聚(D,L-乳酸)基仿生细胞外基质的骨组织工程基质材料研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
“材料仿生修饰/工程”是第三代医用生物材料研究的热点。为了克服可降解医用生物材料聚乳酸的临床使用缺陷和满足其在生物医学工程领域的使用要求,本研究在以D,L-丙交酯(DL-LA)为原料,采用新型共引发体系合成高分子量聚(D,L-乳酸)(DL-PLA)的基础上,通过一系列化学改性来制备一种新型聚乳酸基仿生细胞外基质材料。采用多角度激光光散射仪(MALLS)、傅立叶变换红外光谱仪(FTIR)、核磁共振波谱仪(NMR)、X射线光电子能谱仪(XPS)、差示扫描量热计(DSC)、氨基酸分析仪(AAA)和常规化学分析方法等手段对所得材料进行结构表征和性能测试,并详细考察了其亲/疏水性、体外生物可降解性和生物相容性。主要研究内容和结论如下:
     ⑴以D,L-丙交酯为原料,采用由Sn(Oct)2引发剂和自制的助引发剂共同组成的新型共引发体系来制备高分子量聚(D,L-乳酸),重点考察了助引发剂在体系中的作用效果、助引发剂用量对产物分子量的影响以及共引发机理。
     ①FTIR、~(13)C NMR、~1H NMR和XPS的分析结果表明,采用该共引发体系能合成制备出DL-PLA材料;DSC分析显示合成得到的DL-PLA的玻璃化转变峰值温度为63.6℃。
     ②MALLS的检测结果表明,在一定的浓度范围内,该共引发体系能明显加快聚合反应速率,缩短聚合反应时间,并且其用量也是影响产物分子量和分子量分布的重要因素。
     ③回归分析的结果表明,与对照组不加助引发剂体系所得产物分子量的最大值仅为116,600相比,由S拟合得到的添加助引发剂体系的产物分子量极限值为153,300。因此,通过合理控制共引发体系中引发剂和助引发剂的用量,就可以得到高分子量的DL-PLA。
     ⑵根据“材料整体仿生修饰”新思路,本研究将高分子量聚(D,L-乳酸)先用马来酸酐(MA)改性,再用脂肪族二胺(DA)改性,后用生物活性多肽(RGDS)改性,从而制备了一种新型仿生聚乳酸基质材料。其中,马来酸酐的引入主要是给材料提供高反应活性的酸酐键;二胺的引入主要是为了克服聚乳酸材料降解产物呈酸性的缺陷;而活性肽RGDS的引入则主要是为了赋予材料生物活性和给材料提供生物特异性。
     ①FTIR、~(13)C NMR和XPS的分析结果表明,在不影响DL-PLA材料主链结构的前提下,利用其分子结构中叔碳原子的自由基反应活性,在引发剂过氧化二苯甲酰(BPO)的作用下,能成功地将MA引入高分子量DL-PLA的分子骨架中,
“Biomimetic modification or engineering of materials”is a new requirement of the third-generation biomaterials. Here, poly(D,L-lactic acid) (DL-PLA) with high molecular weight was prepared from D,L-lactide and modified in the bulk through a series of chemicals with the purpose of overcoming the drawbacks of DL-PLA in clinical use and building novel DL-PLA based biomimetic extracellular matrix materials. The characterization of the obtained polymers was by the means of multi-angle laser light scattering (MALLS), fourier transform infrared spectrometry (FTIR), nuclear magnetic resonance spectrometer (NMR), X-ray photoelectron spectroscopy (XPS), differential scanning calorimeter (DSC), amino acid analyzer (AAA) and classical chemical analysis to explore the structures and the properties. Thereafter, surface wettability, biodegradation and biocompatibility of the synthetic materials were investigated. The main works and conclusions are included as follows:
     ⑴Poly(D,L-lactic acid) with high molecular weight was synthesized by melt ring-opening polymerization of D,L-lactide using a novel co-initiating system. Then, an extensive investigation effort was expended in understanding the reacting mechanism, the effects of coinitiator and its dosage towards the molecular weight.
     ①FTIR, ~(13)C NMR, ~1H NMR and XPS analysis showed that DL-PLA was successfully prepared by using above-mentioned co-initiating system. Glass transition temperature of the synthetic polymer determined by DSC was 63.6℃.
     ②The results of MALLS analysis indicated that the co-initiating system could accelerate the polymerization rate and shorten the reacting time. Moreover, decreasing the concentration of coinitiator in reacting system yielded polymer with higher molecular weight and narrower polydispersity.
     ③Regression analysis revealed the maximal Mw of DL-PLA was only 116,600 by using single Sn(Oct)2 initiating system. However, sigmoidal fit discovered that the ultimate Mw of polymer prepared from co-initiating system was 153,300. Therefore, by controlling the initiator and coinitiator dosage into the optimum range, DL-PLA with maximum molecular weight was obtained.
     ⑵Based on the design strategy of“bulk biomimetic modification or engineering of materials”, poly(D,L-lactic acid) was modified in the bulk with maleic anhydride (MA), aliphatic diamine (DA) and bioactive peptide Arg-Gly-Asp-Ser (RGDS),
引文
[1] 李玉宝. 生物医学材料. 北京: 化学工业出版社. 2003: 209-211.
    [2] Freed LE, Vunjak-Novakovic G, Biron RJ. Biodegradable polymer scaffolds for tissue engineering. Nat Biotechnol. 1994, 12(7): 689-693.
    [3] Kim B-S, Mooney DJ. Development of biocompatible synthetic extracellular matrices for tissue engineering. Trends Biotechnol. 1998, 16(5): 224-230.
    [4] 郑磊, 王前. 骨组织工程基质材料的现状及展望. 生物医学工程学杂志, 2001, 18(3): 470-474.
    [5] Carothers WH, Dorough GL, Natta FJ. Studies of polymerization and ring formation. X. The reversible polymerization of six-membered cyclic esters. J Am Chem Soc. 1932, 54: 761-772.
    [6] Filachione EM, Fisher CH. Lactic acid condetisation polymers. Ind Eng Chem. 1944, 36(3): 223-228.
    [7] Lowe CE. Preparation of high molecular weight polyhydroxyacetic ester. US Patent 2668162, 1954.
    [8] 汪朝阳, 赵耀明. 生物降解材料聚乳酸合成史略. 化学通报, 2003, 9: 641-644.
    [9] Griffith LG. Polymeric biomaterials. Acta Mater. 2000, 48: 263-277.
    [10] Vert M, Schwarch G, Coudane J. Present and future of PLA polymers. J Macromol Sci Pure. 1995, A32(4): 787-796.
