充填型及大段型活性人工植骨材料的研制和相关研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
骨缺损的治疗是临床骨科研究的重要课题之一。由于传统的治疗方法一自体或异体骨移植都存在一定的问题,因此人们一直在进行人工植骨材料的研究。本研究以基因重组人骨形态发生蛋白-2(rhBMP-2)为诱导成骨的活性生长因子,进行了充填型活性人工植骨材料和大段活性人工骨的研制,并通过动物实验对两种活性人工植骨材料的成骨活性和修复骨缺损的能力进行了检验,为今后临床应用提供理论依据。
     一、充填型活性人工植骨材料的研制及相关研究
     1.rhBMP-2异位诱导成骨活性的实验
     目的:检验本研究所使用的利用原核生物表达的rhBMP-2的成骨活性,了解其复合载体以后的成骨能力。方法:实验设三组,单纯rhBMP-2组、rhBMP-2·明胶复合组及单纯明胶组,将材料植入小鼠股部肌袋,术后3天、1、2、3周通过大体观察及影像学和组织学检查,评价异位成骨效果;计算术后3周两个实验组中单位剂量rhBMP-2的诱导成骨量,比较成骨活性。结果:对照组仅出现炎症反应,无新骨形成。rhBMP-2组和rhBMP-2·明胶复合体组于术后2~3周形成小梁骨;术后3周复合体组单位剂量rhBMP-2的诱导成骨量是rhBMP-2组的8.8倍。结论:rhBMP-2有良好的异位诱导成骨活性;明胶作为载体可使rhBMP-2的异位诱导成果活性增大8.8倍。
     2.三种充填型活性植骨材料的制备及修复兔长骨骨缺损的实验研究
    
     第四军医大学博士学位论文
     一
     目的:将hBMP-二分别与明胶·羟基磷灰石、卵磷脂、甲壳素复合形成三
     种充填型活性植骨材料,通过兔挠骨1.scm骨缺损模型观察三种植骨材料修复
     骨缺损的能力,比较不同载体材料对n].--MP-2成骨作用的影响。方法:将含等
     量f].-MP-2的三种充填型活性植骨材料植入兔挠骨缺损中,并设空白对照组,
     通过影像学、组织学、骨密度检查,评价骨缺损的修复效果。结果:术后12周
     时,明胶·羟基磷灰石组和卵磷脂组的骨缺损全部得到修复,两组骨痴密度分
     别为正常值的H*%和陀.1%:甲壳素组形成被纤维组织包裹的包块,无新骨形
     成,缺损未修复;空白组无骨俪形成,缺损未修复;载体材料的降解情况是明
     胶·羟基磷灰石2周内降解,卵磷脂1周内降解,甲壳素术后12周仍有材料残
     留。结论:ti].--MP-2在兔体内有肯定的诱导成骨作用。明胶·羟基磷灰石和卵
     磷脂都是hBMP-2的良好载体,形成植骨材料后对骨缺损都有良好的修复效果,
     相比较而言,明胶·羟基磷灰石的缓释时间更长,复合hBMP-2后对骨缺损的
     修复效果更好。本实验所用的甲壳素在兔体内可以引起异物反应,不适合作为
     rbBMPZ的载体c
     3.充填型活性植骨材料修复犬长骨骨缺损的实验研究
     目的:将hBto-2与明胶、羟基磷灰石、卵磷脂复合形成充填型活性植骨
     材料,并通过犬挠骨缺损修复实验观察该充填型活性人工植骨材料对犬长骨骨
     缺损的修复能力,了解rhBMPZ剂量与骨缺损修复效果的关系。方法:以犬挠
     骨 2刀cm骨缺损为实验模型,分别植入含 0、l、2、4mg nMP2的复合材料,
    、通过大体观察及影像学、组织学、骨密度检查,评价骨缺损的修复效果。结果:
     术后12周骨缺损的修复率是空白组0只用只,ling组4只用只,Zing组8只用
     只,4mg组 7只用只;术后 24周的骨缺损修复率与 12周时相似,不同之处是
     骨痴得到改建。术后口周时 1、2、4mg组的骨密度值分别为正常值的 42.2%、
     sl.8%、79.5%,术后24周时分别为正常值的61.4%、90.9%、88.6%。结论:(1)
     充填型活性人工植骨材料在犬体内有良好的成骨活性;①2、4mg组对犬挠骨
     ZCm骨缺损有良好的修复作用,ICg组也有一定的修复作用:q)植骨材料对骨
     3
    
     第四军医大学博士学位论文
     一
     缺损的修复效果在一定的范围内与植入的rhBMP-2量成正相关。
     二、大段型活性人工植骨材料的研制及相关研究
     1.大段活性人工骨的制造
     目的:制备具有一定强度和仿生结构的大段型活性人工植骨材料。方法:
     以聚左旋乳酸和磷酸三钙粉末为原料,在溶剂作用下按7:3的比例制成浆料,
     通过材料成形机制备成冷冻状态的三维立体框架结构,于冻干机中抽真空,溶
     剂升华后形成常温下的PLLA·CTCP 三维立体框架载体材料。负压法复合
     几旧MP-2,冻干后形成活性人工骨。排液法检测材料的孔隙率,扫描电镜观察
     材料的空隙大小和nMP-2的复合效果,万能材料实验机测量材料的力学强度。
     结果:制备出柱状、套
The treatment of bone defection is one of the most important subjects in orthopaedics. Because traditional methods such as autografting and allografting have some shortcomings, people have been searching the bone substitutes. In this study, using rhBMP-2 as bone growth factor, the filling type of bioactive bone substitute and the large segmental bioactive bone substitute were made. And then, a series of animal experiments were done to test the bone forming activity and the bone defect repairing ability of these two types of bone substitutes, so as to provide some theoretical basis for them using in the future.
    I The preparation of the filling type of bioactive bone substitutes
    and related research
    1 The experimental research of rhBMP-2 in inducing ectopic bone formation Objective: To test the activity of rhBMP-2 in this study in inducing ectopic bone formation, and to understand its activity when it compounding with the carrier. Methods: Three materials were implanted into mice's thigh muscle pouches, which are gelatin, rhBMP-2 and the composite of rhBMP-2 and gelatin. The effect of ectopic bone formation was evaluated by radiography and histology in 3 days, 1
    
    
    
