人发角蛋白复合聚乳酸骨折内固定材料的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于生物可吸收内固定器材在骨科手术中具有金属材料所无法比拟的优势,故是近30年国内外学者研究的热门。但由于材料和工艺上的问题,初始机械力学性能低,早期降解速度快,只能用于非承重骨的内固定,而不能用于四肢长管状骨的固定。本研究总结国内外学者的研究经验,以人发角蛋白(Human Hair Keratin, HHK)与医用聚乳酸(Polyactic Acid, PLA)为原料,按一定比例机械加工制成人发角蛋白复合聚乳酸(HHK-PLA)骨折内固定棒,对其进行相关检测及观察,为进一步研究和临床应用提供实验依据。
     【目的】
     1.对自行研究的人发角蛋白复合聚乳酸(HHK-PLA)骨折内固定棒进行机械力学强度测试,分别测量HHK-PLA棒的剪切力和我三点弯曲力,计算其剪切强度、弯曲强度和弯曲模量。
     2.了解人发角蛋白复合聚乳酸(HHK-PLA)骨折内固定棒的体内降解情况,对不同阶段的降解速度进行观察。
     3.对人发角蛋白复合聚乳酸(HHK-PLA)骨折内固定棒的生物相容性进行初步观察。
     【方法】
     1.利用MTS-858 Mini Bionix型生物力学测试机对20根人发角蛋白复合聚乳酸(HHK-PLA)骨折内固定棒进行测试,包括剪切强度和弯曲力,并计算剪切强度、弯曲强度和弯曲模量。
     2.36个HHK-PLA试件随机植入18只SD大鼠背部脊旁皮下组织中,分别于术后1、2、4、8、12、16、20、24、28周取出,测量重量损失,了解HHK-PLA在SD大鼠体内的降解情况。扫描电镜(SEM)下观察HHK-PLA试件降解后的结构变化。
    
     3.切取HHK一PLA试件周围的大鼠组织,制作组织切片,观察组织
    的炎症反应情况,了解HHK一PLA材料的生物相容性。
     【结果】
     1.人发角蛋白复合聚乳酸(HHK一PLA)骨折内固定棒具有良好的
    初始机械力学强度,其剪切强度为24lMpa,弯曲强度为358MPa,弯曲
    模量为13Gpa。
     2.人发角蛋白复合聚乳酸(HHK一PLA)骨折内固定棒的体内降解
    属性良好,早期降解速度缓慢,而后期降解速度较快。
     3.人发角蛋白复合聚乳酸(HHK一PLA)骨折内固定棒植入大鼠体
    内1一2周,其周围有明显的纤维组织包裹,结缔组织增生,其间毛细血
    管扩张、充血,巨噬细胞、浆细胞、中性粒细胞、成纤维细胞和单核细
    胞浸润。8周后HHK一PLA试件周围组织炎症反应逐步减轻。术后12周,
    HHK一PLA试件周围组织异物反应基本消失,没有炎症细胞浸润。
     【结论】
     1.人发角蛋白复合聚乳酸(HHK一PLA)骨折内固定棒具有良好的
    初始机械力学强度,能够满足四肢骨的内固定要求。
     2.人发角蛋白复合聚乳酸(HHK一PLA)骨折内固定棒的体内降解
    属性良好,早期降解速度缓慢,而后期降解速度较快。这种体内降解的
    特点有利于骨折愈合,在骨折未愈合时,HHK一PLA基本没有降解,起到
    强有力的固定作用,待骨折已经愈合,HHK一PLA开始逐渐降解。
     3.人发角蛋白复合聚乳酸(HHK一PLA)骨折内固定棒具有良好的
    生物相容性,早期为异物反应,8周后,异物反应逐步减轻,术后12周,
    HHK一PLA试件周围组织异物反应基本消失。
Bioabsorbable internal fixation devices have become a focus of many researchers in the past 30 years because of their incomparable advantages to metal materials in orthopaedic operations. However, they can only be used for internal fixation of non weight-bearing bones as their low initial mechanical quality and rapid early period degradation, which originate from their material and technical characteristics. In this study, we summarized foreign and domestic data and produced a new kind of internal fixation rods (HHK-PLA rods), which is made of polyactic acid (PLA) and human hair keratin (HHK). Then, we performed corresponding tests and observation to obtain more evidences for further study and clinical applications. Objective:
    1. Mechanical intensity tests were performed on the HHK-PLA rods, including the shearing force and the tri-points bending force, and then shearing strength, bending strength and elastic modulus were calculated.
    2. To obtain the data of degradation of the HHK-PLA rods in vivo.
    3. To observe the biocompatibility of the HHK-PLA rods. Methods:
    1. A material testing machine (MTS 858 Bionix Material Testing System, MTS, Minneapolis, MN) was introduced to test 20 HHK-PLA rods.
    2. 36 HHK-PLA rods were randomly transplanted into the hypodermis around the vertebra of 18 SD rats, two rods for each rat, and were taken out 1, 2, 4, 8, 12, 16, 20, 24 and 28 weeks after the operations respectively. And then, weight reduction of each rod was tested to be an indicator of the HHK-PLA rod degradation in vivo. At the same time, the constitution changes of the rods were also observed under the scanning
    