    [11] Edlund U, Albertsson A-C. Degradable polymer microspheres for controlled drug delivery. Adv Polym Sci. 2001, 157: 67-112.
    [12] Mehta R, Kumar V, Bhunia H, et al. Synthesis of poly(lactic acid): a review. J Macromol Sci Part C: Polym Rev. 2005, 45: 325-349.
    [13] Auras R, Harte B, Selke S. An overview of polylactides as packaging materials. Macromol. Biosci. 2004, 4: 835-864.
    [14] Kalambur S, Rizvi SSH. An overview of starch-based plastic blends from reactive extrusion. J Plast Film Sheet. 2006, 22: 39-58.
    [15] Bostman O, Pihlajamaki H. Clinical biocompatibility of biodegradable orthopaedic implants for internal fixation: a review. Biomaterials, 2000, 21: 2615-2621.
    [16] 罗彦凤. 聚(DL-乳酸)的改性及体外降解和细胞相容性研究[学位论文]. 重庆. 重庆大学. 2003: 1-2.
    [17] 曹雪波. 马来酸酐改性聚乳酸的研究[学位论文]. 重庆. 重庆大学. 2001: 3-4.
    [18] Mani R, Bhattacharya M, Tang J. Functionalization of polyesters with maleic anhydride byreactive extrusion. J Polym Sci Pol Chem. 1999, 37: 1693-1702.
    [19] Dubois P, Narayan R. Biodegradable compositions by reactive processing of aliphatic polyester/Polysaccharide blends. Macromol Symp. 2003, 198: 233-243.
    [20] Edlund U, Kallrot M, Albertsson A-C. Single-step covalent functionalization of polylactide surfaces. J Am Chem Soc. 2005, 127: 8865-8871.
    [21] Langer R. Biomaterials in drug delivery and tissue engineering: One laboratory?s experience. Accounts Chem Res. 2000, 33(2): 94-101.
    [22] Han DK, Hubbell JA. Synthesis of polymer network scaffolds from l-lactide and poly(ethylene glycol) and their interaction with cells. Macromolecules, 1997, 30: 6077-6083.
    [23] Zheng JS, Nothrup R, Hornsby PJ. Modification of materials formed from poly(l-lactic acid) to enable covalent binding of biopolymers: application to high-density three-dimensional cell culture in foams with attached collagen. In Vitro Cell Dev-An. 1998, 34: 679-684.
    [24] 张晓静. 聚乳酸的改性研究进展. 金山油化纤, 2005, 24(3): 30-36.
    [25] Niu XF, Wang YL, Luo YF, et al. Arg-Gly-Asp (RGD) modified biomimetic polymeric materials. J Mater Sci Technol. 2005, 21(4): 571-576.
    [26] Cook AD, Hrkach JS, Gao NN, et al. Characterization and development of RGD-peptide- modified poly(lactic acid-co-lysine) as an interactive, resorbable biomaterial. J Biomed Mater Res. 1997, 35: 513-523.
    [27] Zhu YB, Gao CY, Liu XY, et al. Surface modification of polycaprolactone membrane via aminolysis and biomacromolecule immobilization for promoting cytocompatibility of human endothelial cells. Biomacromolecules, 2002, 3: 1312-1319.
    [28] Pan J, Wang YL, Qin SH, et al. Grafting reaction of poly(D,L)lactic acid with maleic anhydride and hexanediamine to introduce more reactive groups in its bulk. J Biomed Mater Res B. 2005, 74B: 476-480.
    [29] Holmes TC. Novel peptide-based biomaterial scaffolds for tissue engineering. Trends Biotechnol. 2002, 20(1): 16-21.
    [30] 崔福斋, 郑传林. 仿生材料. 北京: 化学工业出版社. 2004: 3-7.
    [31] Healy KE. Molecular engineering of materials for bioreactivity. Curr Opin Solid State Mater Sci. 1999, 4: 381-387.
    [32] Healy KE, Rezania A, Stile RA. Designing biomaterials to direct biological responses. Ann NY Acad Sci. 1999, 875: 24-35.
    [33] Hersel U, Dahmen C, Kessler H. RGD modified polymers: biomaterials for stimulated cell adhesion and beyond. Biomaterials, 2003, 24: 4385-4415.
    [34] Shin HS, Jo SB, Mikos AG. Biomimetic materials for tissue engineering. Biomaterials, 2003, 24:4353-4364.
    [35] Langer R, Tirrell DA. Designing materials for biology and medicine. Nature, 2004, 428: 487-492.
    [36] Drotleff S, Lungwitz U, Breunig M, et al. Biomimetic polymers in pharmaceutical and biomedical sciences. Eur J Pharm and Biopharm. 2004, 58: 385-407.
    [37] Sanchez C, Arribart H, Guille MMG. Biomimetism and bioinspiration as tools for the design of innovative materials and systems. Nat Mater. 2005, 4: 277-283.
    [38] Cannizzaro SM, Padera RF, Langer R, et al. A novel biotinylated degradable polymer for cell-interactive applications. Biotechnol Bioeng. 1998, 58: 529-535.
    [39] Otsuka H, Nagasaki Y, Okamo T, et al. Functionalization of polylactide(PLA) surface using heterobifunctional PEG/PLA block copolymers for the control of cell behavior at surfaces. Eng Med Biol Soc. 2000, 4: 2936-2939.
    [40] Barrera DA, Zylstra E, Lansbury PT, et al. Synthesis and RGD peptide modification of a new biodegradable copolymer: poly(lactic acid-co-lysine). J Am Chem Soc. 1993,115: 11010-11011.
    [41] Elisseeff J, Anseth K, Langer R, et al. Synthesis and characterization of photo-cross-linked polymers based on poly(l-lactic acid-co-l-aspartic acid). Macromolecules, 1997, 30: 2182-2184.
    [42] Sodergard A, Stolt M. Properties of lactic acid based polymers and their correlation with composition. Prog Polym Sci. 2002, 27: 1123-1163.
    [43] Drumheller PD, Hubbell JA. Polymer networks with grafted cell adhesion peptides for highly biospecific cell adhesive substrates. Anal Biochem. 1994, 222: 380-388.
    [44] Kimura Y, Shirotani K, Yamane H, et al. Ring-opening polymerization of 3(s)-[(benzyloxycarbonyl)methyl]-1,4-dioxane-2,5-dione: a new route to a poly(α-hydroxy acid) with pendant carboxyl groups. Macromolecules, 1988, 21: 3338-3340.
