联级供电子光敏染料用于染料敏化太阳能电池的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文设计合成了以二甲胺-三苯胺和咔唑(三苯胺)-咔唑为联级供电子基的两类光敏染料应用于染料敏化纳米晶太阳能电池(DSSC)中,利用质谱、核磁共振氢谱对这些化合物结构进行表征,并对染料的光物理、电化学性能及其在纳米TiO_2电极上的光电转换性能方面进行了测试研究。
     将二甲胺-三苯胺类联级光敏染料应用于DSSC中进行光敏化性能研究。在AM1.5(100 mW cm-2)模拟太阳光的照射下,引入一个二甲胺的联级染料N-TPA1的敏化电池效率(η)为2.06%,与单级三苯胺染料相比降低0.13%,以罗丹宁乙酸为吸电子基的染料N-TPA2电池效率为1.60%。在优化试验中发现二甲胺的引入使得染料在TiO_2表面发生聚集作用。对染料结构的密度泛函理论计算(DFT)证明了N-TPA1的LUMO电子集中在氰基乙酸基团上,N-TPA2的LUMO电子集中在罗丹宁构架内。由于罗丹宁乙酸基团的羰基与五元环构架间隔一个亚甲基,使得LUMO电子分布距离吸附基团(-COOH)远,阻碍电子经由羰基注入TiO_2导带,这是N-TPA2的敏化电池效率比N-TPA1低的原因之一。
     将咔唑(三苯胺)-咔唑类联级光敏染料应用于DSSC中进行光敏化性能研究。在AM 1.5(100 mW cm-2)模拟太阳光的照射下,引入一个三苯胺基团的联级染料TCB的敏化电池单色光光电转换效率(IPCE)在460 nm处最大值达到60%,在400~500 nm区域IPCE值超过50%,电池效率达到2.47%,达到相同条件下N719染料敏化电池效率的一半。对染料结构的密度泛函理论计算(DFT)证明了染料的LUMO电子分布距离吸附基团(-COOH)近,能够实现染料分子的LUMO与TiO_2的3d轨道(导带)发生电子云重叠,促进电子的注入。将CCB染料应用于Br_3~-/Br~-电解质敏化电池,开路电压可达1.03 V,是目前已知的最高开路电压,相同条件下,应用于I_3~-/I~-电解质的开路电压为0.65 V。该类化合物紫外-可见吸收谱带在350~500 nm范围内,未能充分利用太阳光,这是此类染料的光电性能低于N719染料的一个重要原因。
In this thesis,two series of the linking donor dyes have been designed and synthesized as sensitizers for the application in the dye-sensitized nanocrystalline solar cell(DSSC).The linking donor are dimethylamine-triphenylamine and carbazole(triphenylamine)-carbazole. The structures of the dyes have been characterized by mass spectra(MS)and proton nuclear magnetic resonance(1H NMR)technology.The photophysical,photoelectrocheimical properties and the performance on DSSC of the dyes are studied.
     Dimethylamine-triphenylamine dyes are used in DSSC.Under simulated AM 1.5 (100mW cm-2)irradiation,a solar energy-to-electricity conversion efficiency(η)of 2.06%is obtained based on N-TPA1 with introducing a dimethylamine moiety,which has an decrease 0.13%inη,compared with triphenylamine dye.Under the same experimental conditions, N-TPA2 givesηof 1.60%with introducing rhodanine-3-acetic acid as electron-withdrawing part.Dimethylamine will enhance aggregation of a dye on TiO_2 surface.Density functional theory(DFT)calculations are performed for geometry optimization.The LUMO electron density geometry distribution of N-TPA1 is located on the cyanoacrylic group which favour electron injection,but for N-TPA2 it is mainly concentrated on the rhodanine framework,and resulting in the position of LUMO isolated from the -COOH anchoring group due to the presence of the -CH_2- group.Consequently,the N-TPA2 dye prevents electrons from effectively injecting into the TiO_2 conduction band via the carboxyl group.This is an important reason for the photoelectro peoperties of N-TPA2 inferior to N-TPA1.