    week, 2 and 3 weeks after operation, and the weight of new bone inducing by a unit rhBMP-2 was calculated in 3 weeks of postoperation to compare the activity of bone formation. Results: There was new bone formed in the rhBMP-2 group and the composite group in 2-3 weeks of postoperation, but in the control group there was only inflammatory reaction. The weight of new bone induced by a unit dose of rhBMP-2 in 3 weeks of postoperation in composite group is 8.8 times of that in rhBMP-2 group. Conclusions: The rhBMP-2 has a very good activity in inducing ectopic bone formation; the gelatin as a carrier could amplify the activity about 8.8 times.
    2 The preparation of three filling type of bioactive bone substitutes and the experimental study using them to repair defects in long bone of the rabbits
    Objective: Combining gelatin ?hydroxyapatite (Gel ?HA) with rhBMP-2, lecithin with rhBMP-2, and chitin with rhBMP-2 to prepare three filling type of bioactive bone substitutes; to observe their repairing ability to bone defect, and to compare the effect of carriers to the bone forming ability of rhBMP-2. Methods: A 1.5 cm defect was made in middle-superior segment of rabbit's radius, then the three substitutes were implanted into the defect as three experiment groups, and nothing was implanted in the fourth group which is a control group. The repairing effect was evaluated by radiograph in 4, 8 and 12 weeks of postoperation, and by histology and BMD (Bone Mineral Density) in 12 weeks of postoperation. Results: Radiographically, in the rhBMP-2/Gel ?HA and rhBMP-2/Lec groups, all defects were connected by callus in 12 weeks; in the rhBMP-2/Chi group, there formed a soft tissue mass, and the defect was not repaired; in the control group, there was no callus formation and the defect was not repaired. Histologically, in the rhBMP-2/Gel ?HA and the rhBMP-2/Lec groups, the defects were connected by callus, which was composed by outer's lamellar bone and center's myeloid tissue;
    
    
    the soft tissue in the defect site in rhBMP-2/Chi group was a inflammation mass wrapped by fibrous tissue; in the control group, the defect was connected by fibrous tissue. The BMD of the new callus in the rhBMP-2/Gel ?HA group and the rhBMP-2/Lec group were 55.5% and 48.1% of that of the normal radius in 12 weeks of postoperation. About degradation time, the lecithin is about 1 week, and the Gel ?HA is about 2 weeks. Conclusions: The rhBMP-2 has positive activity of inducing bone formation. Lecithin and Gel ?HA are good carriers of the rhBMP-2, and relatively, Gel ?HA has a better slowly-releasing effect. Chitin in this experiment is not suitable to be a carrier of rhBMP-2 for its foreign body reaction in the rabbit. 3 The preparation of a filling type of bioactive bone substitutes and the experimental study using them to repair defects in long bone of the dogs
    Objectiv
引文
1. Urist MR. Bone formation by auto induction. Science, 1965;150:893-899.
    2. Hots G, Herr G. Bone substitute with osteoinductive biomaterials surrect and clinical applications. Int J Oral Maxillofac Surg, 1994;23:413~420.
