用户名: 密码: 验证码:
低温热源喷射式发电制冷复合循环理论与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
太阳能、地热能以及工业余热等低温热源(<200℃)具有储量大、种类多、品质低等特点,很难被传统的能量转化设备集中高效利用。在能量转化过程中,大量低品位热能被直接排放,造成了能源的巨大浪费。近年来,伴随着社会经济发展与能源供给矛盾的日益显现,低温热源引起了国内外学者的广泛关注。
     低品位热能利用是节能领域研究中的热点问题。近期,国内外诸多学者针对低温热源(<200℃),相继提出一些发电制冷复合循环。这些循环可以将低品位热能转化为电量和冷量输出,为低温热源的有效利用开辟了新的途径。根据工作原理不同,目前这些发电制冷复合循环可以分为如下两类:(1)吸收式发电制冷复合循环;(2)喷射式发电制冷复合循环。这两类循环在发电制冷过程中各具特点。本文以低温热源热利用为背景,针对喷射式发电制冷复合循环进行了深入的理论和实验研究。主要的研究内容包括:
     (1)以低品位热能利用为背景,提出一种低温热源喷射式发电制冷复合循环。该循环采用安全环保的有机物工质,将朗肯循环与喷射式制冷循环相结合,可以将低品位热能转化为电量和冷量输出。从热力学第一定律和热力学第二定律角度,对循环的热力过程进行理论分析,得到该复合循环在能量转化过程中的工作特点。在此基础上,对低温热源发电制冷复合循环效率评价体系进行讨论。
     (2)以涡旋式膨胀机和喷射器为核心部件,建立喷射式发电制冷复合循环热力学模型。着重对涡旋式膨胀机和“定压混合”喷射器的建模过程进行了分析讨论。利用Matlab和Refprop软件编写系统仿真程序,并建立系统仿真方法。
     (3)运用仿真程序对喷射式发电制冷复合循环的工作性能进行分析计算。分析了循环各主要设计参数,关键部件设计参数,热源条件对循环工作性能的影响。结果表明,喷射式发电制冷复合循环可以有效的将低品位热能转化为电量和冷量,且与吸收式发电制冷复合循环相比具有制冷量较大的特点。
     (4)运用仿真程序对喷射式发电制冷复合循环工质选择问题进行讨论分析。以太阳能热利用为背景,从循环效率、工作压力范围、对关键部件影响、环保特性等方面对20种工质的工作性能进行了分析比较。指出了R123,R600a,R245fa等一些临界温度相对较高的有机物工质比较适于在该复合循环中使用。
     (5)首次建立kW级低温热源喷射式发电制冷实验装置,初步验证了该复合循环运行原理的可行性。应用一维“定压混合”喷射器设计理论设计加工喷射器。以R600a为工质,对实验装置单独发电、单独制冷、同时发电制冷三种模式下的工作性能进行了实验研究,为低品位热能利用积累了实验数据。在实验过程中,分别考察了热源温度、蒸汽发生器工作压力、变频器频率以及负载对系统工作性能的影响。
     (6)在总结全文的基础上,对低温热源喷射式发电制冷复合循环理论与实验研究中存在的问题进行了总结,并对今后相关研究工作的进一步开展提出建议,为今后该技术的推广和应用奠定了相应的基础。
Low temperature heat sources (<200℃), such as solar energy, geothermal energy and low temperature waste heat, exist in the world extensively with different forms. Most of them can’t be utilized by the conventional power machines efficiently, so larger capacity of low grade waste heat is rejected to the environment directly, which results in large-scale energy waste. Recently, low temperature heat sources have caught much attention of the world due to the contradiction between the blooming economic development and the energy requirement.
