2010年6月19日华南西部一次飑线过程的观测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用高时空分辨率的地面观测资料、探空观测资料、多普勒雷达回波、TBB资料和雷达资料反演的风场数据以及NCEP再分析资料,对2010年6月19日发生在华南西部的一次飑线的演变过程和结构特征进行了分析研究。结果表明:
     (1)、飑线发生于200hPa高空辐散区、500hPa高空槽后、850hPa低空槽前的相对暖湿高值区,强对流位于地面辐合线及地面冷锋上,而不是锋前暖区;强对流形成区域大气呈现上冷下暖的典型不稳定层结特征。
     (2)、飑线最初起源于地面冷锋上的辐合线里的线状对流带,后与冷锋前暖区新生的线状对流合并,加强发展成为准东-西向的飑线系统。成熟期的飑线系统强对流区发展成为弓状回波,后部为包含中层回波亮带的层状云和两者之间的弱回波过渡带;地面出现雷暴高压和尾流低压。
     (3)、沿北部线状对流系统方向上的单体合并主要是对流单体间的下沉气流引起的辐合抬升导致的合并。两条对流带中单体的合并过程,则是由于南部暖区对流单体对应区域的强上升运动在高空形成辐散,其中一部分向北运动形成下沉气流,抑制了北部单体的发展,而北部下沉气流在低空的辐散又进一步促进了南部对流的低层辐合,在该垂直环流的作用下,南部单体不断发展,逐渐与北部对流系统合并。
     (4)、飑线系统中层弓状对流回波后部存在γ中尺度涡旋簇,弓状对流回波东-西两侧分别存在一个气旋式环流,回波中部则存在一个反气旋式环流;层状云区后部中层存在一个较大尺度的气旋式环流。弓状对流区前缘为倾斜上升气流,其后部弱回波过渡区是强烈的下沉气流,层状云中层存在较弱的尾部下沉入流,层状云上方为弱的上升运动。
     (5)、涡度分析表明飑线系统对流区的正涡度增长主要与垂直涡度的“拉伸项”的作用有关,对流区后部的负涡度区的变化主要受水平涡度的“倾斜项”的影响,层状云后部的正涡度区的变化主要受水平涡度的“倾斜项”的作用。
Based on a variety of meteorological data (including the high spatial and temporal surfaceobservational data, sounding data, Doppler radar echo, TBB data, retrieval wind data of radarobservation and NCEP reanalysis data), the evolution and structure characteristics of a squallline occurred over the western part of South China on19thJune2010are investigated. Themajor conclusions are as follows:
     (1) The squall line is caused under the following situations:200hPa high-level divergence,rearward of500hPa trough, warm and moist area ahead of850hPa trough. The convectionlocates on the surface convergence line and cold front, instead of the warm section before thefront. In the region which the strong convection forms, the atmosphere appears a typicalunstable stratification with the cold air over the warm.
     (2) The squall line initially comes from a quasi-linear convective system along the surfaceconvergence line embedded in the cold front, subsequently combines with the newly triggeredquasi-linear convective system over the warming zone ahead of the cold front, and finallydevelops into the mature quasi east-west squall line system. At its mature stage, the leadingconvective line develops into a bowing echo, with a trailing stratiform region containing radarbright band at the mid-level and transition zone between them. Meanwhile, the thunderstormhigh and wake low form at the surface.
     (3) The convection cell merger process along the northern linear convection system ismainly caused by the convergence uplifting between downdraft in the adjacent cells. However,the merger process between the two convection lines is mainly due to the strong updraft in thesouthern convection cell, which triggering downdraft in the north with partial upper-leveldivergence airflow. By the action of the vertical circulation, the southern convection cellstrengthens while the northern one weakens, and gradually mergers with each other.
     (4) There are meso-γ bookend vortices along the convective bowing echo, including acyclonic vortex on the eastern and western flanks of the bowed segment and an anticyclonicvortex on the middle part of the bowing echo. Meanwhile, there is a larger scale cyclonic vortex in the rearward of the stratiform cloud. The squall line develops with updraft in theleading convective line and upper-levels of the stratiform region, as well as downdraft in thetransitional region and mid-to-lower levels of the stratiform cloud.