    3.胡蕴玉,陆裕朴,刘玮。重组合异种骨的实验研究与临床应用。中华外科杂志,1993;3(12):709~712.
    4.赵明,王会信,周廷冲。重组人骨形态发生蛋白-2成熟肽在大肠杆菌中的表达及其诱导成骨活性。生物化学杂志,1994;10:319~321.
    5. Groot KD. Carriers that concentrate native BMPs in vivo. Tissue Engineering, 1998;4:337~340.
    6. Urist MR. Clin. Orthop. 1984;187:277
    7.金岩.国外医学.口腔医学分册.1990;17(4):193.
    8. 8.Kawakami T, Kawai T, Takei N, et al. Evaluation of heterotopic bone formation induced by squalane and bone morphogenetic protein composite. Clin Orthop. 1997;337:261.
    9.李亚非,胡蕴玉,吕荣,等.四种可溶性载体对骨形态发生蛋白在小鼠体内诱导成骨活性的影响.中华骨科杂志.1997;2:117.
    10. Hayashi K, Inadom T, Tsumura, H, et al. Bone implant interface mechanics of in vivo bio-inert ceramics. Biomaterials. 1993;14:1173-1179.
    11. Daculsi G, Legeros RZ, Deudon C, et al. Scanning and transmission electron microscopy, and electron probe analysis of the interface between implants and host bone, osseo-coalescence versus osseo-intergration. Scanning Microsc. 1990;4:309-314.
    12. Heikkila JT, Aho AJ, Yli UP, et al. Bioactive glass versus hydroxylapatite in reconstruction of osteochondral defects in the rabbit. Acta Orthop Scand. 1993;64:678-682.
    13. Kawakami T, Antoh M, Hasegawa H, et al. Experimental study on osteoconductive properties of a chitosan-bonded hydroxyapatite selfhardening paste. Biomaterials. 1992;13:759-763.
    14. Van E, Ripamonti, U. Bone differentiation in porous hydroxyapatite in baboons is regulated by the geometry of the substratum: Implications for reconstructive craniofacial surgery. Plast. Reconstr. Surg. 1993;3:959-965.
    15. Ogiso M, Yamashita Y, Tabata T, et al. The delay method: a new surgical technique for enhancing the bone-binding capability of HAP implants to bone surrounding implant cavity preparations. J. Biomed. Mater. Res. 194;28:805-812.
    16. Renooij W, Hoogendoorn HA, Visser WJ, et al. Bioresorption of ceramic strontium-85-1abled calcium phosphate implants in dog femora——a pilot study to quantitate bioresorption of ceramic implants of hydroxyapatite and tricalcium orthophosphate in vivo. Clin. Orthop. 1985;197:272.
    
    
    17. Neo M, Nakamura T, Ohtsuki C, et al. Apatite formation on three kinds of bioactive material at an early stage in vivo: a comparative study by transmission electron microscopy. J. Biomed. Mater. Res. 1993;27:999-1006.
    18. Saffar JL, Colombier ML, Detienville R. Bone formation in tricalcium phosphatefilled periodontal intrabony lesions. Histological observations in humans. J. Periodontol. 1990;61:209-216.
    19. Gatti AM, Zaffe D, Poli GP. Behaviour of tricalcium phosphate and hydroxyapatite granules in sheep bone defects. Biomaterials. 1990;11:513-517.
    20. McAndrew WP, Gorman PW, Lange TA. Tricalcium phosphate as a bone graft substiture in trauma: preliminary report. J. Orthop. Trauma. 1988;2:333-339.
    21. Dhert WJ, Klein CP, Wolke HG, et al. A mechanical investigation of fluorapatite, magnesiumwhitlockite, and hydroxulapatite plasma-sprayed coatings in goats. J. Biomed. Mater. Res. 1991;25:1183-1200.