     Carbazole(triphenylamine)-carbazole dyes are used in DSSC.Under simulated AM 1.5 (100mW cm-2)irradiation,the highest IPCE value for DSSC based on TCB with introducing a triphenylamine moiety is 60%at 460 nm and the IPCE value is over 50%from 400 to 500 nm.TCB givesηof 2.47%,which is up to half of N719 measured in the similar condition. Density functional theory(DFT)calculations are conducted and prove that the position of the LUMO is close to the anchoring groups(-COOH)which can enhance the orbital overlap with the 3d orbitals of TiO_2 and favour electron injection.Compared to 0.65 V with I_3~-/I~-,an open-circuit voltage(V_(oc))of 1.03 V is obtained for CCB dye-sensitized solar cell with Br_3~-/ Br~- electrolyte under the same conditions,which is the highest open-circuit voltage known currently.This series of dyes have narrow absorption spectra in the visible region,from 350 to 500 nm,resulting in the weak use of solar energy,which is an important reason for the photoelectro peoperties of the dyes inferior to N719.
引文
[1]Graitzel M.Photoelectrochemical cells.Nature,2001,414:338-344.
    [2]O'Regan B,Gratzel M.A Low-Cost,Fiigh-Efficiency Solar Cell Based on Day-Sensitized Colloidal TiO2 films.Nature,1991,353:737-740
    [3]王忠胜.染料敏化TiO2纳米晶太阳能电池的光电化学性质研究:(博士学位论文).北京:北京大学,2001
    [4]Green M A.Photovoltaic principles.Physica E,2002,14:11-17.
    [5]Goetzberger A,Hebling C,Schock H W.Photovoltaic materials,history,status and outlook.Materials Science and Engineering R.,2003,40:1-46,
    [6]Becquerel A E.Recherches sur les effets de la radiation chimique de la lumirre solaire,au moyen des courants electriques.C.R.Acad.Sci.,Paris,1839,9:561-567.
    [7]Adams W G,Day R E.Proc.Roy.Soc.London A,1877,25:113.
    [8]Fritts C E.Proc.Am.Assoc.Adv.Sci.,1883,33:97.
    [9]Firtts C E.Am.J.Sci.,1883,26:465.
    [10]姜月顺,李铁津等编著.光化学.第一版.北京:化学工业出版社,2005.
    [11]Jing Bingwen,Zhang Manhua,et al.Advances in dye-sensitized solar cell.Chinese Science Bulletion.1997,42(23):1937-1947.
    [12]Olea A,Ponce C,Sebastian P J.Electron transfer via organic dyes for solar conversion.Solar Energy Materials and Solar Cells,1999,59:137-143.
    [13]Rensmo H,Westermark K,et al.XPS studies of Ru-polypyridine complexes for solar cell applications.Journal of Chemical Physics,1999,111(6):2744-2750.
    [14]黄春晖,李富友,黄岩谊.光电功能超薄膜.北京:北京大学出版社,2001.
    [15]Moser J.Notizfiber verstarkung photo-elektrischer strrme durch optischer sensibilierung.Monatsh.Chem.1887,8:373.
    [16]Putzseiko E K,Trenin A N.Zhur.Fiz.Khim.,1949:676.
    [17]Gerischer H,Tributsch H.Electrochemische untersuchungen zur spectraleu sensibilisierung yon ZnO-einkristallen.Ber.Bunsen.Phys.Chem.,1968,72:437-445.
    [18]Tributch H,Gerischer H.Elektrochemische untersuchungen ther den mechanismus der sensibilisierung und ubersensibilisierung an ZnO-einkristallen.Ber.Bunsen.Phys.Chem.,1969,73:251-260.
    [19]Memming R.Faraday Discuss.Chem.Soc.,1974,261-270.
    [20]Memming R,Schroppel F.Electron transfer reactions of excited ruthenium(Ⅱ)complexes in monolayer assemblies at the SnO2-water interface.Chem.Phys.Lett.,1979,62:207-210.
    [21]Memming R,Schroppel F,Bringmann U.Sensitized oxidation of water by tris(2,2'-bipyridyl)ruthenium at SnO2 electrodes.J.Electroanal.Chem.,1979,100:307-318.
    [22]Hagfeldt A,Gratzel M.Molecular Photovolatics.Ace.Chem.Res.,2000,33(5):269-277.