     Low-grade heat utilization technology has become the hot question in the energy saving research area. In recent years, many combined power and refrigeration cycles have been proposed to give effective solutions for low temperature heat sources. The proposed combined cycles can supply both power and refrigeration outputs simultaneously. According to the different principles of work, the proposed combined cycles can be classified into two categories including: (1) the combined power and absorption refrigeration cycle (2) the combined power and ejector refrigeration cycle. Each of the combined cycle has its own characteristic. Based on the low-grade heat utilization background, both theoretical and experimental research works are under investigated on the combined power and ejector refrigeration cycle. Main research contents are included as follow:
     (1) A combined power and refrigeration cycle is proposed for low temperature heat sources. The proposed cycle combines the Rankine cycle and the ejector refrigeration cycle using safe and friendly working fluids. The proposed cycle can convert the low-grade heat into power output and refrigeration output. A theoretical investigation was conducted on the combined power and ejector refrigeration based on the first and second law of thermodynamics. The characteristics of the combined cycle in power and refrigeration generating process were analyzed. Besides, the efficiency definition is discussed to evaluate the cycle performance properly.
     (2) The thermal model of the combined power and ejector refrigeration cycle is established based on scroll expander and ejector. The mathematic models of scroll expander and“constant-pressure mixing”ejector are discussed especially. Besides, the simulation program are developed using Matlab and Refprop softwares.
     (3) Based on the simulation model, parametric study is conducted to simulate the cycle performance. Some contents are analyzed including the effects of key cycle design parameters, key componets design parameters, heat sources parameters on cycle performance.
     (4)Based on the simulation model, working fluids selection of the combined power and ejector refrigeration cycle is discussed. Based on the solar thermal utilization background, 20 kinds of working fluid are analyzed and compared from several aspects including cycle efficiency, working pressre range, effects on key components, safety and environmental problem. Results show that working fluids with comparative higher critical temperature, such as R123, R600a, R245fa, are suitable for the proposed cycle.
     (5) A kW class experimental prototype is developed to validate the feasibility of the combined power and ejector refrigeration cycle. Experimental research is investigated using R600a as working fluids. The system performances are tesed under three different modes: power output mode, refrigeration output mode, power and refrigeration mode. The effects of heat source temperature, generating pressure, frequency of the convertor as well as loads on cycle performance are analyzed.
     (6) All research work was summarized and the future problems in the research process are discussed and the prospects of the combined power and refrigeration cycle for low temperature heat sources are presented.
引文
[1].中华人民共和国国家发展和改革委员会.可再生能源中长期发展规划[EB/OL]. 2007-09-28. http://www.ndrc.gov.cn/fzgh/ghwb/115zxgh/P020070930491947302047.pdf.
    [2].中华人民共和国国家统计局.中华人民共和国2009年国民经济和社会发展统计公报[EB/OL]. 2007-02-25. http://www.stats.gov.cn/tjgb/ndtjgb/qgndtjgb/t20100225_402622945.htm.
    [3].江泽民.对中国能源问题的思考[J].上海交通大学学报, 2008, 42(3): 345-359.
    [4].刘猛,张娜,蔡睿贤.氨吸收式串联型动力/制冷复合循环[J].工程热物理学报, 2006, 27(1): 9-12.
    [5]. Quoilin S, Lemort V, Lebrun J. Experimental study and modeling of an Organic Rankine Cycle using scroll expander[J]. Applied Energy, 2010, 87(4): 1260-1268.
    [6]. Goswami D Y. Solar thermal power status of technologies and opportunities for research[A]. In Proceedings of the 2nd ISHMT-ASME Heat and Mass Transfer Conference[C], 1995: 57-60.
    [7].郑彬,翁一武,顾伟, etc.低温热源喷射式发电制冷复合系统特性分析[J].中国电机工程学报, 2008, (29): 16-21.
    [8].吴仲华.能的梯级利用与燃气轮机总能系统[M].北京:机械工业出版社, 1988.
    [9]. Wu D W, Wang R Z. Combined cooling, heating and power: A review[J]. Progress in Energy and Combustion Science, 32(5-6): 459-495.