    22. Bergsma JE. Biomaterials. 1995;16:25.
    23. Suganuma J, Appl J. Biomaterials. 1993;4:13
    24. Vert M, et al. J. Mater. Sci: mater in med. 1992;3:342.
    25.崔秀敏,王彭延。医用合成可降解生物材料的新进展。国外医学生物医学工程分册。1995,18:324。
    26. Vacanti CA, Langer R, Schico B, et al. Synthetic polymers seeded with chondrocytes provide a templater for new cartilage formation. Plast Reconstr Surg. 1991;88:753.
    27.王德春,陈峥嵘,宋后燕,等。聚乙醇酸负载同种异体软骨细胞移植修复兔关节软骨缺损。中华创伤杂志。1997;13(4):228-231.
    28. Boden SD, Martin GJ Jr, Horton WC, et al. Laparoscopic anterior spinal arthrodesis with rhBMP-2 in a titanium interbody threaded cage. J Spinal Disord 1998 Apr;11(2):95-101.
    29. Kawai T, Mieki A, Ohno Y, et al. Osteoinductive activity of composites of bone morphogenetic protein and pure titanium. Clin Orthop. 1993 May;(290):296-305.
    30. Fujimura K, Bessho K, Kusumoto K. Biochem. Biophys. Res. Commun. 1995;208(1):316.
    31. Nevins M, Kirker-Head C. Int. J. Periodontics Restorative Dent. 1996;16(1):8.
    32.张喜善,罗怀灿。骨形态发生蛋白载体释放系统研究进展。中国实用外科杂志。1998;18(3):179-180。
    33. Ripamonti U, Petit JC, Moehl T, et al. Immediate reconstruction of massive cranio-orbito-facial defects with allogeneic and alloplastic matrices in baboons. J Craniomaxillofac Surg. 1993;21(7):302.
    
    
    34. Gerhart TN. Healing of segmental femoral defects in sheep using recombinant human morphogenetic protein(rhBMP-2). J Bone Joint Surg. 1993,74A:659.
    35.张森林,毛天球,王会信等.重组人骨形成蛋白-2修复骨质缺损的实验研究.中华口腔医学杂志.1998,33:13.
    36.戴毅敏.生物珊瑚/聚乳酸人工骨作为植骨材料及rhBMP2载体的实验研究.第四军医大学学位论文.1998
    37.陈富林,毛天球,曹梅讯等.几丁质作为植骨材料生物相容性的实验研究.实用口腔医学杂志,1999,15(4):246
    38.崔英德,廖列文,康正.聚乳酸合成研究现状及展望.精细化工.1999;16:12-15.
    39. Trofimoff L, Aida T, Inouo S. Formation of poly(lactide) with controlled molecular weight, Polymerization of lactide by Aluminum Propnyrin. J. Chem Lea. 1987;991-994.
    40.山田稔,黑石圣子,小川泰亮。缓释制剂及其聚合物。[P].CN:1060 851 A.
    41.Agrawal CM, Bcst J, Hcckman JD, et al. Biomaterials, 1995;16(16):1255-1260.
    42.廖凯荣,唐舫成,罗力力,等。甲壳素和甲壳胺对聚乳酸体外降解作用的影响。生物医学工程学杂志。1999:16(3):267-270.
    43. Thomson RC, Yaszemski MJ, Powers JM, et al. J Biomater Sci Polym Ed. 1995;7(1):23-38.
    44.戴毅敏.生物珊瑚/聚乳酸人工骨作为植骨材料及rhBMP2载体的实验研究.第四军医大学学位论文.1998
    45.高成杰,余斌。PLA与PGA聚合物在矫形外科中的应用。中国矫形外科杂志。2001;8(9):903-906。
    46. Tsuruga E, Takita H, Itoh H, et al. Pore size of porous hydroxyapatite as the cell-substratum controls BMP-induced osteogenesis [J]. J Biochem Tokyo, 1997;121(2):317-324.
    47.王晶,李保陆,王勤。聚乳酸多孔泡沫材料的研制。山东生物医学工程。2000;19(1):57-60。
    48. Mooney DJ, Park S, Kaufmann PM, et al. Biodegradable sponges for hepatocyte transplantation. J Biomed Mater Res 1995 Aug;29(8):959-65.
    49. Mikos-AG, Sarakinos-G, Leite-SM, et al. Laminated three-dimensional biodegradable foams for use in tissue engineering. Biomaterials. 1993 Apr, 14(5):323-30.