    [23]Nazeeruddin Md K,Pechy P,Gratzel M.Efficient Panchromatic Sensitization of Nanocrystalline TiO2Films by a Black Dye Based on a Trithiocyanato-Ruthenium Complex.Chem.Commun.,1997,18:1705-1706.
    [24] Nazeeruddin Md K, Pechy P, Renouard T et al. Engineering of Efficient Panchromatic Sensitizers for Nanocrystalline TiO_2-Based Solar Cells. J. Am. Chem. Soc., 2001, 123 (8): 1613-1624.
    [25] Gratzel M. Solar Energy Cinversion by Dye-Sensitized Photovoltaic Cells. Inorg. Chem., 2005, 44 (20): 6841-6851.
    [26] Bach U, Lupo D, Comte P et al. Solid-State Dye-Sensitized Mesoporous TiO_2 Solar Cells with High Photon-to-Electron Conversion Efficiencies. Nature, 1998, 395:583-585.
    
    [27] Wang P, Zakeeruyddin S M, Comte P,et al. Gelation of Ionic Liquid-Based Electrolytes with Silica Nanoparticles for Quasi-Solid-State Dye-Sensitized Solar Cells[J]. J. Am. Chem. Soc, 2003, 125 (5): 1166-1167.
    [28] Huang S Y, SchlichthOrl G, Nozik A J et al. Charge Recombination in Dye-Sensitized Nanocrystalline TiO2 Solar Cell. J. Phys. Chem. B. 1997, 101 (14):2576-2582.
    [29] Thomas K R J, Lin J T, Tao Y et al. Light-Emitting Carbazole Derivatives: Potential Electroluminescent Materials. J. Am. Chem. Soc, 2001, 123(38): 9404-9411.
    [30] Kay A, Gratzel M. Low cost photovoltaic modules based on day sensitized nanocrystalline titanium dioxide and carbon powder. Solar Energy Material and Solar Cells, 1996, 44 (1): 99-117.
    [31] Hagfeldt A, Gratzel M. Light-Induced Redox Reactions in Nanocrystalline Systems. Chem. Rev.. 1995, 95(1):49-68.
    [32] Gratzel M. Dye-sensitized solar cells. J. Photochem. Photobiol. C: Photochem. Rev., 2003, 4: 145 — 153.
    [33] Schmidt-Mende L, Bach U, Gratzel M et al. Organic dye for highly efficient solid-state dye-sensitized solar cells. Adv. Mater., 2005, 17:813-815
    [34] Meyer T J, Meyer G J, Pfennig B W et al. Molecular-level electron transfer and excited state assemblies on surfaces on metal oxides and glass. Inorg. Chem., 1994, 33:3952-3964.
    [35] Anderson S, Constable E C, Dare-Edwards M P et al. Chemical modification of a titanium(IV) oxide electrode to give stable dye sensitisation without a supersensitiser. Nature, 1979, 280:571-573.
    [36] Nazeeruddin Md K, Kay A, Gratzel M et al. Conversion of light to electricity by cis-X2Bis(2,2'- bipyridyl-4,4'-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline TiO2 electrodes. J. Am. Chem. Soc, 1993, 115:6382-6390.
    
    [37] Chryssou K, Catalano V J, Kurtaran R et al. Synthesis and Characterization of Bdmpp-dcbpy-Ru(II) Complex for Dye-Sensitized Solar Cells [Where bdmpp is 2,6-bis(3,5-dimethyl-N-pyrazoyl) Pyridine and dcbpy is 2,2'-bipyridine-4,4'-dicarboxylicacid][J]. Inorganica Chimica Acta, 2002, 328 (1): 204-209.
    
    [38] Heimer T A, Bignozzi C A, Meyer G J. Molercular Level Photovoltaics: the Electrooptical Properties of Metal Cyanide Complexes Anchored to Titanium Dioxide. J. Phys. Chem., 1993, 97 (46):11987-11994.
    
    [39] Lagref J J, Nazeeruddin Md K, Gratzel M. Molecular Engineering on Semiconductor Surfaces: Design, Synthesis and Application of New Efficient Amphiphilic Ruthenimu Photosensitizers for Nanocrystalline TiO2 Solar Cell. Synthetic Metals, 2003, 138 (1-2): 333-339.