    
    
    constitution changes of the rods were also observed under the scanning
    electron microscope (SEM). 3. The tissue peripheral to the HHK-PLA rod was cut off and made into
    tissue sections to observe the inflammatory reaction, which can indicate
    the biocompatibility of the HHK-PLA rod. Results:
    1. The HHK-PLA rod processed an outstanding initial mechanical quality, with 241MPa in shearing strength, 358MPa in bending strength and 13GPa in elastic modulus.
    2. The degradation procedure of the HHK-PLA rods in vivo was very satisfying as it degraded slowly in the earlier period and went out fast in the anaphase.
    3. 1 to 2 weeks after the transplantation, transparent fibrous tissue encapsulation and connective tissue proliferation were seen around the HHK-PLA rods, with the appearance of capillary telangiectasia and hyperemia and macrophage, plasmacyte, neutrophilic granulocyte, fibroblast and monocyte infiltration. The inflammatory reaction died off gradually after 8 weeks and by the end of 12 weeks after the transplantation, there were almost no foreign body reaction and inflammatory cell infiltration seen.
    Conclusions:
    1. The HHK-PLA rods can fully gratify the demands of internal fixation of limb bones.
    2. The characteristic degradation behavior of the HHK-PLA rods was very advantageous to the healing of the fracture because, when in the earlier period, they can produce powerful fixation effects as they degraded little and, while in the anaphase, the rods broke down gradually as the bone itself could already take the place.
    3. The HHK-PLA rods presented a satisfying biocompatibility. In the early period, the reaction was foreign body reaction and, after 12 weeks, no abnormality was seen.
引文
1. Muller ME, Allgower M, Schneider R, et al. Manual of Internal Fixation. Springer-Verlag, Berlin, 1979
    2. Schaztker J, Tile M. The Rationale of Operative Fracture Care. Springer-Verlag, Berlin, 1987
    3. Cochran GVB. Effects of internal fixation plates on mechanical deformation of bone. Surg Forum, 1969, 20: 469-471
    4. Dietschi C, Zenker H. Refrakturen und neue Frakturen der tibia nach AO-platten und Schrauben-Osteosynthesen. Arch Orthop, Unfall-Chir, 1973, 76: 54-64
    5. Uhthoff HK, Dubuc FL. Bone structure changes in the dog under rigid internal fixation. Clin Orthop, 1971, 81: 165-170
    6. Tonino AJ, Davidson DL, Klopper PJ, et al. Protection from stress in bone and its effects. J Bone Joint Surg, 1976, 58B: 107-113
    7. Slatis P, Karaharju E, Holmstrom T, et al. Structural changes in intact bone after application of rigid plates with and without compression. J Bone Joint Surg, 1978, 60A: 516-522
    8. Paavolainen P. Torsional strength and structural changes in tubular bone after rigid plates fixation. An experimental study on rabbits. Thesis, Helsinki University, 1979
    9. Mathiesen EB, Dahlborn M, Lindgren U, et al. Stress shielding and stress induced bone remodeling in the Lord cementless hip arthroplasty. Nordisk Ortopedisk Forenings 43. Kongress, Abstracts, Tromdheim, Norway, 1986 Jun, 11-14: 168
    10. Rodeheaver GT, Powell TA, Thacker JG, et al. Mechanical performance of monofilament synthetic absorbable sutures. Am J Surg, 1987 Nov, 154(5) : 544-547
    11. Shieh SJ, Zimmerman MC, Parsons Preliminary characterization of bioresorbable and nonresorbable synthetic fibers for the repair of soft tissue injuries. J Biomed Mater Res. 1990 Jul, 24(7) : 789-808
    