    [45] Arvanitoyannis I, Nakayama A, Kawasaki N, et al. Novel star-shaped polylactide with glycerol using stannous octoate or tetraphenyl tin as catalyst: 1. Synthesis, characterization and study of their biodegradability. Polymer, 1995, 36: 2947-2956.
    [46] Lavik EB, Hrkach JS, Lotan N, et al. A simple synthetic route to the formation of a block copolymer of poly(lactic-co-glycolic acid) and polylysine for the fabrication of functionalized, degradable structures for biomedical applications. J Biomed Mater Res. 2001, 58: 291-294.
    [47] Sodergard A. Modification of polylactide. Pandalai SG, Editor. Recent Res Dev Polym Sci. 1998, 2: 263-275.
    [48] Carlson D, Nie L, Narayan R, et al. Maleation of polylactide(PLA) by reactive extrusion. J Appl Polym Sci. 1999, 72: 477-485.
    [49] Ma ZW, Gao CY, Gong YH, et al. Immobilization of natural macromolecules on poly-l-lacticacid membrane surface in order to improve its cytocompatibility. J Biomed Mater Res Part B: Appl Biomater. 2002, 63: 838-847.
    [50] Ma ZW, Gao CY, Gong YH, et al. Cartilage tissue engineering PLLA scaffold with surface immobilized collagen and basic fibroblast growth factor. Biomaterials, 2005, 26: 1253-1259.
    [51] 曹雪波, 王远亮, 潘君等. 马来酸酐改性聚乳酸的力学性能研究. 高分子材料科学与工程, 2002, 18(1): 115-118.
    [52] 马强, 杨青芳, 姚军燕. 聚乳酸的合成研究. 高分子材料科学与工程, 2004, 20(3): 21-24.
    [53] 牛旭锋, 王远亮, 罗彦凤等. 内消旋丙交酯及其聚合物的研究进展. 高分子材料科学与工程, 2005, 21(4): 33-36.
    [54] Kricheldorf HR. Syntheses and application of polylactides. Chemosphere, 2001, 43: 49-54.
    [55] Garlotta D. A literature review of poly(lactic acid). J Polym Environ. 2001, 9(2): 63-84.
    [56] Stridsberg KM, Ryner M, Albertsson A-C. Controlled ring-opening polymerization: polymers with designed macromolecular architecture. Adv Polym Sci. 2001, 157: 41-65.
    [57] Albertsson A-C, Varma IK. Aliphatic polyesters: synthesis, properties and applications. Adv Polym Sci. 2001, 157: 1-40.
    [58] Albertsson A-C, Varma IK. Recent development in ring opening polymerization of lactones for biomedical applications. Biomacromolecules, 2003, 4: 1466-1486.
    [59] Vert M, Schwach G, Engel R, et al. Something new in the field of PLA/GA bioresorbable polymers. J Control Release. 1998, 53: 85-92.
    [60] Korhonen H, Helminen A, Seppala JV. Synthesis of polylactides in the presence of co-initiators with different numbers of hydroxyl groups. Polymer, 2001, 42: 7541-7549.
    [61] Nijenhuis AJ, Grijpma DW, Pennings AJ. Lewis acid catalyzed polymerization of L-lactide. Kinetics and mechanism of the bulk polymerization. Macromolecules, 1992, 25(24): 6419-6424.
    [62] Schwach G, Coudane J, Engel R, et al. More about the polymerization of lactides in the presence of stannous octoate. J Polym Sci Pol Chem. 1997, 35(16): 3431-3440.
    [63] Zhang X, MacDonald DA, Goosen MFA. Mechanism of lactide polymerization in the presence of stannous octoate: the effect of hydroxy and carboxylic acid substances. J Polym Sci Pol Chem. 1994, 32: 2965-2970.
    [64] Kricheldorf HR, Kreiser-Saunders I, Boettcher C. Polylactones: 31. Sn(II)octoate-initiated polymerization of l-lactide: a mechanistic study. Polymer, 1995, 36(6): 1253-1259.
    [65] Kricheldorf HR, Kreiser-Saunders I, Stricker A. Polylactones 48. SnOct2-initiated polymerizations of lactide: a mechanistic study. Macromolecules, 2000, 33: 702-709.
    [66] Kowalski A, Duda A, Penczek S. Kinetics and mechanism of cyclic esters polymerizationinitiated with tin(II) octoate, 1. polymerization of ε-caprolactone. Macromol Rapid Commun. 1998, 19: 567-572.
    [67] Kowalski A, Duda A, Penczek S. Mechanism of cyclic ester polymerization initiated with Tin(II) octoate. 2. Macromolecules fitted with Tin(II) alkoxide species observed directly in MALDI-TOF spectra. Macromolecules, 2000, 33: 689-695.
    [68] Baimark Y, Molloy R. Synthesis and characterization of poly(l-lactide-co-ε-caprolactone) copolymers: effects of stannous octoate initiator and diethylene glycol coinitiator concentrations. Sci Asia. 2004, 30: 327-334.
    [69]王晨宏, 李弘, 王玉琴. 聚乳酸类生物降解性高分子材料研究进展. 离子交换与吸附, 2001, 17(4): 369-378.
    [70] 胡玉山, 白东仁, 张政朴等. 聚乳酸合成的最新进展. 离子交换与吸附, 2000, 16(3): 280-288.
    [71] 沈之荃, 申有青, 孙俊全等. 稀土化合物催化内酯开环聚合 I. 烷氧基稀土催化 ε-己内酯聚合规律. 科学通报, 1994, 39(11): 1005-1007.
    [72] 申有青, 张富尧, 张一峰等. 稀土化合物催化内酯开环聚合 II. 异丙氧基稀土催化 D,L-丙交酯开环聚合. 高分子学报, 1995, 2: 222-227.
    [73] 马强. 聚乳酸的合成研究[学位论文]. 西安. 西北工业大学. 2003: 61-63.
    [74] 愈耀庭, 张兴栋. 生物医用材料. 天津: 天津大学出版社. 2000: 220-222.
    [75] 姚康德, 尹玉姬. 组织工程相关生物材料. 北京: 化学工业出版社. 2003: 254-295.
    [76] Cifonelli JA. Relation of chemical of heparin to its anticoagulant activity. Adv Exp Med Biol. 1975, 52: 95-103.
    [77] Castillo EJ, Koenig JL, Anderson JM, et al. Protein adsorption on hydrogels. II. Reversible and irreversible interactions between lysozyme and soft contact lens surfaces. Biomaterials, 1985, 6(5): 338-345.
    [78] Hubbell JA. Bioactive biomaterials. Curr Opin Biotech. 1999, 10: 123-129.