    [10]. Deng J, Wang R Z, Han G Y. A review of thermally activated cooling technologies for combined cooling, heating and power systems[J]. Progress in Energy and Combustion Science, 2011, 37(2): 172-203.
    [11]. ?engel Y A, Boles. M A. Thermodynamics : an engineering approach [M]. Boston: McGraw-Hill Higher Education, 2006.
    [12].沈维道,蒋智敏,童钧耕.工程热力学[M]. 3 ed.北京:高等教育出版社, 2001.
    [13].翁史烈.热能与动力工程基础[M].北京:高等教育出版社, 2004.
    [14].顾伟,翁一武,曹广益, etc.低温热能发电的研究现状和发展趋势[J].热能动力工程, 2007, 22(2): 115-119.
    [15]. Hung T C, Shai T Y, Wang S K. A review of organic rankine cycles (ORCs) for the recovery of low-grade waste heat[J]. Energy, 1997, 22(7): 661-667.
    [16]. Lee K M, Kuo S F, Chien M L, etc. Parameters analysis on organic rankine cycle energy recovery system[J]. Energy Conversion and Management, 1988, 28(2): 129-136.
    [17]. Badr O, Probert S D. Thermal-design data for evaporators of ORC engines utilising low-temperature heat sources[J]. Applied Energy, 1990, 37(2): 111-138.
    [18]. Wei D, Lu X, Lu Z, etc. Performance analysis and optimization of organic Rankine cycle (ORC) for waste heat recovery[J]. Energy Conversion and Management, 2007, 48(4): 1113-1119.
    [19]. Dai Y, Wang J, Gao L. Parametric optimization and comparative study of organic Rankine cycle (ORC) for low grade waste heat recovery[J]. Energy Conversion and Management, 2009, 50(3): 576-582.
    [20]. Schuster A, Karellas S, Kakaras E, etc. Energetic and economic investigation of Organic Rankine Cycle applications[J]. Applied Thermal Engineering, 2009, 29(8-9): 1809-1817.
    [21]. Nafey A S, Sharaf M A. Combined solar organic Rankine cycle with reverse osmosis desalination process: Energy, exergy, and cost evaluations[J]. Renewable Energy, 2010, 35(11): 2571-2580.
    [22]. Astolfi M, Xodo L, Romano M C, etc. Technical and economical analysis of a solar-geothermal hybrid plant based on an Organic Rankine Cycle[J]. Geothermics, 2011, 40(1): 58-68.
    [23]. Sánchez D, Mu?oz de Escalona J M, Monje B, etc. Preliminary analysis of compound systems based on high temperature fuel cell, gas turbine and Organic Rankine Cycle[J]. Journal of Power Sources, 2011, 196(9): 4355-4363.
    [24]. Marciniak T J, Krazinski J L, Bratis J C, etc. Comparison of Rankine-cycle power systems:Effects of seven working fuids.[R]. IL: ANL/CNSV-TM-87 Argonne National Laboratory, 1981.
    [25]. Liu B T, Chien K H, Wang C C. Effect of working fluids on organic Rankine cycle for waste heat recovery[J]. Energy, 2004, 29(8): 1207-1217.
    [26]. Yamamoto T, Furuhata T, Arai N, etc. Design and testing of the Organic Rankine Cycle[J]. Energy, 2001, 26(3): 239-251.
    [27]. Gu W, Weng Y W, Wang Y Z, etc. Theoretical and experimental investigation of an organic Rankine cycle for a waste heat recovery system[J]. Journal of Power and Energy, Proc. IMechE Part A., 2009, 223(5): 523-533.
    [28]. Kalina A I. COMBINED-CYCLE SYSTEM WITH NOVEL BOTTOMING CYCLE[J]. Journal of Engineering for Gas Turbines and Power, 1984, 106(4): 737-742.
    [29].王江峰,王家全,戴义平.卡林纳循环在中低温余热利用中的应用研究[J].汽轮机技术, 2008, 50(3): 208-210.