    
    12. Ike O, Shimizu Y, Wada R, et al. Controlled cisplatin delivery system using poly (D, L Lactic acid). Biomaterials, 1992, 13(4) : 230-234
    13. Suuronen R, Pohjonen T, Wessman L, et al. New generation biodegradable plate for fracture fixation: comparison of bending strengths of mandibular osteotomies fixed with absorbable self-reinforced multi-layer poly-1-lactide plates and metallic plates-an experimental study in sheep. Clin Mater, 1992, 9(2) : 77-84
    14. 郑磊,王前,裴国献.骨组织工程中细胞外基质材料的选择.中华外科杂志, 2000, 38(10) : 745-748
    15. Roether JA, Boccaccini AR, Hench LL, et al. Development and in vitro characterisation of novel bioresorbable and bioactive composite materials based on polylactide foams and Bioglass for tissue engineering applications. Biomaterials, 2002 Sep, 23(18) : 3871-3878
    16. Bostman O, Vainionpaa S, Hirvensalo E, et al. Biodegradable internal fixation for malleolar fractures. J Bone Joint Surg (Br), 1987, 69B: 615-619
    17. Bostman OM. Absorbable implants for the fixation of fractures. J Bone Joint Surg, 1991, 73(A): 148-150
    18. 王远亮,赵建华.生物可降解聚乳酸骨科材料研究进展.功能材料,1995,26(6) : 567-570
    19. Getter L, Outright DE, Bhaskar SN, et al. A biodegradable intraosseous appliance in the treatment of mandibular fractures. J Oral Surg, 1972 May, 30(5) : 344-348
    20. Matsusue Y, Yamamuro T, Oka M, et al. In vitro and in vivo studies on bioabsorbable ultra-high-strength poly (L-lactide) rods. J Biomed Mater Res, 1992 Dec, 26(12) : 1553-1567
    21. Majola A, Vainionpaa S, Vihtonen K, et al. Absorption, biocompatibiliry, and fixation properties of polylactic acid in bone tissue: an experimental study in rats. Clin Orthop, 1991 Jul, (268) : 260-269
    22. Leenslag JW, Pennings AJ, Bos RR, et al. Resorbable materials of poly (L-lactide). VII. In vivo and in vitro degradation. Biomaterials, 1987 Jul,
    
    8(4):311-314
    23. Tormala P, Vainionpaa S, Kilpikari J, Rokkanen P. The effects of fibre reinforcement and gold plating on the flexural and tensile strength of PGA/PLA copolymer materials in vitro. Biomaterials. 1987 Jan; 8(1):42-45
    24.陈兵,司徒朴,王迎军,等.羟基磷灰石的生物学基础及临床应用.第一军医大学学报,1995,15(3):215-217
    25.郭晓东,郑启新,杜靖远,等.可吸收羟基磷灰石聚DL-乳酸骨折内固定材料机械强度和生物降解性研究.中国生物医学工程学报,2001,20(1):23-27
    26. Ylinen P, Suuronen R, Taurio R, et al. Use of hydroxylapatite/polymer composite in facial bone augmentation. An experimental study. Iht J Oral Maxillofac Surg, 2002 Aug, 31(4): 405-409
    27. Rizzi SC, Heath DJ, Coombes AG, et al. Biodegradable polymer/hydroxyapatite composites: surface analysis and initial attachment of human osteoblasts. J Biomed Mater Res, 2001 Jun 15, 55(4): 475-486
    28. Furukawa T, Matsusue Y, Yasunaga T, et al. Biodegradation behavior of ultra-high-strength hydroxyapatite/poly (L-lactide) composite rods for internal fixation of bone fractures. Biomaterials. 2000 May, 21(9): 889-898
    29.廖凯荣,唐舫成,罗力力,等.甲壳素和甲壳胺对聚乳酸体外降解的影响.生物医学工程学杂志,1999,16(3):267-270
    30.陈长春,程海涛,孙康,等.甲壳素增强聚乳酸复合材料的体内外降解研究.生物医学工程学杂志,2000,17(2):117-121
    31. Slivka MA, Chu CC. Fiber-matrix interface studies on bioabsorbable composite materials for internal fixation of bone fractures. Ⅱ. A new method using laser scanning confocal microscopy. J Biomed Mater Res, 1997 Dec, 37(3): 353-362
    32. Makela PA, Ruuskanen M, Ashammakhi N, et al. Comparison of self-reinforced poly-L-lactide and steel wire in fixation of sternotomy in rabbits. Ann Chir Gynaeeol, 1999, 88(4): 318-321
    