    [79] Lee KY, Mooney DJ. Cell-interactive polymers for tissue engineering. Fibers Polym. 2001, 2(2): 51-57.
    [80] Sakiyama-Elbert SE, Hubbell JA. Functional biomaterials: design of novel biomaterials. Ann Rev Mater Res. 2001, 31: 183-201.
    [81] Lebaron RG, Athanasiou KA. Extracellular matrix cell adhesion peptides: functional applications in orthopedic materials. Tissue Eng. 2000, 6(2): 85-103.
    [82] Tirrell M, Kokkoli E, Biesalski M. The role of surface science in bioengineered materials. Surf Sci. 2002, 500: 61-83.
    [83] Hench LL, Polak JM. Third-generation biomedical materials. Science, 2002, 295: 1014-1017.
    [84] Kang I-K, Kwon BK, Lee JH, et al. Immobilization of proteins on poly(methyl methacrylate) films. Biomaterials, 1993, 14(10), 787-792.
    [85] Zhu YB, Gao CY, Liu XY, et al. Immobilization of biomacromolecules onto aminolyzed poly(L-lactic acid) toward acceleration of endothelium regeneration. Tissue Eng. 2004, 10(1-2), 53.
    [86] 王镜岩, 朱圣庚, 徐长法. 生物化学(上) (第三版). 北京: 高等教育出版社. 2002: 152-153.
    [87] Qiu K, Wan CX, Chen X, et al. Acrylic acid-RGD as a biomimetic surface modifier for poly(ethylene terephthalate). Chin J Biomed Eng. 2003, 12(1): 22-31.
    [88] 赵强, 万昌秀, 刘建伟等. 生物活性短肽 RGD 在 PET 表面接枝方法的研究. 生物医学工程学杂志, 2003, 20(3): 384-387.
    [89] Leong KW, Brott BC, Langer R. Bioerodible polyanhydrides as drug-carrier matrices. I: Characterization, biodegradation and release characteristics. J Biomed Mater Res. 1985, 19: 941-955.
    [90] Leong KW, D’Amore P, Marletta M, et al. Bioerodible polyanhydrides as drug-carrier matrices. Ⅱ: Biocompatibility and chemical reactivity. J Biomed Mater Res. 1986, 20: 51-64.
    [91] Domb AJ, Langer R. Polyanhydrides. I. Preparation of high molecular weight polyanhydrides. J Polym Sci Pol Chem. 1987, 25: 3373-3386.
    [92] Laurencin C, Domb A, Morris C, et al. Poly(anhydride) administration in high doses in vivo: studies of biocompatibility and toxicology. J Biomed Mater Res. 1990, 24: 1463-1481.
    [93] Burkoth AK, Anseth KS. A review of photocrosslinked polyanhydrides: in situ forming degradable networks. Biomaterials, 2000, 21(23): 2395-2404.
    [94] 傅杰, 卓仁禧, 范昌烈. 新型生物可降解医用高分子材料—聚酸酐. 功能高分子学报, 1998, 11(2): 302-310.
    [95] Domb AJ, Maniar M. Absorbable biopolymers derived from dimer fatty acids. J Polym Sci Pol Chem. 1993, 31(5): 1275-1285.
    [96] Domb AJ, Nudelman R. Biodegradable polymers derived from natural fatty acids. J Polym Sci Pol Chem. 1995, 33(4): 717-725.
    [97] Carlson D, Dubois P, Nie L, et al. Free radical branching of polylactide by reactive extrusion. Polym Eng Sci. 1998, 38(2): 311-321.
    [98] 郭圣荣. 医药用生物降解性高分子材料. 北京: 化学工业出版社. 2004: 1-8.
    [99] 娆康德, 尹玉姬. 组织工程相关生物材料. 北京: 化学工业出版社. 2003: 71-72.
    [100] 愈耀庭, 张兴栋. 生物医用材料. 天津: 天津大学出版社. 2000: 54-55.
    [101] Suganuma J, Alexander H. Biological response of intramedullary bone to poly-L-lactic acid. J Appl Biomater. 1993, 4: 13-27.
    [102] 廖凯荣, 唐舫成, 罗力力等. 甲壳素和甲壳胺对聚乳酸体外降解的影响. 生物医学工程学杂志, 1999, 16(3): 267-270.
    [103] 牟善松, 屠美, 覃百花等. 聚乳酸复合材料降解过程中降解速率及 pH 值的研究. 中国医学物理学杂志, 2003, 20(4): 299-300.
    [104] Ara M, Watanabe M, Imai Y. Effect of blending calcium compounds on hydrolytic degradation of poly(DL-lactic acid-co-glycolic acid). Biomaterials, 2002, 23: 2479-2483.
    [105] 林建华, Agrawal CM, Zhu Chongfang 等. 不同体积碱性盐对 50:50 聚乳酸-聚乙二醇酸体外降解的影响. 福建医科大学学报, 1998, 32(4): 347-352.
    [106] 沈同, 王镜岩. 生物化学(下) (第二版). 北京: 高等教育出版社. 2000: 253-254.
    [107] Ruoslahti E, Pierschbacher MD. New perspectives in cell adhesion: RGD and integrins. Science, 1987, 238(4826): 491-497.
    [108] Hirano Y, Okuno M, Hayashi T, et al. Cell-attachment activities of surface immobilized oligopeptides RGD, RGDS, RGDV, RGDT and YIGSR toward five cell lines. J Biomater Sci Polym E. 1993, 4(3): 235-243.
    [109] Hutmacher DW. Scaffold design and fabrication technologies for engineering tissues-state of the art and future perspectives. J Biomater Sci Polym E. 2001, 12(1): 107-124.
    [110] 杨子彬. 基础医学卷—生物医学工程学. 黑龙江: 黑龙江科学技术出版社. 2000: 396-397.
    [111] 朱莉芳, 闫玉华. 聚乳酸的合成与降解机理. 生物骨科材料与临床研究, 2006, 3(1): 42-47.
    [112] Kimura Y, Shirotani K, Yamane H, et al. Copolymerization of 3-(S)-[(benzyloxycarbonyl) methyl]-1,4-dioxane-2,5-dione and L-lactide: a facile synthetic method for functionalized bioabsorbable polymer. Polymer, 1993, 34(8): 1741-1748.
    [113] Barrera DA, Zylstra E, Lansbury PT, et al. Copolymerization and degradation of poly(lactic acid-co-lysine). Macromolecules, 1995, 28(2): 425-432.
    [114] Wachem PBV, Beugeling T, Feijen J, et al. Interaction of cultured human endothelial cells with polymeric surfaces of different wettabilities. Biomaterials, 1985, 6(6): 403-408.