    [30]. Ibrahim M B, Kovach R M. A Kalina cycle application for power generation[J]. Energy, 1993, 18(9): 961-969.
    [31]. Rogdakis E D. Thermodynamic analysis, parametric study and optimum operation of the Kalina cycle[J]. Fuel and Energy Abstracts, 1996, 37(3): 234-234.
    [32]. Nag P K, Gupta A V S S K S. Exergy analysis of the Kalina cycle[J]. Applied Thermal Engineering, 1998, 18(6): 427-439.
    [33]. Lolos P A, Rogdakis E D. A Kalina power cycle driven by renewable energy sources[J]. Energy, 2009, 34(4): 457-464.
    [34]. Ogriseck S. Integration of Kalina cycle in a combined heat and power plant, a case study[J]. Applied Thermal Engineering, 2009, 29(14-15): 2843-2848.
    [35]. Arslan O. Exergoeconomic evaluation of electricity generation by the medium temperature geothermal resources, using a Kalina cycle: Simav case study[J]. International Journal of Thermal Sciences, 2010, 49(9): 1866-1873.
    [36]. EI-Sayed Y M, Trbus M. Theorectical comparison of the Rankine and Kalina Cycles[A]. In ASME Special Publications,AES-1[C], 1985: 97-102.
    [37]. Marston C H. Parametric analysis of the Kalina Cycle[J]. Journal of Engineering for Gas Turbines and Power, 1990, 112(1): 107-116.
    [38]. Xu F, Yogi Goswami D, S. Bhagwat S. A combined power/cooling cycle[J]. Energy, 2000, 25(3): 233-246.
    [39]. Tamm G, Goswami D Y, Lu S, etc. Novel combined power and cooling thermodynamic cycle for low temperature heat sources, Part I: Theoretical investigation[J]. Journal of Solar Energy Engineering, Transactions of the ASME, 2003, 125(2): 218-222.
    [40]. Hasan A A, Goswami D Y, Vijayaraghavan S. First and second law analysis of a new power and refrigeration thermodynamic cycle using a solar heat source[J]. Solar Energy, 2002, 73(5): 385-393.
    [41]. Lu S, Goswami D Y. Optimization of a novel combined power/refrigeration thermodynamic cycle[J]. Journal of Solar Energy Engineering, Transactions of the ASME, 2003, 125(2): 212-217.
    [42]. Vijayaraghavan S, Goswami D Y. On evaluating efficiency of a combined power and cooling cycle[J]. Journal of Energy Resources Technology, Transactions of the ASME, 2003, 125(3): 221-227.
    [43]. Hasan A A, Goswami D Y. Exergy analysis of a combined power and refrigeration thermodynamic cycle driven by a solar heat source[J]. Journal of Solar Energy Engineering, Transactions of the ASME, 2003, 125(1): 55-60.
    [44]. Vidal A, Best R, Rivero R, etc. Analysis of a combined power and refrigeration cycle by the exergy method[J]. Energy, 2006, 31(15): 3401-3414.
    [45]. Tamm G, Goswami D Y. Novel combined power and cooling thermodynamic cycle for low temperature heat sources, part II: Experimental investigation[J]. Journal of Solar Energy Engineering, Transactions of the ASME, 2003, 125(2): 223-229.
    [46]. Tamm G, Goswami D Y, Lu S, etc. Theoretical and experimental investigation of an ammonia-water power and refrigeration thermodynamic cycle[J]. Solar Energy, 2004, 76(1-3): 217-228.
    [47]. Vijayaraghavan S, Goswami D Y. Organic working fluids for a combined power and cooling cycle[J]. Journal of Energy Resources Technology, Transactions of the ASME, 2005, 127(2): 125-130.
    [48]. Zhang N, Lior N. Methodology for thermal design of novel combined refrigeration/power binary fluid systems[J]. International Journal of Refrigeration, 2007, 30(6): 1072-1085.