     (5) Vorticity budget analyses show that the positive vorticity along the convective regionforms mainly through the stretching of vertical vorticity, and the bookend vortices and thepositive vorticity in the rearward of the stratiform cloud form mainly through the tilting ofhorizontal vorticity.
引文
Atkins N. T., Laurent M. St. Bow echo mesovortices. PartⅠ: Processes that influence theirdamaging potential. Mon.Wea.Rev.,2009.137:1497-1513
    Atkins N. T., Laurent M. St. Bow echo mesovortices. PartⅡ: Their genesis. Mon.Wea.Rev.,2009.137:1514-1532
    Biggerstaff M. I, Houze R. A. Kinematic and precipitation structure of the10-11June1985squall line. Mon.Wea.Rev.,1991.119:3034-3065
    Biggerstaff M. I, Houze R. A. Midlevel vorticity structure of the10-11June1985squallline. Mon.Wea.Rev.,1991.119:3066-3079
    Biggerstaff M. I, Houze R. A. Kinematic and microphysics of the transition zone of the10-11June1985squall line. J.Atmos.Sci.1993.,50:3091-3110
    Blanchard, David O. Mesoscale convetive pattern of the southern high plains.Bull.Amer.Meteor.Soc.,1990.71:994-1005
    Bluestein H. B., Jain M. H. Formation of mesoscale lines of precipitation: Severe squalllines in Oklahoma during the spring. J.Atmos.Sci.,1985.42:1711-1732
    Bluestein H. B., Marx G. T., Jain M. H. Formation of mesoscale lines of precipitation:Nonsevere squall lines in Oklahoma during the spring. Mon.Wea.Rev.,1987.115:2719-2727
    Braun S. A., Houze R. A. The evolution of the10-11June1985PRE-STORM squall line:Initiation development of rear inflow and dissipation. Mon.Wea.Rev.,1997.125:478-504
    Chen S. S., Frank W. M. A numerical study of the genesis of extratropical convectivemesovortices. Part Ⅰ: Evolution and Dynamics. J.Atmos.Sci.,1993.50:2401-2426
    Davis C. A., Weisman M. L. Balanced Dynamics of Mesoscale Votices Produced in SimulatedConvective Sytems. J.Atmos. Sci.,1994.51:2005-2030
    Fujita T. T. Results of detailed synoptic studies of squall lines. Tellus,1955.7:405-436
    Fujita T. T. Precipitation and cold air production in mesoscale thunderstorm systems. J.Meter.,1959.16:454-466
    Fujita T. T. Analytical Mesometeorlogy. A review.Meteor.Monogr.,1963.5:77-125
    Fujita T. T. Manual of downburst identification for project Nimrod Satellite andMesometeorology Research Paper156, Dept. of Geophysical Sciences, University ofChicago,1978.104.
    Grim,J. A., Robert M. R., Greg M. M., Brian F. J., David P. J. Development and forcingof the rear inflow jet in a rapidly developing and decaying squall line during BAMEX.Mon.Wea.Rev.,2009.137,1206-1229
    Hobbs P. V., Matejka T. J., Herzegh P. H., Locatelli J. D., Houze R. A. The mesoscale andmicroscale structure and organization of clouds and precipitation in midlatitudecyclones. Ⅰ: A case study of a cold front. J.Atmos.Sci.,1980.37:568-596
    Houze R. A., Biggerstaff M. I, Rutledge S. A., Smull B. F. Interpretation of Doppler weatherradar displays of midlatitude mesoscale convective systems. Bull. Amer. Meteor. Soc.,1989.70:608-619
    Houze R. A., Smull Bradley F., Peter Dodge. Mesoscale organization of springtime rainstormsin Oklahoma. Mon.Wea.Rev.,1990.118:613-654