    [115] Wachem PBV, Hogt AH, Beugeling T, et al. Adhesion of cultured human endothelial cells onto methacrylate polymers with varying surface wettability and charge. Biomaterials, 1987, 8(5): 323-328.
    [116] Lee JH, Khang G, Lee JW, et al. Interaction of different types of cells on polymer surfaces with wettability gradient. J Coll Interf Sci. 1998, 205(2): 323-330.
    [117] Webb K, Hlady V, Tresco PA. Relative importance of surface wettability and charged functional groups on NIH 3T3 fibroblast attachment, spreading and cytoskeletal organization.J Biomed Mater Res. 1998, 41(3): 422-430.
    [118] Peluso G, Petillo O, Anderson JM, et al. The differential effects of poly(2-hydroxyethyl methacrylate) and poly(2-hydroxyethyl methacrylate)/poly(caprolactone) polymers on cell proliferation and collagen synthesis by human lung fibroblasts. J Biomed Mater Res. 1997, 34(3): 327-336.
    [119] Jiang HL, Zhu KJ. Synthesis, characterization and in vitro degradation of a new family of alternative poly(ester-anhydrides) based on aliphatic and aromatic diacids. Biomaterials, 2001, 22(3): 211-218.
    [120] Steffens GCM, Nothdurft L, Buse G, et al. High density binding of proteins and peptides to poly(D, L-lactide) grafted with polyacrylic acid. Biomaterials, 2002, 23(16): 3523–3531.
    [121] 李玉宝. 生物医学材料. 北京: 化学工业出版社. 2003: 265-269.
    [122] 愈耀庭, 张兴栋. 生物医用材料. 天津: 天津大学出版社. 2000: 12-24.
    [123] 杨晓芳, 奚廷裴. 生物材料生物相容性评价研究进展. 生物医学工程学杂志, 2001, 18(1): 123-128.
    [124] 王红兵, 卢晓, 王远亮等. 拉伸作用对成骨细胞粘附、铺展、粘弹性的影响. 生物物理学报, 2001, 17(3): 568-573.
    [125] Mosmann T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J Immunol Meth. 1983, 65(1-2): 55-63.
    [126] 杨志明. 组织工程. 北京: 化学工业出版社. 2002: 160-164.
    [127] Winn SR, Hollinger JO. An osteogenic cell culture system to evaluate the cytocompatibility of osteoset, a calcium sulfate bone void filler. Biomaterials, 2000, 21: 2413-2425.
    [128] 秦廷武, 杨志明, 蔡绍皙等. 组织工程中细胞与材料的粘附作用. 中国修复重建外科杂志, 1999, 13(1): 31-37.
    [129] Johnson HJ, Northup SJ, Seagraves PA, et al. Biocompatibility test procedures for materials evaluation in vitro: II. Objective methods of toxicity assessment. J Biomed Mater Res. 1985, 19(5): 489-508.
    [130] Johnson HJ, Northup SJ, Seagraves PA, et al. Biocompatibility test procedures for materials evaluation in vitro: I. Comparative test system sensitivity. J Biomed Mater Res. 1983, 17(4): 571-586.
    [131] Chou L. Molecular biocompatibility. J Dent Res. 1995, 74: 190-196.
    [132] 范成相, 陈亮. 分子生物学在生物材料评价研究中的应用现状. 国外医学生物医学工程分册, 2004, 27(6): 375-379.
    [133] 戴建国. 生物材料生物相容性的分子生物学研究进展. 国外医学生物医学工程分册, 2004, 27(6): 360-364.
    [134] Hallab NJ, Bundy KJ, O’Connor K, et al. Evaluation of metallic and polymeric biomaterial surface energy and surface roughness characteristics for directed cell adhesion. Tissue Eng. 2001, 7(1): 55-71.
    [135] Deligianni DD, Katsala ND, Koutsoukos PG, et al. Effect of surface roughness of hydroxyapatite on human bone marrow cell adhesion, proliferation, differentiation and detachment strength. Biomaterials, 2001, 22(1): 87-96.
    [136] Curtis A, Wilkinson C. Topographical control of cells. Biomaterials, 1997, 18(24): 1573-1583.
    [137] Flemming RG, Murphy CJ, Abrams GA, et al. Effects of synthetic micro- and nano-structured surfaces on cell behavior. Biomaterials, 1999, 20(6): 573-588.
    [138] 文学军, 王小祥, 薛淼. 金属生物材料的微粗糙表面及其生物学效应(I)-金属生物材料的微粗糙表面. 生物医学工程学杂志, 1997, 14(1): 77-80.
    [139] Schakenraad JM, Busscher HJ, Wildevuur CR, et al. The influence of substratum surface free energy on growth and spreading of human fibroblasts in the presence and absence of serum proteins. J Biomed Mater Res. 1986, 20(6): 773-784.
    [140] Baier RE, Meyer AE, Natiella JR, et al. Surface properties determine bioadhesive outcomes: methods and results. J Biomed Mater Res. 1984, 18(4): 327-355.
    [141] Wang S, Cukierman E, Swaim WD, et al. Extracellular matrix protein-induced changes in human salivary epithelial cell organization and proliferation on a model biological substratum. Biomaterials, 1999, 20(11): 1043-1049.
    [142] Lee JH, Jung HW, Kang IK, et al. Cell behaviour on polymer surfaces with different functional groups. Biomaterials, 1994, 15(9): 705-711.
    [143] Horbett TA, Schway MB, Ratner BD. Hydrophilic-hydrophobic copolymers as cell substrates: effect on 3T3 cell growth rates. J Coll Interf Sci. 1985, 104(1): 28-39.
    [144] Tziampazis E, Kohn J, Moghe PV. PEG-variant biomaterials as selectively adhesive protein templates: model surfaces for controlled cell adhesion and migration. Biomaterials, 2000, 21(5): 511-520.
    [145] Horwitz AF. Integrins and health. Sci Am. 1997, 277(5): 68-75.
    [146] Rouhi AM. Contemporary biomaterials. Chem Eng News. 1999, 73(3): 51-59.
    [147] Bearinger JP, Castner DG, Healy KE. Biomolecular modification of p(AAm-co-EG/AA) IPNs supports osteoblast adhesion and phenotypic expression. J Biomater Sci Polym E. 1998, 9(7): 629-652.
    [148] DeGiglio E, Sabbatini L, Zambonin PG. Development and analytical characterization of cysteine-grafted polypyrrole films electrosynthesized on Pt- and Ti-substrates as precursors of bioactive interfaces. J Biomater Sci Polym E. 1999, 10(8): 845-858.