    
    [40] Nazeeruddin Md K, Zakeeruddin S M, Gratzel M, et al. Acid-base equilibria of (2,2'-bipyridyl- 4,4'-dicarboxylic acid)ruthenium(II) complexes and the effect of protonation on charge-transfer sensitization of nanocrystalline titania. Inorg. Chem., 1999, 38:6298-6305.
    [41] Gratzel M. Conversion of Sunlight to Electric Power by Nanocrystalline Dye-Sensitized Solar Cells. J. Photochem. Photobiol. A: Chem., 2004,164: 3-14.
    [42] Sauve G, Cass M E, Coia G et al. Dye Sensitization of Nanocrystalline Titanium Dioxide with Osmium and Rutheium Polypyridyl Complexes. J. Phys. Chem. B, 2000, 104 (29): 6824-6836.
    [43] Georg M, Meyer G J. Diffusion-Limited Interfacial Electron Transfer with Large Apparent Driving Forces. J. Phys. Chem. B, 1999,103 (36):7671-7675.
    [44] Xu H, Shen T, Zhou Q et al. Aspects of metal phthalocyanine photosensitization systerms for light energy conversion. J. Photochem. Photobiol. A, 1992, 65:267-276.
    [45] He J, Hagfeldt A, Lindquist S. Phthalocyanine-sensitized nanostructured TiO2 electrodes prepared by a novel anchoring method. Langmuir, 2001, 17:2743-2747.
    [46] Xia H P, Nogami M. Copper phthalocyanine bonding with gel and their optical properities. Opt. Mater., 2000, 15:93-98
    [47] He J, Benko G, Korodi F et al. Modified phthalocyanines for efficient near-IR sensitization of nanostructured TiO2 electrode. J. Am. Chem. Soc, 2002, 124:4922-4932.
    [48] Wrobel D, Lukasiewicz J, Goc J et al. Photocurrent Generation in An Electro Chemical Cell with Substituted Metalloporphyrins. Journal of Molecular Structure, 2000, 555 (1-3): 407-417.
    [49] Kay A, Gratzel M. Artificial Photosynthesis. I. Photosensitization of TiO2 Solar Cells with Chlorophy II Derivatives and Related natural Porphyrins. J. Phys. Chem., 1993, 97 (23): 6272-6277.
    [50] Sayama K, Hara K, Arakawa H et al. Photosensitization of a porous TiO2 electrode with merocyanine dyes containing a carboxyl group and a long alkyl chain. Chem. Commun., 2000,1173-1174.
    [51] Wang Z S, Li F Y, Huang C H et al. Photoelectric conversion properities of nanocrystalline TiO2 electrodes sensitized with hemicyanine derivatives. J. Phys. Chem. B, 2000,104:9676-9682.
    [52] Wang Z S, Li F Y, Huang C H. Photocurrent enhancement of hemicyanine dyes containing RSO3- group through treating TiO2 films with hydrochloric acid. J. Phys. Chem. B, 2001,105:9210-9217.
    [53] Ghosh H N, Asbury J B, Lian T. Direct observation of ultrafast electron injection from coumarin 343 to TiO2 nanoparticles by femtosecond infrared spectroscopy. J. Phys. Chem. B, 1998, 102:6482-6486.
    [54] Hara K, Saynma K, Ohga Y et al. A coumarin-derivative dye sensitized nanocrystalline TiO2 solar cell having a high solar-energy conversion efficiency up to 5.6%. Chem. Commun., 2001, 569-570.
    [55] Hara K, Kurashige M, Dan-oh Y et al. Design of new coumarin dyes having thiophene moieties for higyly efficient organic-dye-sensitized solar cell. New.J. Chem., 2003, 27:783-785.
    [56] Wang Z S, Cui Y, Hara K et al. A high-light-harvesting-efficiency coumarin dye for stable dye-sensitized solar cells. Adv. Mater., 2007, 19:1138-1141.
    [57] Horiuchi T, Miura H, Uchida S. Highly-efficient metal-free organic dyes for dye-sensitized solar cells. Chem. Commun., 2003, 3036-3037.