    Houze R. A. Stratiform precipitation in region of convection: A meteorological paradox?Bull. Amer. Meteor. Soc.,1997.78:2179-2196
    Johnson R. H., Hamilton P. J. The relationship of surface pressure features to theprecipitation and airflow structure of an intense midlatitude squall line. Mon.Wea.Rev.,1988.116:1444-1471
    Klimowsi B. A. Initiation and development of rear inflow within the28-29June1989NorthDakota mesoconvective system. Mon.Wea.Rev.,1994.122:765-779
    Koch Steven E., Ray Charles A. Mesoanalysis of summertime convergence zones in central andeastern North Carolina. Wea. Forecasting,1997.12:56-77
    Koch Steven E., Robert E. G. A mesoscale gravity wave event observed during CCOPE. PartⅠ: Multiscale statistical analysis of wave characteristics. Mon.Wea.Rev.,1988.116:2527-2544
    Koch Steven E., Robert E. G., Paul B. D. A mesoscale gravity wave event observed duringCCOPE. PartⅡ: Interactions between mesoscale convective systems and the antecedentwaves. Mon.Wea.Rev.,1988.116:2545-2569
    Koch Steven E., Robert E. G., Paul B. D. A mesoscale gravity wave event observed duringCCOPE. Part Ⅲ: Wave environment and probable source mechanisms. Mon.Wea.Rev.,1988.116:2570-2592
    Leary C. A., Bals T. M. Evolution of the3-4June PRE-STORM mesoscale convective system.Preprints,24thConference on Radar Meteorology, Tallahassee, Florida, Amer. Meteor.Soc.,1989.471-474
    Leary C. A., Houze R. A. The structure and evolution of convection in a tropical cloud cluster.J.Atmos.Sci.,1979.36:437-457
    Loehrer S. M., Johnson R. H. Surface pressure and precipitation life cycle characteristicsof PRE-STORM mesoscale convective system. Mon.Wea.Rev.,1995.123:600-621
    Madox R. A. Mesoscale convective complex. Bull. Amer. Meteor. Soc.,1980.61:1374-1387
    Meng, Z., Zhang F., Markowski P., Wu D., Zhao K. A Modeling study on the development ofa bowing structure and associated rear inflow within a squall line over South China.J.Atmos.Sci.,2012.69:1182-1207
    Parker M. D., Johnson R. H. Organizational modes of midlatitude mesoscale convective systems.Mon.Wea.Rev.,2000.128:3413-3436
    Rutledge S. A., Houze R. A. A diagnostic modeling study of the trailing stratiform regionof a midlatitude squall line. J.Atmos.Sci.,1987.44:2640-2656
    Rutledge S. A., Houze R. A., Biggerstaff M. I. The Oklahoma-Kansas mesoscale convectivesystem of10-11June1985: precipitation structure and single-Doppler radar analysis.Mon.Wea.Rev.,1988.116:1409-1430
    Scott J. D., Rutledge S. A. Doppler radar observations of an asymmetric mesoscale convectivesystem and associated vortex couplet. Mon.Wea.Rev.,1995.123:3437-3457
    Skamarock W. C., Weisman M. L., Klemp J. B. Three-dimensional evolution of simulatedlong-lived squall lines. J.Atmos.Sci.,1994.51:2563-2584
    Smull B. F., Houze R. A. A midlatitude squall line with a trailing region of stratiformrain: radar and satellite observations. Mon.Wea.Rev.,1985.113:117-133
    Smull B. F., Houze R. A. Dual-Doppler radar analysis of a midlatitude squall line with atrailing region of stratiform rain. J.Atmos.Sci.,1987.44:2128-2148
    Sun J., Crook N. A. Dynamical and microphsical retrieval from Doppler radar observationsusing a cloud model and its adjoint. PartⅠ:Model development and simulated dataexperiments. J.Atmos.Sci.,1997.54:1642-1661