    50.颜永年,崔福斋,张人佶,等。人工骨的快速成型制造。材料导报,2000;14(2):11-13。
    
    
    51. Muggins CB. The formation of bone under influence of epithelium of the urinary tract. Arch surg, 1931;22:377. : 680-686.
    52. Lacroix P. Recent investigation on the growth of bone. Nature, 1945; 156:576.
    53. Urist MR. Surface-decalcified allogeneic bone implants. Clin Orthop, 1969;56:37.
    54. Urist MR. Practice and application of basic research on bone graft physiology. In:St. Louis, C. V. Mosby : AAOS Instructional Course Lectures (Vol. 25) , 1976.
    55. Urist MR, Iwata H, Ceccotti PW, et al. Bone morphogenesis in implants of insoluble bone gelatin. Proc Natl Acad Sci USA, 1973;70(12) :3510-3515.
    56. Urist MR,Silverman BF,Buring K, et al.Bone inductive principle. Clin Orthop, 1967;53:243-283.
    57. Urist MR, Strates BS. Bone morphogenetic protein. J Dent Res, 1971;50 (Suppl.6) :1392
    58. Van de Putte KA, Urist MR. Osteogenesis in anterior of intramuslular implants of decalcified bone matrix. Clin Orthop, 1966;43:257.
    59. Urist MR,Mikulski AJ, Leitze A. Solubilized and insolubilized bone morphogenetic protein. Proc Natl Acad Sci USA, 1979;76(4) :1828-1832.
    60. Urist MR, Lietze AA, Mizutani H, et al. A bovine low molecular weight bone morphogenetic protein (BMP) fraction. Clin Orthop, 1982;162:219.
    61. Urist MR, Chang JJ, Lietze AA. Preparation and bioassay of bone morphogenetic protein and polypeptide fragments. In: Method in Enzymology, edittd by Barnes D and Sribaska DA. New York: Academic Press, 1987;293-312.
    62. Urist MR, Nakata N, Felser JM. Osteosarcoma cell and matrix retained morphogen for normal bone formation. Clin Orthop, 1977; 124:25 1-255.
    63. Hanamura H, Higuchi Y, Nakagawa M, et al. Soluble BMP from mouse ostesarcoma and rat demineralized bone matrix. Clin Orthop, 1980;148:281.
    64. Wu ZY, Hu XB. Seperation and purification of porcine bone morphogenetic protein. Clin Orthip, 1988;230:229.
    65. 孙正义 马骨形成蛋白HrBMP的提取及其诱导成骨实验研究.第三届全国骨科学术会议论文汇编,1989;52.  
    66. Baue FCH, Urist MR. Human osteosarcoma soluble BMP. Clin Orthop, 1981;154:291.
    67. Bessho K, Tagawa T, Murata M. Purification of rabbit bone morphogenetic protein derived from bone, dentin, and wound tissue after tooth extraction. J Oral Maxllofac Surg , 1990;48:162.
    68. Muthukumaran N, Sampath TK, Reddi AH. Comparison of bone inductive
    
    proteins of rat and porcine bone matrix. Biochem Biophys Res Conmun, 1985;131:37.
    69. Bentz H, Nuthan RM, Rosen DM, et al. Purification and characterization of a unique osteoinductive factor from bovine bone. J Biol Chem, 1989;264 (32) :20805-20810.
    70. Urist MR, Sato K, Brownell A, et al. Human morphogenetic protein (hBMP). Proc Soc Exp Bio Med, 1983; 173(2) : 194.
    71. Kawai T, Urist MR. Bovine tooth-derived bone morphogenetic protein. J Dent Res, 1989;68(6) : 1069-1074.
    72. Wozney JM, Rosen V, Celeste J, et al. Novel regulators of bone formation : molecular clones and activities. Scinece, 1988;242:1528-1534.
    73. Celeste AJ, Iannazzi JA, Taylor RC, et al. Identification of TGF-β family members present in bone-inductive protein purified from bovine bone. Proc Natl Acad Sci USA, 1990;87(24) :9843-9847.
    74. Schidauer TA, Bostrom MPG, Lane JM, et al. Embryonic distribution of bone morphogenetic pretein 2/4: A new neuronal role in development. Orthop Trans. 1994; 18:426.