    [49].刘猛,张娜,蔡睿贤.新型燃气-氨水蒸汽功冷联供联合循环[J].中国电机工程学报, 2006, 26(17): 82-87.
    [50].罗尘丁,张娜,蔡睿贤, etc.氨吸收式动力/制冷复合循环的敏感性分析[J].中国电机工程学报, 2008, 28(17): 1-7.
    [51].王宇,韩巍,金红光, etc.新型中低温混合工质联合循环[J].中国电机工程学报, 2003, 23(11): 200-204.
    [52]. Oliveira A C, Afonso C, Matos J, etc. A combined heat and power system for buildings driven by solar energy and gas[J]. Applied Thermal Engineering, 2002, 22(6): 587-593.
    [53]. Nord J W, Lear W E, Sherif S A. Analysis of heat-driven jet-pumped cooling system for space thermal management[J]. Journal of Propulsion and Power, 2001, 17(3): 566-570.
    [54]. Dai Y, Wang J, Gao L. Exergy analysis, parametric analysis and optimization for a novel combined power and ejector refrigeration cycle[J]. Applied Thermal Engineering, 2009, 29(10): 1983-1990.
    [55]. Wang J, Dai Y, Gao L. Parametric analysis and optimization for a combined power and refrigeration cycle[J]. Applied Energy, 2008, 85(11): 1071-1085.
    [56]. Wang J, Dai Y, Sun Z. A theoretical study on a novel combined power and ejector refrigeration cycle[J]. International Journal of Refrigeration, 2009, 32(6): 1186-1194.
    [57]. Wang J, Dai Y, Zhang T, etc. Parametric analysis for a new combined power and ejector-absorption refrigeration cycle[J]. Energy, 2009, 34(10): 1587-1593.
    [58].朱明善.能量系统的火用分析[M].北京:清华大学出版社, 1988.
    [59].刘猛,张娜,蔡睿贤.氨吸收式串联型制冷和动力复合循环及敏感性分析[J].中国电机工程学报, 2006, 26(1): 1-7.
    [60].罗尘丁,张娜,刘猛.氨气功冷正逆耦合循环的经济性分析[J].工程热物理学报, 2009, 30(9): 1283-1287.
    [61].计光华.透平膨胀机[M].北京:机械工业出版社, 1982.
    [62].顾伟.低品位热能有机物朗肯动力循环机理研究和实验验证[D].上海:上海交通大学, 2010.
    [63]. Badr O, Naik S, O'Callaghan P W, etc. Expansion machine for a low power-output steam Rankine-cycle engine[J]. Applied Energy, 1991, 39(2): 93-116.
    [64]. Merigoux J M, Pocard P. Solar-powered units with screw expanders[A]. In Proc. Int. Symp. Workshop on Solar Energy[C], 1978: 1293-1317.
    [65]. Lorenz J, Fuestel J, Kraft M. New developments for future solar-power plants[A]. In Proc. Int. Symp. Workshop on Solar Energy[C], 1978: 1318-1328.
    [66]. Badr O, Naik S, O'Callaghan P W, etc. Wankel engines as steam expanders: Design considerations[J]. Applied Energy, 1991, 40(3): 157-170.
    [67]. Badr O, Naik S, O'Callaghan P W, etc. Rotary Wankel engines as expansion devices in steam Rankine-cycle engines[J]. Applied Energy, 1991, 39(1): 59-76.
    [68].刘振全,王君,强建国.涡旋式流体机械与涡旋压缩机[M].北京:机械工业出版社, 2009.
    [69]. Gosney W B. Principle of refrigeration[M]. Cambridge: Cambridge University Press, 1982.
    [70]. Sun D-W, Eames I W. Recent developments in the design theories and applications of ejectors - a review[J]. Journal of the Institute of Energy, 1995, 68(475): 65-79.