    
    33. Viljanen J, Pihlajamaki H, Majola A, et al. Absorbable polylactide pi versus metallic Kirschner wires in the fixation of cancellous bo(?) osteotomies in rats. Ann Chir Gynaecol,1997,86(1):66-73
    34. Juutilainen T, Patiala H, Ruuskanen M, et al. Comparison of costs ankle fractures treated with absorbable or metallic fixation devices. Ar(?) Orthop Trauma Surg,1997,116(4):204-208
    35. Rak J, Ford JL, Rostron C, et al. The preparation and characterization poly (D, L-lactic acid) for use as a biodegradable drug carrier. Phar(?)Acta Helv, 1985, 60(5-6): 162-169
    36. Mainil-Varlet P, Curtis R, Gogolewski S. Effect of in vivo and in vit degradation on molecular and mechanical properties of vario(?) low-molecular-weight polylactides. J Biomed Mater Res,1997 Sep,36(?)360-380
    37. Ferguson S, Wahl D, Gogolewski S. Enhancement of the mechanic properties of polylactides by solid-state extrusion. Ⅱ. Poly (L-lactide poly (L/D-lactide), and poly (L/DL-lactide. J Biomed Mater Res, 199 Apr, 30(4):543-551
    38.卢泽俭,廖凯荣,等.高分子量聚(L-乳酸)的合成及其成纤模压(?)强,1999年全国高分子学术论文报告会.上海,1999
    39.陆裕朴,胥少汀,葛宝丰,等.实用骨科学.第一版,北京,人民军(?)出版社,1993,43-44
    40. Claes LE, Ignatius AA, Rehm KE, et al. New bioresorbable pin for th reduction of small bony fragments: design, mechanical properties and vitro degradation. Biomaterials, 1996 Aug, 17(16): 1621-1626
    41. Tormala P, Vasenius S, Vainionpaa J, et al. Ultra-high-strength absorbabl self-reinforced polyglycolide (SR-PGA) composite rods for intern(?) fixation of bone fracture: In vitro and in vivo study. Biomaterials, 199(?)25:1-22
    42.顾志华,高瑞亭.骨伤生物力学基础.第一版,天津,天津大学出版社,125-150
    43. Rokkanen P, Bostman O, Vainionpaa S, et al. Biodegradable implants i(?)
    
    fracture fixation: Early results of treatment of fractures of the ankle. Lancet, 1985, 1422-1424
    44. Partio EK, Tuompo P, Hirvensalo E, et al. Totally absorbable fixation in the treatment of fractures of the distal femoral epiphyses. A prospective clinical study. Arch Orthop Trauma Surg, 1997, 116(4): 213-216
    45. Shikinami Y, Okuno M. Bioresorbable devices made of forged composites of hydroxyapatite (HA) particles and poly-L-lactide (PLLA): Part I. Basic characteristics. Biomaterials, 1999 May, 20(9): 859-877
    46. Li S, Vert M. The encyclopedia of controlled drug delivery[M]. USA, John Wiley & Wons, 1999:71-93
    47. Kulkarni RK, Pani KC, Neuman C, et al. Polylaetic acid for surgical implants. Archs Surg, 1966, 9(3), 839-843
    48. Miller RA, Brady JM, Cutright DE. Degradation rates of oral resorbable implants (polylactates and polyglycolates): rate modification with changes in PLA/PGA copolymer ratios. J Biomed Mater Res. 1977 Sep, 11(5): 711-719
    49.阮狄克,沈根标,邹宏恩,等.可吸收聚乳酸植入材料的实验观察.中华骨科杂志,1994,6,370-373
    50.由英才,鲁格,申玉晖,等.聚乳酸的合成应用及降解的研究.中国生物医学工程学报,1985,4,244-246
    51. Smith R, Oliver C, Williams DF. The enzymatic degradation of polymers in vitro. J Biomed Mater Res, 1987 Aug, 21(8): 991-1003
    52. Lemoine D, Francois C, Kedzierewicz F, et al. Stability study of nanoparticles of poly (epsilon-caprolactone), poly(D,L-lactide) and poly (D,L-lactide-co-glycolide). Biomaterials, 1996 Nov, 17(22): 2191-2197
    53.刘建伟,赵强,万昌秀.医用聚乳酸体内降解机理及应用研究进展.航天医学与医学工程,2001,14(4):308-312
    54. Vert M, Mauduit J, Li S. Biodegradation of PLA/PGA Polymers: increasing complexity. Biomaterials, 1994,15(15):1209-1213
    55. Vert M, Baremberg SA, Narayan R, et al. Degradable Materials. Boca Raton: CRC Press, 1990, 11-37
    