    75. Takahara K, Brevard R, Hoffman GG, et al. Characterization of a novel gene product (mamalian tolloid-like) with high sequence similarity to mammalian tolloid bone morphogenetic protein-1. Genomics, 1996;34:2.
    76. Jun H, Makoto T, Norimatsu T, et al. cDNA cloning and genomics structure of human bone morphogenetic protein-3b (BMP-3b). Biochem Biophy Res Commun, 1996;223:304.
    77. Luyten FP, Cunnigham NS, Ma S, et al. Purification and partial amino acid sequences of osteogenin, a protein initiating bone differentiation. J Biol Chem , 1989;265:13377.
    78. Ozkynak E, Rueger DC, Drier EA, et al. OP-1 cDNA encodes an osteogenic protein in the TGF-β family. EMBOJ, 1990;9:2085.
    79. Zhao QQ, Deng K, Labosky PA, et al. The gene encoding bone morphogenetic protein 8B is required for the initiation and maintenance of spermazogenesis in the mouse. Genes Dev, 1996; 10(3) : 1657.
    80. Lyons KM, Graycar JL, Lee A, et al. Vgr-1, a mammalian gene related xenopus Vgr-1. is a member of transforming factor β gene family. Proc Natl Acad Sci USA, 1989;3:1657.
    81. Celeste AJ, Taylor R, Yamaji K, et al. Molecular cloning of BMP-9 in bovine bone which is highly related to the BMP-5/6/7 subfamily osteoinductive molecules. J Cell Biochem, 1992; 16:100.
    82. Geleste AJ, Song JJ, Cox K, et al. Bone morphogenetic protein-9, a nwe
    
    member of the TGF-β superfamily. J Bone Miner Res, 1994;9(Abs, Hahu GV. BMP-1 sublocalization on chromosome 8. Anato Orthop, 1995;311:199-209.
    83. Jeffrey A, Tabas MD, Gregory V. Chromosomal assignment of hBMP4. Clin Orthop, 1993;293:310-316.
    84. Hahn GV, Cohen RB, Wozney JM. A BMP subfamily: chromsomal localization of human gene for MBP5, 6, 7. Genomics, 1992;14:759.
    85. Wang R, Loffler C, Wozney JM. The gene for BMP-2 is localized to human chromosome 20p12 by radioative and nonradioactive in situ hybridization. Human Genet, 1992;90:297-299.
    86. Shore EM, Cook AL, Hahu GV. BMP-1 sublocalization on chromosome 8. Anato Orthop, 1995;311:199-209.
    87. Tabas JA, Zasloff M, Wasmuth JJ, et al. Bone morphogenetic protein: chromosomal localization of human genes for BMP-1, BMP-2A and BMP-3. Genomics, 1991;9:283.
    88. Ishida N, Tsujimoto M, Kanaya T, et al. Expression and characterization of bone morphogenetic protein-2 in silkworm Larvae infected with recombinant Bomnyx mori nuclear pklyhedrosis virus. J Biochem, 1994;115:279-285.
    89. Wang EA, Rosen V, Cordes P, et al. Recombinant human bone morphogenetic protein induces bone formation. Proc. Natl. Sci. Acad. USA. 1990;87(6):2220-2224.
    90.刘新平,张远强,陈南春,等.入骨形成蛋白-2cDNA基因工程产物诱导活性的形态学证明.中国组织化学与细胞化学杂志,1995;(4):392.
    91.卢兹凡,刘新平,陈苏民,等.人骨形成蛋白-2碳端肽在大肠杆菌中的高表达及活性测定.第四军医大学学报,1995;16(6):429.
    92.刘新平,陈苏民.骨形成蛋白研究进展.全军重组合异种骨移植新技术培训班暨研讨会资料汇编,西安1997:21.
    93.蒲勤.人骨形成蛋白2成熟肽在大肠杆菌中的高表达及其诱骨活性.第四军医大学硕士研究生学位论文,1997.
    94.林松,徐印坎,李伯良.人骨形态蛋白-2活性片断在大肠杆菌中的高效表达.生物化学与生物物理学学报,1996;28(1):8-13.
    95. Wang EA, Rosen V, D'Alessandro JS, et al. Recombinant human bone morphogenefic protein induces bone formation. Proc Natl Sci Acad USA, 1990;87:2220.