    [71]. Chunnanond K, Aphornratana S. Ejectors: Applications in refrigeration technology[J]. Renewable and Sustainable Energy Reviews, 2004, 8(2): 129-155.
    [72]. Boumaraf L, Lallemand A. Modeling of an ejector refrigerating system operating in dimensioning and off-dimensioning conditions with the working fluids R142b and R600a[J]. Applied Thermal Engineering, 2009, 29(2-3): 265-274.
    [73]. Abdulateef J M, Sopian K, Alghoul M A, etc. Review on solar-driven ejector refrigeration technologies[J]. Renewable and Sustainable Energy Reviews, 2009, 13(6-7): 1338-1349.
    [74]. He S, Li Y, Wang R Z. Progress of mathematical modeling on ejectors[J]. Renewable and Sustainable Energy Reviews, 2009, 13(8): 1760-1780.
    [75]. Keenan J H, Neumann E P, Lustwerk F. An investigation of ejector design bu analysis and experiment[J]. Journal of applied mechanics, Transactions of the ASME, 1950, 72299-309.
    [76]. Munday J T, Bagster D F. a new ejector theory applied to steam jet refrigeration [J]. Ind Eng Chem Process Des Dev, 1977, 16(4): 429-436.
    [77]. Huang B J, Chang J M, Wang C P, etc. 1-D analysis of ejector performance[J]. International Journal of Refrigeration, 1999, 22(5): 354-364.
    [78]. Huang B J, Chang J M. Empirical correlation for ejector designCorrélation empirique pour la conception deséjecteurs[J]. International Journal of Refrigeration, 1999, 22(5): 379-388.
    [79]. E.Y.Sokolov, N.M.Zinger. Jet apparatuses[M]. Moscow: Energoatomizdat Publishing house, 1989.
    [80].西北工业大学,南京航空学院,北京航空学院.气体动力学基础[M].北京:国防工业出版社, 1980.
    [81]. Saleh B, Koglbauer G, Wendland M, etc. Working fluids for low-temperature organic Rankine cycles[J]. Energy, 2007, 32(7): 1210-1221.
    [82]. Wang J L, Zhao L, Wang X D. A comparative study of pure and zeotropic mixtures in low-temperature solar Rankine cycle[J]. Applied Energy, 2010, 87(11): 3366-3373.
    [83]. Chen H, Goswami D Y, Stefanakos E K. A review of thermodynamic cycles and working fluids for the conversion of low-grade heat[J]. Renewable and Sustainable Energy Reviews, 2010, 14(9): 3059-3067.
    [84]. Sun D-W. Comparative study of the performance of an ejector refrigeration cycle operating with various refrigerants[J]. Energy Conversion and Management, 1999, 40(8): 873-884.
    [85]. Selvaraju A, Mani A. Analysis of an ejector with environment friendly refrigerants[J]. Applied Thermal Engineering, 2004, 24(5-6): 827-838.
    [86]. Kalogirou S A. Solar thermal collectors and applications[J]. Progress in Energy and Combustion Science, 2004, 30(3): 231-295.
    [87]. Thirugnanasambandam M, Iniyan S, Goic R. A review of solar thermal technologies[J]. Renewable and Sustainable Energy Reviews, 2010, 14(1): 312-322.
    [88].蔡向明,翁一武,郑彬.太阳能喷射式电冷联供系统的性能分析[J].动力工程学报, 2010, 30(6): 462-466.
    [89]. Soteris A, Kalogirou. Solar thermal collectors and applications[J]. Progress in Energy and Combustion Science, 2004, 30231-295.
    [90]. Manolakos D, Kosmadakis G, Kyritsis S, etc. On site experimental evaluation of a low-temperature solar organic Rankine cycle system for RO desalination[J]. Solar Energy, 2009, 83(5): 646-656.
    [91]. http://www.epa.gov/ozone/science/ods/index.html.