    [58] Horiuchi T, Miura H, Sumioka K et al. High efficiency of dye-sensitized solar cell based on metal-free indoline dyes. J. Am. Chem. Soc, 2004,126:12218-12219.
    [59] Ito S, Zakeeruddin S M, Gratzel M et al. High-efficiency organic-dye-sensitized solar cells controlled by nanocrystalline-TiO2 electrode thickness. Adv. Mater. 2006, 18:1202-1205
    
    [60] Hara K, Kurashige M, Arakawa H et al. Novel polyene dyes for highly efficient dye-sensitized solar cells. Chem. Commun., 2003, 252-253.
    [61]Kitamura T,Ikeda M,Shigaki K et al.Phenyl-conjugated oligoene sensitizers for TiO2 solar cell.Chem.Mater.,2004,16:1806-1812.
    [62]Hara K,Sato T,Katoh R et al.Novel conjugated organic dyes for efficient dye-sensitized solar cells.Adv.Funct.Mater,2005,15:246-252.
    [63]Thomas K R J,Lin J T,Hsu Y-C et al.Organic dyes containing thienylfluorene conjugation for solar cells.Chem.Commun.,2005,4098-4100.
    [64]Hagberg D P,Edvinsson T,Sun L et al.A novel organic chromophore for dye-sensitized nanostructured solar cells.Chem.Commun.,2006,2245-2247.
    [65]Li S L,Jiang K J,Shao K F et al.Novel organic dyes for efficient dye-sensitized solar cells.Chem.Commun.,2006,2792-2794
    [66]Koumura N,Wang Z S,Hara K et al.Alkyl-functionalized organic dyes for efficient molecular photovoltaics.J.Am.Chem.Soc.,2006,128:14256-14257
    [67]Choi H,Lee J K,Song K et al.Novel organic dyes containing bis-dimethylfluorenyl amino benzo[b]thiophene for highly efficient dye-sensitized solar cell.Tetahedron,2007,63:3115-3121
    [68]Nuesch F,Moster J E,Shklover Vet al.Merocyanine Aggregation in Mesoporous Netwoeks.J.Am.Chem.Soc.,1996,118(23).5420-5431.
    [69]Ehret A,Stuhl L,Spitler M T.Spectral Sensitization of TiO2 Nanocrystalline Electrodes with Aggregated Cyanine Dyes.J.Phys.Chem.B,2001,105(41):9960-9965.
    [70]Sayama K,Tsukaqoshi S,Mori T et al.Efficient Sensitization of Nanocrystalline TiO2 Films with Cyanine and Merocyanine Organic Dyes.Sol.Energy Mater.Sol.Cells.,2003,80:47-71.
    [71]Guo M.,Diao R,Ren Y.-J.et al.Photoelectrochemical Studies of Nanocrystalline TiO2 Co-sensitized by Novel Cyanine Dyes.So/.Energy Mater.Sol.Cells,2005,88:23-35.
    [72]Chen Y,Zeng Z,Li C et al.Highly Efficient Co-sensitization ofNanocrystalline TiO2 Electrodes with Plural Organic Dyes.New J.Chem.,2005,29:773-776.
    [73]Wang,Z.-S.;Sayama,K.;Sugihara,H.Efficient Eosin Y Dye-Sensitized Solar Cell Containing Br-/Br3- Electrolyte.J.Phys.Chem.B,2005;109(47):22449-22455
    [74]史成武,戴松元,王孔嘉等.染料敏化纳米薄膜太阳电池中电解质的研究进展.化学通报,2005,68:w001-009
    [75]Kubo W,Murakoshi K,Yanagida Set al.Fabrication of quasi-solid-state dye-sensitized TiO2 solar cells using low molecular weight gelators.Chem.Lett.,1998,12:1241-1242.
    [76]Kubo W,Kambe S,Nakade Set al.Photocurrent-determining processes in quasi-solid-state dye-sensitized solar cells using ionic gel electrolytes.J.Phys.Chem.B,2003,107:4374-4381.
    [77]Kubo W,Murakoshi K,Kitamura T et al.Quasi-solid-state dye-sensitized TiO2 solar cells:effective charge transport in mesoporous space filled with gel electrolytes containing iodide and iodine.J.Phys.Chem.B,200I,105:12809-12815.