    [149] Juliano RL, Haskill S. Signal transduction from the extracellular matrix. J Cell Biol. 1993, 120: 577-585.
    [150] Menko AS, Boettiger D. Occupation of the extracellular matrix receptor, integrin, is a control point for myogenic differentiation. Cell, 1987, 51(1): 51-57.
    [151] 牛旭锋, 王远亮, 罗彦凤等. 成骨细胞在生物活性材料中粘附性能研究进展. 生物医学工程学杂志, 2005, 22(4): 848-852.
    [152] Massia SP, Hubbell JA. An RGD spacing of 440nm is sufficient for integrin αvβ3-mediated fibroblast spreading and 140nm for focal contact and stress fiber formation. J Cell Biol. 1991, 114(5): 1089-1100.
    [153] Drumheller PD, Elbert DL, Hubbell JA. Multifunctional poly(ethylene glycol) semi- interpenetrating polymer networks as highly selective adhesive substrates for bioadhesive peptide grafting. Biotechnol Bioeng. 1994, 43: 772-780.
    [154] Neff JA, Tresco PA, Caldwell KD. Surface modification for controlled studies of cell-ligand interactions. Biomaterials, 1999, 20: 2377-2393.
    [155] Mann BK, West JL. Cell adhesion peptides alter smooth muscle cell adhesion, proliferation, migration, and matrix protein synthesis on modified surfaces and in polymer scaffolds. J Biomed Mater Res. 2002, 60: 86-93.
    [1] Hench LL, Polak JM. Third-generation biomedical materials. Science, 2002, 295: 1014-1017.
    [2] Griffith LG, Naughton G. Tissue engineering-current challenges and expanding opportunities. Science, 2002, 295: 1009-1014.
    [3] Sakiyama-Elbert SE, Hubbell JA. Functional biomaterials: design of novel biomaterials. Ann Rev Mater Res. 2001, 31: 183-201.
    [4] Langer R, Tirrell DA. Designing materials for biology and medicine. Nature, 2004, 428: 487-491.
    [5] Healy KE, Rezania A, Stile RA. Designing biomaterials to direct biological responses. Ann NY Acad Sci. 1999, 875: 24-35.
    [6] Healy KE. Molecular engineering of materials for bioreactivity. Curr Opin Solid State Mater Sci. 1999, 4: 381-387.
    [7] Shin H, Jo S, Mikos AG. Biomimetic materials for tissue engineering. Biomaterials, 2003, 24: 4353-4364.
    [8] Whitaker MJ, Quirk RA, Howdle SM, et al. Growth factor release from tissue engineering scaffolds. J Pharm Pharmacol. 2001, 53: 1427-1437.
    [9] Richardson TP, Murphy WL, Mooney DJ. Polymeric delivery of proteins and plasmid DNA for tissue engineering and gene therapy. Crit Rev Eukar Gene. 2001, 11: 47-58.
    [10] Babensee JE, McIntire LV, Mikos AG. Growth factor delivery for tissue engineering. PharmRes. 2000, 17: 497-504.
    [11] Shin H, Jo S and Mikos AG. Modulation of marrow stromal osteoblast adhesion on biomimetic oligo(poly(ethylene glycol) fumarate) hydrogels modified with Arg-Gly-Asp peptides and a poly(ethylene glycol) spacer. J Biomed Mater Res. 2002, 61: 169-179.
    [12] Suzuki Y, Tanihara M, Suzuki K, et al. Alginate hydrogel linked with synthetic oligopeptide derived from BMP-2 allows ectopic osteoinduction in vivo. J Biomed Mater Res. 2000, 50: 405-409.
    [13] Zhao Q, Wan CX, Liu JW, et al. Research in synthesis of bioactive peptide RGD and the method for its grafting on PET surface. J Biomed Eng. 2003, 20(3): 384-387. (In Chinese)
    [14] Hubbell JA. Biomaterials in tissue engineering. Bio/Technology, 1995, 13: 565-576.
    [15] Langer R. Biomaterials in drug delivery and tissue engineering: one laboratory’s experience. Acc Chem Res. 2000, 33: 94-101.
    [16] Lebaron RG, Athanasiou KA. Extracellular matrix cell adhesion peptides: functional applications in orthopedic materials. Tissue Eng. 2000, 6: 85-103.
    [17] Hubbell JA. Bioactive biomaterials. Curr Opin Biotechnol. 1999, 10: 123-129.
    [18] Thull R. Surface functionalization of materials to initiate auto-biocompatibilization in vivo. Materialwiss Werkst. 2001, 32: 949-952.
    [19] Hersel U, Dahmen C, Kessler H. RGD modified polymers: biomaterials for stimulated cell adhesion and beyond. Biomaterials, 2003, 24: 4385-4415.
    [20] Meinel L, Hofmann S, Karageorgiou V, et al. The inflammatory responses to silk films in vitro and in vivo. Biomaterials, 2005, 26(2): 147-155.
    [21] Pierschbacher MD, Ruoslahti E. Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature, 1984, 309(3): 30-33.
    [22] Schaffner P, Dard MM. Structure and function of RGD peptides involved in bone biology. Cell Mol Life Sci. 2003, 60(1): 119-132.
    [23] Ruoslahti E. Integrins. J Clin Invest. 1991, 87: 1-5.
    [24] Anselme K. Osteoblast adhesion on biomaterials. Biomaterials, 2000, 21, 667-681.
    [25] Renner C, Sacca B, Moroder L. Synthetic heterotrimeric collagen peptides as mimics of cell adhesion sites of the basement membrane. Biopolymers, 2004, 76(1): 34-47.
    [26] Wu Z, Shi YK, Chen HQ. RGD peptides and endothelialization of biomaterials. J Biomed Eng. 2001, 18(2): 169-172. (In Chinese)
    [27] Cutler SM, Garcia AJ. Engineering cell adhesive surfaces that direct integrin α5β1 binding using a recombinant fragment of fibronectin. Biomaterials, 2003, 24(10): 1759-1770.
    [28] Ruoslahti E, Pierschbacher MD. New perspectives in cell adhesion: RGD and integrins. Science,1987, 238(4826): 491-497.
    [29] Stile RA, Healy KE. Thermo-responsive peptide-modified hydrogels for tissue regeneration. Biomacromolecules, 2001, 2, 185-194.
    [30] Barber TA, Golledge SL, Castner DG, et al. Peptide-modified p(AAm-co-EG/AAc) IPNs grafted to bulk titanium modulate osteoblast behavior in vitro. J Biomed Mater Res. 2003, 64A(1): 38-47.