    96. Isreal DI, Nove J, Kerns KM. Expression and characterization of BMP-2 in CHO. Growth Factors, 1992;7(2):139-150.
    97. Hammonds RG, Schwall R, Dudley A et al. Bone-inducing activity of mature BMP-2B produced from a hybrid BMP-2A/2B precursor. Mul. Endocrinol. 1991;5:149
    
    
    98.卢兹凡.人骨形成蛋白2和3在昆虫杆状病毒表达系统中的表达纯化及活性研究.第四军医大学博士研究生学位论文,1997.
    99.林松,宓怡德,戴聂红.重组人骨形成蛋白-2在家蚕幼虫中表达及产物纯化.生物化学与生物物理学报,1996;28:374-378.
    100. Gitelman SE, Kobrin MS, Ye JQ, et al. Recombinant Vgr-1/BMP-6-expressing tumors induce fibrosis and endochondral bone formation in vivo. J Biol, 1994;126:1595-1609.
    101.刘莉,赵明,王会信,等.重组人骨形态发生蛋白-2诱导成骨动物实验研究.中华骨杂志,1995;15(8):519-522.
    102.赵明,王会信,周延冲,等.重组人骨形态发生蛋白-2成熟肽在大肠肝菌中的表达及诱骨活性.生物化学杂志,1994;10(3):319-323.
    103. Schultheiss TM, Burch JB, Lassar AB, et al. Genes Dev, 1997;11:451-462.
    104. Bostrom K, Watson KE, Horn S, et al. Bone morphogenetic expression in human atherosclerotic lesion. J Clin Invet. 1993;91:1800.
    105. Vaughan J. Rheum. 1981;2:133
    106. Prolo DJ, Rodrigo J. J. Clin. Othop. 1985;200:322.
    107. Reddi AH, Huggins CB. Proc. Natl. Sci. Acad. USA. 1972;69:1601
    108. Wang EA. Proc. Natl. Acad. Sci. USA. 1988;85:9484.
    109. Iwasaka S, Hallori A, Salo M, et al. Characterization of the bone morphogenetic protein-2 as a neurolrophic factor. J Bio Chem. 1996;271(29):1736.
    110. Hofbauer LC, Hofbauer AE. Taking the message to the nucleus: MAD protein as a mediator of bone morphogenetic protein singling. Eur J Endocrinol. 1996;185:654.
    111. Hoodless PA, Haerry T, Abdollah S, et al. A MAD -related protein that functions in BMP-2 signaling pathways. Cell. 1995;85:489.
    112. Wang EA, Rosen V, Dalessandro JS, et al. Proc. Natl. Sci. Acad. USA. 1988;-87:2220
    113. Volek-Smith H, Urist MR. Proc. Soc. Exp. Biol. Med. 1996;211(3)265
    114. Aspenberg P, Turek T. Acta. Orthop. Scand. 1996;67(1):3
    115. Kusumoto K, Bessho k, Fulimura K. Biochem. Biophys. Res. Commun. 1995:215(1):205
    116. Alpaslan C, Irie K, Takahashi K. Br. J. Oral. Maxillogac. Surg. 1996;34(5):414.
    117. Oda S, Kinoshita A, Higuchi T. Kokubyo. Gakkai. Zasshi. 1996;63(3):468.
    118. Fujumura K, Bessho K, Kusumoto K. Biochem. biophys. Res. Commun. 1995;208(1):316.
    119. Fleet HC, Cashiman K, Cox K. Endocrinology. 1996;63(3):468.
    120. Zellin G, Hedner A. Connect. Tissue Rex. 1996;35(1-4):279
    
    