    [78]Morin J and Leclerc M.Syntheses of Conjugated Polymers Derived from N-Alkyl-2,7-carbazoles.Macromolecules.,2001,34(14):4680-4682.
    [79]Zotti G,Schiavon G,Zecchin S,et al.Electrochemical,Conductive,and Magnetic Properties of 2,7-Carbazole-Based Conjugated Polymers.Macromolecules,2002,35(6):2122-2128.
    [80]Tucker.Iodination in the Carbazole Series.J.Chem.Soc.,1926,546-553
    [81] Beginn C, Haarer D, et al. Synthesis of poly(9-hexyl-3,6-carbazolyleneethynylene) and its model compounds. Macromol.Chem.Phys., 1994,195:2353-2370
    
    [82] Hagberg D P, Edvinsson T, Sun L et al. Tuning the HOMO and LUMO Energy Levels of Organic Chromophores for Dye Sensitized Solar Cells. J. Org. Chem., 2007; 72(25): 9550-9556.
    [83] Ting Hua Xu, Ran Lu, et al. Synthesis and Characterization of Carbazole-Based Dendrimers with Porphyrin Cores. Eur. J. Org. Chem., 2006: 4014-4020
    
    [84] Lee S K, Richter M M, Strekowski L et al. Electrogenerated Chemiluminescence. 61. Near-IR Electrogenerated Chemiluminescence, Electrochemistry, and Spectroscopic Properties of a Heptamethine Cyanine Dye in MeCN. Anal Chem, 1997, 69 (20):4126-4133.
    [85] Kamat P V. Photochemistry on Nonreactive and Reavtive (Semiconductor) Surfaces. Chem. Rev., 1993, 93(1): 267-300
    [86] Hara K, Sato T, Katoh R et al. Molecular Design of Coumarin Dyes for Efficient Dye-Sensitized Solar Cells. J. Phys. Chem. B, 2003, 107(2): 597-606.
    [87] Gagne R R, Koval C A, Lisensky G C. Ferrocene as an Internal Standard for Electrochemical Measurements. Inorg. Chem. 1980, 19: 2854-2855.
    [88] Hara K, Dan-oh Y, Kasada C et al. Effect of Additives on the Photovoltaic Performance of Counmarin-Dye-Sensitized Nanocrystalline TiO2 Solar Cells. Langmuir, 2004, 20(10): 4205-4210
    [89] Ghosh P K, Bard A. J. Photochemistry of Tris (2,2'-bipyridyI) (ruthenium (II) in Colloidal Clay Suspensions. J. Phys. Chem., 1984, 88(23): 5519-5526.
    
    [90] Frisch M J; Trucks G W; Schlegel H B; Scuseria G E; Robb M A; Cheeseman J R; Montgomery J A, Jr; Vreven T; Kudin K N; Burant J C; Millam J M; Iyengar S S; Tomasi J; Barone V; Mennucci B; Cossi M; Scalmani G; Rega N; Petersson G A; Nakatsuji H; Hada M; Ehara M; Toyota K; Fukuda R; Hasegawa J; Ishida M; Nakajima Y; Honda Y; Kitao O; Nakai H; Klene M; Li X; Knox I, E;Hratchian H P; Cross J B; Bakken V; Adamo C; Jaramillo J; Gomperts R; Stratmann R E; Yazyev O; Austin A J; Cammi R; Pomelli C; Ochterski J W; Ayala P Y; Morokuma K; Voth G A; Salvador P; Dannenberg J J; Zakrzewski V G; Dapprich S; Daniels A D; Strain M C; Farkas O; Malick D K; Rabuck A D; Raghavachari K; Foresman J B; Ortiz J V; Cui Q; Baboul A G; Clifford S; Cioslowski J; Stefanov B B; Liu G; Liashenko A; Piskorz P; Komaromi I; Martin R L; Fox D J: Keith T; Al-Laham M A; Peng C Y; Nanayakkara A; Challacombe M; Gill P M W; Johnson B; Chen W; Wong M W; Gonzalez C; Pople J A, GAUSSIAN 03 (Revision B.03), Gaussian, Inc., Pittsburgh PA, 2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700