A. I., Billings, K., Morey, T.,王志强(译),肖文勋(译),虞龙(译).开关电源设计[M].北京:电子工业出版社,2010.
    [132]Merwe, J. W. V. d.. Mouton. H. d. T. An Investigation of the Natural Balancing Mechanisms of Modular Input-Series-Output-Series DC-DC Converters [C]. Energy Conversion Congress and Exposition (ECCE),2010. pp.817-822.
    [133]Lu. Q., Yang, Z., Lin. S., Wang. S., Wang. C. Research on Voltage Sharing for Input-Series-Output-Series Phase-Shift Full-Bridge Converters with Common-Duty-Ratio [C].37th Annual Conference on IEEE Industrial Electronics Society,2011, pp.1548-1553
    [134]Kim, J. W., You, J. S., Cho. B. H. Modeling, control, and design of input-series-output-parallel-connected converter for high-speed-train power system [J]. IEEE Transactions on Industrial Electronics,2001,48(3):536-544.
    [135]Bhinge, A., Mohan, N., Giri, R., Ayyanar, R. Series-parallel connection of DC-DC converter modules with active sharing of input voltage and load current [C]. Apec 2002: Seventeenth Annual IEEE Applied Power Electronics Conference and Exposition,2002, pp. 648-653.
    [136]Ayyanar, R., Giri, R., Mohan, N. Active input-voltage and load-current sharing in input-series and output-parallel connected modular DC-DC converters using dynamic input-voltage reference scheme [J]. IEEE Transactions on Power Electronics,2004,19(6): 1462-1473.
    [137]马学军,牛金红,康勇.输入串联输出并联的双全桥变换器输入电容均压问题的研究[J].中国电机工程学报,2006,26(16):86-91.
    [138]Manias, S. N., Kostakis, G. MODULAR DC-DC CONVERTER FOR HIGH-OUTPUT VOLTAGE APPLICATIONS [J]. IEE Proceedings-B Electric Power Applications,1993, 140(2):97-102.
    [139]Shiguo, L., Zhihong, Y., Ray-Lee, L., Lee, F. C. A classification and evaluation of paralleling methods for power supply modules [C].30th Annual IEEE Power Electronics Specialists Conference,1999, pp.901-908.
    [140]Ruan, X. B., Chen, W., Cheng, L. L., Tse, C. K., Yan, H., Zhang, T. Control Strategy for Input-Series-Output-Parallel Converters [J]. IEEE Transactions on Industrial Electronics, 2009,56(4):1174-1185.
    [141]Choudhary, V., Ledezma, E., Ayyanar, R., Button, R. M. Fault tolerant circuit topology and control method for input-series and output-parallel modular dc-dc converters [J]. IEEE Transactions on Power Electronics,2008,23(1):402-411.
    [142]石健将,严仰光,何湘宁.一种具有输入端电容均压的串一并型双管正激组合变换器研究[J].中国电机工程学报,2004,24(12):
    [143]石健将.双管正激变换器组合研究 [博士学位论文].南京,南京航空航天大学,2003,
    [144]Maksimovic, D., Stankovic, A. M., Thottuvelil, V. J., Verghese, G. C. Modeling and simulation of power electronic converters [J]. Proceedings of the IEEE,2001,89(6): 898-912.
    [145]GJB/Z 27-92电子设备可靠性热设计手册[M].国防科学技术工业委员会,1992.
    [146]王洪.流力学及传热学基础[M].北京:机械工业出版社,2008.
    [147]邵宝东,孙兆伟,王丽凤.热阻网络模型在微槽冷却热沉优化设计中的应用[J].吉林大学学报(工学版),2007,37(6):1263-1267.
    [148]俞徐海.海底接驳盒散热系统研究与实现[硕士学位论文].杭州,浙江大学,2010,
    [149]刘中良,韩同方,刘安源.管壁导热对管内流动流体热边界条件的影响[J].石油大学学报(自然科学版),2000,3:85-89.
    [150]王启杰.对流传热传质分析[M].西安:西安交通大学出版社,1991.
    [151]孙中海,江世臣,张学学.水平圆柱环形空间自然对流传热的实验研[C].第五届 中国工程热物理学会,1985,
    [152]韩占忠,王敬,兰小平.Fluent流体工程仿真计算实例与应用[M].北京:北京理工大学出版社,2004.
    [153]Mital, M., Scott, E. P. Thermal Design Methodology for an Embedded Power Electronic Module Using Double Sided Microchannel Cooling [J]. ASME Journal of Electronic Packaging,2008,130(3):031003.1-031003.11.
    [154]Guven, I., Madeuci, E., Chan, C. L. Transient Heat Conduction Analysis of Electronic Packages by Coupled Boundary and Finite Element Methods [C]. Electronic Components and Technology Confference,1998, pp.51-61
    [155]Luo, S. G, Batarseh, I. A review of distributed power systems Part I:DC distributed power system [J]. IEEE Aerospace and Electronic Systems Magazine,2005,20(8):5-16.
    [156]http://www.vicorpwer.com/.
    [157]Design Guide & Applications Manual (For Maxi, Mini, Micro Family DC-DC Converter and Accessory Modules) [M]. Vicor Corporation (USA).
    [158]McDonald, G., Naiman, M. Heat Transfer Advances for Submerged Oceanographic systems [C]. Oceans'02,2002, pp.2045-2049.
    [159]Petitt, R. A., Bowen, J. A., Elder, R., Howland, J., Naiman, M. Power System for the New Jason ROV [C]. MTS/IEEE TECHNO-OCEAN'04,2004, pp.1727-1731.
    [160]Rausand, M.,郭强(译),王秋芳(译),刘树林(译).系统可靠性理论:模型、统计方法及应用[M].北京:国防工业出版社,2010.
    [161]Ebeling, C. E.,康锐(译),李瑞莹(译),王乃超(译), 张叔农(译).可靠性与维修性工程概论[M].北京:清华大学出版社,2010.
    [162]宋保维,毛昭勇,李正, 王鹏.系统可靠性设计与分析[M].西安:西北工业出版社,2008.
    [163]谢里阳,何雪宏, 李佳.机电系统可靠性与安全性设计[M].哈尔滨:哈尔滨工业大学出版社.2006.
    [164]曾声奎,赵廷弟.系统可靠性设计分析教程[M].北京:北京航空航天大学出版社,2004.
    [165]Intellect. R. S. C..陈晓彤(译),赵延弟(译),王云飞(译),吴跃(译).可靠性实用指南[M].北京:北京航空航天大学出版社,2003.
    [166]牟春晖.基于故障树的AUV可靠性研究[硕士学位论文]. 哈尔滨工程大学,2008,
    [167]李拯.系统可靠性模型的仿真研究[硕士学位论文].清华大学,1991,
    [168]杨为民, 盛一兴.系统可靠性数字仿真[M].北京:北京航空航天大学出版社,1990.
    [169]刘万顺.电力系统故障分析[M].北京:水利电力出版社,1986.
    [170]Needham, B. R., Eckerling, P. H., Siri, K. Simulation of Large Distributed DC Power Systems Using Averaged Modelling Techniques and The Saber Simulator [C]. Applied Power Electronics Conference,1994, pp.801-807.
    [171]林东东.海底接驳盒运行监控与管理系统研究[硕士学位论文].杭州,浙江大学,2011,

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700