    [92]. http://www.epa.gov/ozone/science/ods/index.html.
    [93].何梓年,蒋富林,葛洪川, etc.热管式真空管集热器的热性能研究[J].太阳能学报, 1994, 15(1): 73-82.
    [94].张博,沈胜强.太阳能喷射式制冷系统性能研究[J].太阳能学报, 2001, 22(4): 451-455.
    [95]. Morrison G. The shape of the temperature-entropy saturation boundary[J]. International Journal of Refrigeration, 1994, 17(7): 494-504.
    [96]. Invernizzi C, Angelino G. General method for the evaluation of complex heat pump cycles[J]. International Journal of Refrigeration, 1990, 13(1): 31-40.
    [97]. Hung T C, Wang S K, Kuo C H, etc. A study of organic working fluids on system efficiency of an ORC using low-grade energy sources[J]. Energy, 2010, 35(3): 1403-1411.
    [98]. Lakew A A, Bolland O. Working fluids for low-temperature heat source[J]. Applied Thermal Engineering.
    [99]. Sun D W. Comparative study of the performance of an ejector refrigeration cycle operating with various refrigerants[J]. Energy Conversion and Management, 1999, 40(8): 873-884.
    [100]. Maizza V, Maizza A. Unconventional working fluids in organic Rankine-cycles for waste energy recovery systems[J]. Applied Thermal Engineering, 2001, 21(3): 381-390.
    [101]. Chou S K, Yang P R, Yap C. Maximum mass flow ratio due to secondary flow choking in an ejector refrigeration system[J]. International Journal of Refrigeration, 2001, 24(6): 486-499.
    [102]. Calm J M. Options and outlook for chiller refrigerants[J]. International Journal of Refrigeration, 2002, 25(6): 705-715.
    [103]. Saleh B, Wendland M. Screening of pure fluids as alternative refrigerants[J]. International Journal of Refrigeration, 2006, 29(2): 260-269.
    [104]. Calm J M. The next generation of refrigerants - Historical review, considerations, and outlook[J]. International Journal of Refrigeration, 2008, 31(7): 1123-1133.
    [105]. Mohanraj M, Jayaraj S, Muraleedharan C. Environment friendly alternatives to halogenated refrigerants--A review[J]. International Journal of Greenhouse Gas Control, 2009, 3(1): 108-119.
    [106]. Zheng B, Weng Y W. A combined power and ejector refrigeration cycle for low temperature heat sources[J]. Solar Energy, 2010, 84(5): 784-791.
    [107]. YapIcI R, Yetisen C C. Experimental study on ejector refrigeration system powered by low grade heat[J]. Energy Conversion and Management, 2007, 48(5): 1560-1568.
    [108]. YapIcI R. Experimental investigation of performance of vapor ejector refrigeration system using refrigerant R123[J]. Energy Conversion and Management, 2008, 49(5): 953-961.
    [109]. Chen Y-M, Sun C-Y. Experimental study of the performance characteristics of a steam-ejector refrigeration system[J]. Experimental Thermal and Fluid Science, 1997, 15(4): 384-394.
    [110]. Disawas S, Wongwises S. Experimental investigation on the performance of the refrigeration cycle using a two-phase ejector as an expansion device[J]. International Journal of Refrigeration, 2004, 27(6): 587-594.
    [111]. Sankarlal T, Mani A. Experimental studies on an ammonia ejector refrigeration system[J]. International Communications in Heat and Mass Transfer, 2006, 33(2): 224-230.
    [112]. Selvaraju A, Mani A. Experimental investigation on R134a vapour ejector refrigeration system[J]. International Journal of Refrigeration, 2006, 29(7): 1160-1166.
    [113]. YapIcI R, Ersoy H K, Aktoprakoglu A, etc. Experimental determination of the optimum performance of ejector refrigeration system depending on ejector area ratio[J]. International Journal of Refrigeration, 2008, 31(7): 1183-1189.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700