    [31] Lee JW, Qi WN, Scully SP. The involvement of β1 integrin in the modulation by collagen of chondrocyte-response to transforming growth factor-β1. J Orthop Res. 2002, 20(1): 66-75.
    [32] Asakura T, Tanaka C, Yang M, et al. Production and characterization of a silk-like hybrid protein, based on the polyalanine region of samia cynthia ricini silk fibroin and a cell adhesive region derived from fibronectin. Biomaterials, 2004, 25(4): 617-624.
    [33] Wong JY, Weng Z, Moll S, et al. Identification and validation of a novel cell-recognition site (KNEED) on the 8th type III domain of fibronectin. Biomaterials, 2002, 23(18): 3865-3870.
    [34] Kao WJ, Lee D. In vivo modulation of host response and macrophage behavior by polymer networks grafted with fibronectin-derived biomimetic oligopeptides: the role of RGD and PHSRN domains. Biomaterials, 2001, 22(21): 2901-2909.
    [35] Kao WJ, Liu Y. Utilizing biomimetic oligopeptides to probe fibronectin-integrin binding and signaling in regulating macrophage function in vitro and in vivo. Front Biosci. 2001, 6: D992-999.
    [36] Kao WJ, Lee D, Schense JC, et al. Fibronectin modulates macrophage adhesion and FBGC formation: the role of RGD, PHSRN, and PRRARV domains. J Biomed Mater Res. 2001, 55(1): 79-88.
    [37] Hirano Y, Okuno M, Hayashi T, et al. Cell-attachment activities of surface immobilized oligopeptides RGD, RGDS, RGDV, RGDT and YIGSR toward five cell lines. J Biomater Sci- Polym E. 1993, 4(3): 235-243.
    [38] Cook AD, Hrkach JS, Gao NN, et al. Characterization and development of RGD-peptide- modified poly(lactic acid-co-lysine) as an interactive, resorbable biomaterial. J Biomed Mater Res. 1997, 35:513- 523.
    [39] Peppas NA, Langer R. New challenges in biomaterials. Science, 1994, 263, 1715-1720.
    [40] Sagnella SM, Kligman F, Anderson EH, et al. Human microvascular endothelial cell growth and migration on biomimetic surfactant polymers. Biomaterials, 2004, 25(7-8): 1249-1259.
    [41] Katz BZ, Zamir E, Bershadsky A, et al. Physical state of the extracellular matrix regulates the structure and molecular composition of cell-matrix adhesions. Mol Biol Cell. 2000, 11(3): 1047-1060.
    [42] Pelham RJ, Wang YL. Cell locomotion and focal adhesions are regulated by the mechanical properties of the substrate. Biol Bull. 1998, 194(3): 348-350.
    [43] Choquet D, Felsenfeld DP, Sheetz MP. Extracellular matrix rigidity causes strengthening of integrin-cytoskeleton linkages. Cell, 1997, 88(1): 39-48.
    [44] VandeVondele S, Voros J, Hubbell JA. RGD-grafted poly-L-lysine-graft-(polyethylene glycol) copolymers block non-specific protein adsorption while promoting cell adhesion. Biotechnol. Bioeng. 2003, 82(7): 784-790.
    [45] Harris LG, Tosatti S, Wieland M, et al. Staphylococcus aureus adhesion to titanium oxide surfaces coated with non-functionalized and peptide-functionalized poly(L-lysine)-grafted- poly(ethylene glycol) copolymers. Biomaterials, 2004, 25(18): 4135-4148.
    [46] Csucs G, Michel R, Lussi JW, et al. Microcontact printing of novel co-polymers in combination with proteins for cell-biological applications. Biomaterials, 2003, 24(10): 1713-1720.
    [47] Quirk RA, Chan WC, Davies MC, et al. Poly(L-lysine)-GRGDS as a biomimetic surface modifier for poly(lactic acid). Biomaterials, 2001, 22: 865-872.
    [48] Qiu K, Wan CX, Chen X, et al. Acrylic acid-RGD as a biomimetic surface modifier for poly(ethylene terephthalate). Chin J Biomed Eng. 2003, 12(1): 22-31. (In Chinese)
    [49] Bohner M, Ring TA, Papoport N, et al. Fibrinogen adsorption by PS latex particles coated with various amounts of a PEO/PPO/PEO triblock copolymer. J Biomater Sci-Polym E. 2002, 13(6): 733-746.
    [50] Neff JA, Tresco PA, Caldwell KD. Surface modification for controlled studies of cell}ligand interactions. Biomaterials, 1999, 20:2377-2393.
    [51] Ji J, Zhu HG, Shen JC. Surface tailoring of poly(DL-lactic acid) by ligand-tethered amphiphilic polymer for promoting chondrocyte attachment and growth.. Biomaterials, 2004, 25(10): 1859-1867.
    [52] Yang XB, Roach HI, Clarke NMP, et al. Human osteoprogenitor growth and differentiation on synthetic biodegradable structures after surface modification. Bone, 2001, 29(6): 523-531.
    [53] Eid K, Chen E, Griffith L, et al. Effect of RGD coating on osteocompatibility of PLGA-polymer disks in a rat tibial wound. J Biomed Mater Res. 2001, 57(2): 224-231.
    [54] Sagnella S, Kligman F, Marchant RE, et al. Biomimetic surfactant polymers designed for shear-stable endothelialization on biomaterials. J Biomed Mater Res. 2003, 67A(3): 689-701.
    [55] Murugesan G, Ruegsegger MA, Kligman F, et al. Integrin-dependent interaction of human vascular endothelial cells on biomimetic peptide surfactant polymers. Cell Commun Adhes. 2002, 9(2): 59-73.
    [56] Banerjee P, Irvine DJ, Mayes AM, et al. Polymer latexes for cell-resistant and cell-interactivesurfaces. J Biomed Mater Res. 2000, 50(3): 331-339.
    [57] Wang DA, Feng LX, Ji J, et al. Novel human endothelial cell-engineered polyurethane biomaterials for cardiovascular biomedical applications. J Biomed Mater Res. 2003, 65A(4): 498-510.
    [58] Wang DA, Ji J, Sun YH, et al. In situ immobilization of proteins and RGD peptide on polyurethane surfaces via poly(ethylene oxide) coupling polymers for human endothelial cell growth. Biomacromolecules, 2002, 3(6): 1286-1295.
    [59] Breuers W, Klee D, Hocker H, et al. Immobilization of a fibronectin fragment at the surface of a polyurethane film. J Mater Sci-Mater M. 1991, 2: 106-109.