    121. Kinoshita A, Oda S, Takahashi K, et al. J. Periodontal. 1997;68(2):103.
    122. Boyne PJ. Bone. 1996;19(1suppl):83S.
    123. Toriumi DM, Kotler HS, Luxenberg DP, et al. Ardh, Otolaryngol. Head Neck Surg. 1991;117:1101.
    124. Yasko AW, Lane JM, Fellinger EF, et al. J. Bonejoint Surg. 1992;74A:659
    125. Marden LJ, Hollinger JO, Chaudhari A. J. Biomed. Mater. Res. 1994;28(10):1127.
    126. Lee SC, Shea M, Battle MA. J. Biomed. Mater. Res. 1994;28(10):1149.
    127. Bostrom M, Lane J, Tomin E, et al. Clin. Ortbop. 1996;327:272.
    128. Gerhart TN, Kirker-Head CA, Kriz MJ, ET AL. Clin. Orthop. 1993;29.:317.
    129. Kirker-Head CA, Herhart TN, Schelling SH, et al. Clin. Orthop. 1995;318:222.
    130. Muschler GF, Hyodo A, Manning T. Clin. Orthop. 1994;308:229
    131. Sandu. Evaluation of rhBMP-2 with an OPLA carrier in a canine posterolateral spinal fusion model. Spine. 1995;20(24):1669
    132. Holliger EN, Trawick RH, Boden SD. J. Spinal. Disord. 1996;9(2):125.
    133. Urist MR, Kovacs S, Yates KA. Regeneration of an enchondroma defect under the influence of an implant of human bone morphogenetic protein. J Hand Surg [Am]. 1986 May;11(3):417-9.
    134. Johnson EE, Urist MR, Finerman GAM. Repair of segmental defect of the tibia with cancellous bone grafts augmented with hBMP. Clin Orthop. 1988;236:249.
    135. Johnson EE, Urist MR, Finerman GAM. BMP augmentation grafting of resistant femur nonunion: A preliminary report. Clin Orthop. 1988;230:257
    136. Johnson EE, Urist MR, Finerman GAM. Distal metaphyseal tibial nonunion: deformity and bone loss treated by open reduction, internal fixation and human bone morphogenetic protein. Clin Orthop. 1990;250:234.
    137. Johnson EE, Urist MR, Finerman GAM. Resistant nonunion and partial or complete segmental defects of long bones: treatment with implants of a composite of human BMP and autolyzed antigen-extracted. Allogeneic(AAA)bone. Clin Orthop. 1992;277:229.
    138. Sailer HF, Kolb E. Application of purified bone morphogenetic protein in cranio-maxillo-facial surger. BMP in compromised surgical reconstructions using titanium implants. Cranimaxilloful Surg. 1994;22:2
    139. Alper J. Boning up: newly isolated protein bad dreaks. Science. 1994;263:324.
    140.鲁莹、蒋雪涛,曾仁杰。卵磷脂微乳的制备及理化性质的考察。药学学报,2000,35(1):52-55。
    141.汤顺清,屠美,肖大庆,等。卵磷脂聚合物复合膜的制备及血液相容性研究。生物医学工程学杂志,1999;16(增刊):86-87。
    
    
    142.吴建为,陈大梅,孙波,等。天然活性成份磷脂复合物药学研究概述。中国药学杂志,1998;33(1):9-11。
    143.陈杰,叶章群。明胶阿霉素抗癌缓释剂治疗膀胱肿瘤的体外研究。中华实验外科杂志,1999:16(2):177-178。
    144. Majola A, Vainionpaa S, Vihtonen K, et al. Absorption, biocompatibiliry, and fixation properties of polylactoc acid in bone tissue: An experimental study in rat[J]. Clin. Orthop, 1991;268:260-269.
    145. Stahelin AC, Weiler A, Rufenacht H, et al. Clinical degradation and biocompatibility of different bioabsorbable interference screws: a report of six cases[J]. Arthroscopy, 1997;13(2):238-244.
    146. Cook SD, Baffes GC, Wolfe MW, et al. recombinant human bone morphogenetic protein-7 induces healing in a canine long-bone segmental defect model. Clin. Orthop. Rel. Res. 1994;301:302-312.
    147. Nilsson OS, Urist MR, Dawson EG, et al. Bone repair induced by bone morphogenetic protein in ulnar defects in dogs. J. Bone Joint Surg. 1986;68(B):635-642.
    148.L Radin.骨科生物力学基础[M].北京:人民卫生出版社,1983.
    149.顾汉卿.生物医学材料学[M].天津:天津科技翻译出版公司,1993.
    150. Silver F H. Biomaterials, Medical Devices and Tissue Engineering: An Integrated Approach [M]. Boston: Chapman & Hall Press, 1994.
    151.林建华,Agrawal CM,Zhu Chong Fang,et al.不同体积碱性盐对50:50聚乳酸-聚乙二醇酸体外降解的影响。福建医科大学学报,1998;32(4):347-352。
    152.152.邵健、杨宇民,徐秉如。甲壳素和壳聚糖在生物医学方面的应用。南通医学院学报,1997;17(1):145-146。
    153.153.冯霆均,廖纪云,吴晓春。甲壳素天然胶乳复合膜作为皮肤创伤敷膜。生物医学工程学杂志,1999;16(增刊):88-89。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700