    
    56. Robert P, Mauduit J, Frank RM. Biocompatibility and resorbability of a polylactic acid membrane for periodontal guide tissue regeneration. Biomaterials, 1933, 14(5): 353-358
    57.张浩.引导组织再生膜材料的研究进展.国外医学(生物医学工程分册),1997,20(1):21-23
    58.张连来,邓先模.可生物降解 PLA/PCL、PELA/PECL 高分子共混体系的早期降解行为-相结构与降解性能的关系.生物医学工程学杂志,1992,9(4):373-376
    59. Hollinger JO, Brekke J, Gruskin E, et al. Role of bone substitutes. Clin Orthop, 1996 Mar, 324:55-65
    60. Bos RRM, Rozema FR, Boering G, et al. Degradation of tissue reaction to biodegradable poly (L lactide) for use as internal fixation of fractures: a study in rats. Biomaterials, 1991, 12(1): 32-36
    61. Vasenius J, Vainionpaa S, Vihtonen K, et al. A histomorphological study on self-reinforced polyglycolide (SR-PGA) osteosynthesis implants coated with slowly absorbable polymers. J Biomed Mater Res. 1990 Dec, 24(12): 1615-1635
    62. Suuronen R, Pohjonen T, Hietanen J, et al. A 5-year in vitro and in vivo study of the biodegradation of polylactide plates. J Oral Maxillofac Surg, 1998 May, 56(5): 604-614, discussion 614-615
    63. Higashi S, Yamamuro T, Nakamura T, et al. Polymer-hydroxyapatite composites for biodegradable bone fillers. Biomaterials, 1986, 7(3): 183-187
    64. Verheyen C, de Wijn JR, van Blitterswijk, et al. Evaluation of hydroxylapatite/poly (L-lactide) composites: physico-chemical properties. J Mater Sci: Mater Med, 1993, 4:58-65
    65.陆声,梁崇礼,李涛,等.人发角蛋白人工腱材料体内降解及生物相容性研究.中国实验动物学报,2001,9:173-177
    66.邹云雯,王志杰,季爱玉,等.人发角蛋白人工肌腱的免疫学研究及临床应用的初步结果.中华手外科杂志,1999,12(15):208-211
    67.李其训,安梅,李春晓,等.人发角蛋白材料人工腱的实验研究与临
    
    床应用.中华创伤杂志, 1997, 13(5) : 308-310
    68. Fabian W, Ruud RM, Fred R, et al. Poly-1-lactide implants for repair of human orbital floor defects. J Oral Maxillofac Surg, 1996, 54: 9-13
    69. Hollinger JO, Battistone GC. Biodegradable bone repair materials: synthetic polymers and ceramics. Clin Orthop, 1986, 207: 290-305
    70. Majola A, Seppo V, Kimmo V, et al. Absorption, biocompatibility, and fixation properties of polylactic acid in bone tissue. Clin Orthop, 1991, 268: 260-269
    71. Seppo S, Yrjo T. K, Tomoyuki S, et al. Immune Response to Polyglycolic acid implants. J Bone Joint Surg, 1990, 72B: 597-600
    72. Bostman, H, Makinen, et al. Foreign-body reactions to fracture fixation implants of biodegradable synthetic polymers. J Bone Joint Surg, 1990, 72B: 592-596
    73. Buddy D. Ratner BD. Biocompatibility: the Convoluted Path to a Working Definition. Trends in Polymer Science, 1 994; 2(12) : 402-409
    74. Adam Curtis, Chris Wilkinson. Topographical Control of Cells. Biomaterials, 1997,28(1) : 1
    75. Schmidt J, von Recum AF. Macrophage Response to Microtextured Silicone. Biomaterials, 1 992, 13(15) : 1059-1069
    76. Ross R. Wound Healing. Sci Am, 1969, 220(6) : 40-50
    77. Bostman, Patio, Hirvensalo, et al. Foreign-body reactions to polyglycolide screws. Acta Orthop Scand, 1992, 63: 173-176

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700