    [60] Mizutani M, Arnold SC, Matsuda T. Liquid, phenylazide-end-capped copolymers of ε-caprolactone and trimethylene carbonate: preparation, photocuring characteristics, and surface layering. Biomacromolecules, 2002, 3(4): 668-675.
    [61] Carlisle ES, Mariappan MR, Nelson KD, et al. Enhancing hepatocyte adhesion by pulsed plasma deposition and polyethylene glycol coupling. Tissue Eng. 2000, 6(1): 45-52.
    [62] Marchand-Brynaert J. Surface modifications and reactivity assays of polymer films and membranes by selective wet chemistry. Recent Res Polym Sci. 1998, 2: 335-362.
    [63] Marchand-Brynaert J, Detrait E, Noiset O, et al. Biological evaluation of RGD peptidomimetics, designed for the covalent derivatization of cell culture substrata, as potential promotors of cellular adhesion. Biomaterials, 1999, 20(19): 1773-1782.
    [64] Behravesh E, Sikavitsas VI, Mikos AG. Quantification of ligand surface concentration of bulk-modified biomimetic hydrogels. Biomaterials, 2003, 24(24): 4365-4374.
    [65] Behravesh E, Zygourakis K, Mikos AG. Ahdesion and migration of marrow-derived osteoblasts on injectable in situ crosslinkable poly(propylene fumarate-co-ethylene glycol)-based hydrogels with a covalently linked RGDS peptide. J Biomed Mater Res. 2003, 65A(2): 260-270.
    [66] Barrera DA, Zylstra E, Lansbury PT, et al. Synthesis and RGD peptide modification of a new biodegrabable copolymer: poly(lactic acid-co-lysine). J Am Chem Soc. 1993, 115(23): 11010-11011.
    [67] Rezania A, Healy KE. Biomimetic peptide surfaces that regulate adhesion, spreading, cytoskeletal organization, and mineralization of the matrix deposited by osteoblast-like cells. Biotechnol Prog. 1999, 15:19-32.
    [68] Rezania A, Thomas CH, Branger AB, et al. The detachment strength and morphology of bone cells contacting materials modified with a peptide sequence found within bone sialoprotein. J Biomed Mater Res. 1997, 37(1): 9-19.
    [69] Kouvroukoglou S, Dee KC, Bizios R, et al. Endothelial cell migration on surfaces modifiedwith immobilized adhesive peptides. Biomaterials, 2000, 21(17): 1725-1733.
    [70] Fittkau MH, Zilla P, Bezuidenhout D, et al. The selective modulation of endothelial cell mobility on RGD peptide containing surfaces by YIGSR peptides. Biomaterials, 2005, 26(2): 167-174.
    [71] Hern DL, Hubbell JA. Incorporation of adhesion peptides into nonadhesive hydrogels useful for tissue resurfacing. J Biomed Mater Res. 1998, 39(2): 266-276.
    [72] Massia SP, Hubbell JA. An RGD spacing of 440nm is sufficient for integrin αvβ3-mediated fibroblast spreading and 140nm for focal contact and stress fiber formation. J Cell Biol. 1991, 114(5): 1089-1100.
    [73] Elbert DL, Hubbell JA. Conjugate addition reactions combined with free-radical cross-linking for the design of materials for tissue engineering. Biomacromolecules, 2001, 2: 430-441.
    [74] Drumheller PD, Elbert DL, Hubbell JA. Multifunctional poly(ethylene glycol) semi- interpenetrating polymer networks as highly selective adhesive substrates for bioadhesive peptide grafting. Biotechnol Bioeng. 1994, 43: 772-780.
    [75] Schneider GB, English A, Abraham M, et al. The effect of hydrogel charge density on cell attachment. Biomaterials, 2004, 25(15): 3023-3028.
    [76] Massia SP, Hubbell JA. Human endothelial cell interactions with surface-coupled adhesion peptides on nonadhesive glass substrate and two polymeric biomaterials. J Biomed Mater Res. 1991, 25(2): 223-242.
    [77] Genes NG, Rowley JA, Mooney DJ, et al. Effect of substrate mechanics on chondrocyte adhesion to modified alginate surfaces. Arch Biochem Biophys. 2004, 422(2): 161-167.
    [78] Burdick JA, Anseth KS. Photoencapsulation of osteoblasts in injectable RGD-modified PEG hydrogels for bone tissue engineering. Biomaterials, 2002, 23(22): 4315-4323.
    [79] Maheshwari G, Brown G, Lauffenburger DA, et al. Cell adhesion and motility depend on nanoscale RGD clustering. J Cell Sci. 2000, 113, 1677-1686.
    [80] Mann BK, West JL. Cell adhesion peptides alter smooth muscle cell adhesion, proliferation, migration, and matrix protein synthesis on modified surfaces and in polymer scaffolds. J Biomed Mater Res. 2002, 60(1): 86-93.
    [81] Kantlehner M, Schaffner P, Finsinger D, et al. Surface coating with cyclic RGD peptides stimulates osteoblast adhesion and proliferation as well as bone formation. ChemBioChem, 2000, 1(2): 107-114.
    [82] Jasseron S, Contino-Pepin C, Maurizis JC, et al. Synthesis and preliminary biological assessments of RGD bearing biocompatible telomers. Bioorg. Med Chem Lett. 2002, 12(7): 1067-1070.
    [83] Alsberg E, Anderson KW, Albeiruti A, et al. Cell-interactive alginate hydrogels for bone tissue engineering. J Dent Res. 2001, 80(11): 2025-2029.
    [84] Shu XZ, Ghosh K, Liu Y, et al. Attachment and spreading of fibroblasts on an RGD peptide- modified injectable hyaluronan hydorgel. J Biomed Mater Res. 2004, 68A(2): 365-375.
    [85] Woerly S, Pinet E, de Robertis L, et al. Spinal cord repair with PHPMA hydrogel containing RGD peptides (NeuroGelTM). Biomaterials, 2001, 22(10): 1095-1111.
    [86] Simmons CA, Alsberg E, Hsiong S, et al. Dual growth factor delivery and controlled scaffold degradation enhance in vivo bone formation by transplanted bone marrow stromal cells. Bone, 2004, 35(2): 562-569.
    [87] Okroj M, Dobrzanska-Paprocka Z, Rolka K, et al. In vitro and in vivo analyses of the biological activity of RGD peptides towards Ab Bomirski melanoma. Cell Mol Biol Lett. 2003, 8(4): 873-884.
    [88] Calvet CM, Meuser M, Almeida D, et al. Trypanosoma cruzi-cardiomyocyte interaction: role of fibronectin in the recognition process and extracellular matrix expression in vitro and in vivo. Exp Parasitol. 2004, 107(1-2): 20-30.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700