    Sun J., Crook N. A. Dynamical and microphsical retrieval from Doppler radar observationsusing a cloud model and its adjoint. PartⅡ:Retrieval experiments of an observed Floridaconvective strom. J.Atmos.Sci.,1998.55:835-852
    Weisman M. L. The role of convectively generated rear-inflow jets in the evolution oflong-lived mesoconvective systems. J.Atmos.Sci.,1992.49:1826-1847
    Weisman M. L. The genesis of severe, long-lived bow echoes. J. Atmos. Sci.,1993.50:645-670
    Weisman M. L., Davis C. A. Mechanisms for the generation of mesoscale vortices withinQuasi-linear convective systems. J.Atmos.Sci.,1998.55:2603-2622
    Wilson James W., Roberts Rita D. Summary if convective storm initiation and evolution duringIHOP: Observational and modeling perspective. Mon.Wea.Rev.,2006.134:23-47
    Xu Xiaoyong, Liu Liping, Zheng Guoguang. Mesoscale structure of rainstorm retrieved fromDual-Doppler radar observations using the4DVAR assimilation technique.Acta.Meteor.Sinica,2006.20:334-351
    Yuter S. E., Houze R. A. Three-dimensional kinematic and microphysical evolution of Floridacumulonimbus. Part Ⅰ: Spatial distribution of updrafts, downdrafts, and precipitation.Mon.Wea.Rev.,1995.123:1921-1940
    Yuter S. E., Houze R. A. Three-dimensional kinematic and microphysical evolution of Floridacumulonimbus. Part Ⅱ: Frequency distribution of vertical velocity, reflectivity, anddifferential reflectivity. Mon.Wea.Rev.,1995.123:1941-1963
    Yuter S. E., Houze R. A. Three-dimensional kinematic and microphysical evolution of Floridacumulonimbus. Part Ⅲ: Vertical mass transport, mass divergence, and synthesis.Mon.Wea.Rev.,1995.123:1964-1983
    Zhang D.L., Gao K. Numerical simulation of an intense squall line during10-11June1985PRE-STORM. Part II: Rear inflow, surface pressure perturbations and stratiformprecipitation. Mon Wea Rev,1989.117:2067-2094.
    李麦村.重力波对特大暴雨的触发作用.大气科学,1978.2:201-209
    丁一汇,李鸿洲,章名立,等.我国飑线发生条件的研究.大气科学,1982.6:18-27
    陈业国,农孟松,黄海洪,等.一次华南强飑线过程的数值模拟分析.气象,2009.35:29-38
    黄明策,李江南,农孟松.一次华南西部低涡切变特大暴雨的中尺度特征分析.气象学报,2010.68:748-762
    梁建宇,孙建华.2009年6月一次飑线过程灾害性大风的形成机制.大气科学,2012.36:316-336
    刘淑媛,孙建,王洪庆,陶祖钰.香港特大暴雨β中尺度线状对流三维结构研究.大气科学,2007.31:353-363
    牟容,刘黎平,许小永,等.四维变分方法反演低层风场能力研究.气象,2007.33:11-18
    慕建利,王建捷,李泽椿.2005年6月华南特大连续性暴雨的环境条件和中尺度扰动分析.气象学报,2008.66:437-451
    慕熙昱,党人庆,陈秋萍,等.一次飑线过程的雷达回波分析与数值模拟.应用气象学报,2007.18:42-49
    孙虎林,罗亚丽,张人禾,等.2009年6月3~4日黄淮地区强飑线成熟阶段特征分析.大气科学,2011.35:107-120
    孙建华,赵思雄.华南“946”特大暴雨的中尺度对流系统及其环境场研究.Ⅰ.引发暴雨的β中尺度对流系统的数值模拟研究.大气科学,2002.26:541-556
    孙建华,赵思雄.华南“946”特大暴雨的中尺度对流系统及其环境场研究.Ⅱ.物理过程、环境场以及地形对中尺度对流系统的作用.大气科学,2002.26:633-646
    覃丽,寿绍文,夏冠聪,刘泽军.华南暖区一次暴雨中尺度系统的数值模拟.高原气象,2009.28:906-914
    王红艳,刘黎平,王改利,等.多普勒天气雷达三维数字组网系统开发及应用.应用气象学报,2009.20:214-224
    夏茹娣,赵思雄,孙建华.一类华南锋前暖区暴雨β中尺度环境特征的分析研究.大气科学,2006.30:988-1008
    夏茹娣,赵思雄,2005年6月广东锋前暖区暴雨β中尺度系统特征的诊断与模拟研究.大气科学,2009.33:468-488
    许小永,郑国光,刘黎平.多普勒雷达资料4DVAR同化反演的模拟研究.气象学报,2004.62:410-422
    庄薇,刘黎平等,新疆一次强飑线过程双多普勒雷达观测的中尺度风场结构分析,气象学报,2010,68:224-234
    朱磊磊,吴增茂,邰庆国,吴炜,张京英,山东04.28强飑线过程重力波结构的分析.热带气象学报,2009.25:465-474

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700