N形方主管圆支管相贯节点受力性能与设计方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
直接焊接钢管结构因外形美观、受力性能优越,在大跨空间结构中得到了广泛应用。但因直接相贯节点处交汇钢管的数量、角度、截面形状与尺寸的不同,导致节点的受力非常复杂。迄今为止,各国规范均按照钢管截面形状(圆管或矩形管)建立了多种类型管节点的承载力计算公式,然而,规范并未专门针对主管为方管支管为圆管的相贯节点建立承载力计算公式,而是将矩形管节点承载力计算公式进行局部修改后直接用于方主管圆支管相贯节点的承载力计算,尚缺乏试验验证,同时,这种方法仅建立在支管局部屈曲破坏模式基础上,而且也未考虑节点两侧主管轴力大小、内隐蔽部分焊接与否、支管轴力性质等因素的影响。
     本文以试验为基础,结合非线性有限元分析,考察了N形方主管圆支管相贯节点的受力性能、破坏模式和极限承载力,重点研究了节点两侧主管轴力大小、内隐蔽部分焊接与否、支管轴力性质以及几何参数等对节点受力性能的影响。本文主要研究工作有如下几个方面:
     (1)对8个N形方主管圆支管搭接节点和相应的2个零间隙节点进行了静力性能试验研究,考察了节点在轴力作用下的受力性能和破坏模式,详细测试了节点各关键部位的应力和变形分布,对内隐蔽部分焊接与否、支管轴力性质、节点两侧主管轴力大小、支管搭接与否等因素对节点的受力性能、破坏模式和极限承载力的影响进行了讨论。
     (2)对N形方主管圆支管相贯节点极限承载力的有限元分析模型适用性进行了研究。考虑了包括单元类型、焊缝模拟、支座约束条件、加载方式、主管和支管长度、非线性分析方法等可能影响节点极限承载力的各种因素,建立了一个有效的、精细化的有限元模型以作为参数分析的基础。将此模型应用于试验节点的分析,并对比了分析结果与试验结果,二者吻合良好,表明此模型能很好地模拟N形方主管圆支管相贯节点的受力性能。
     (3)将N形方主管圆支管相贯节点承载力的试验结果与现行规范公式计算结果进行了对比,指出现行规范公式有待改进之处。接下来对N形方主管圆支管相贯节点的受力性能进行了系统的变参数分析,重点考察了几何参数、节点两侧主管轴力大小、内隐蔽部分焊接与否以及支管轴力性质对节点破坏模式及节点极限承载力的影响,得到了上述参数变化对节点受力性能的影响规律。
     (4)在我国《钢结构设计规范》(GB50017-2003)公式的基础上,通过参数回归分析得到了N形方主管圆支管搭接节点考虑几何参数、内隐蔽部分焊接与否及支管轴力性质等因素的承载力修正系数;根据有限元分析结果提出了主管轴力影响系数,进而提出了N形方主管圆支管搭接节点承载力计算公式。根据有限元分析结果,将规范中的N形方主管圆支管间隙节点承载力计算公式进行了简化,使其与搭接节点公式形式一致,并提出了公式的修正系数。经与试验数据和有限元数据的对比统计分析,表明本文建议公式具有较高的精度。
     (5)通过建立合适的空间坐标系,联立曲面方程求得了N形方主管圆支管搭接节点相交线方程,然后提出了内隐蔽部分焊接与否两种情况下,采用微元法计算节点相交线各组成部分长度的实用计算方法。最后,采用线性回归方法拟合得到了N形方主管圆支管搭接节点相交线长度的简化计算公式,以用于N形方主管圆支管搭接节点连接焊缝的长度计算。
Constructions with directly welded steel tubes have been widely used in largespan truss structures for artistic appearance and superior mechanical behaviour.However, internal forces of the joints are quite complicated because of the differenceof the quantity, angle, cross section shape and size of steel tubes intersecting atdirectly welded tubular joints. Thus far, although each country has establishedbearing capacity formulas for joints of various steel tubes in accordance with theircross section shapes (CHS or RHS), there is no bearing capacity formulas especiallyfor tubular joints with circular hollow section braces and square hollow section chord(CHS-to-SHS). Instead, bearing capacity formulas for rectangular tube joints is, afterlittle modification, applied directly into bearing capacity computation of tubularjoints with square chords and circular braces, which is lack of experimentalverification. In addition, this method is simply based on local buckling failure ofbraces without taking the following factors into consideration, such as axial force ofchords on the sides of joints, hidden weld absent or not, axial force properties ofbraces, etc.
     The dessertation, on the basis of experiments and non-linear finite elementanalysis, investigates the mechanical behavior, failure modes and ultimate bearingcapacity of CHS-to-SHS N-joints while focusing on the influence of the followingfactors on sturctural behavior of joints, e.g. axial force of chord on the sides of joints,hidden weld absent or not, axial force properties of braces, geometry parameters, etc.The dissertation studies the following aspects:
     Firstly, eight overlap CHS-to-SHS N-joints and the corresponding two zero-gapjoints were tested. The mechanical behavior and failure modes of joints under theinfluence of axial force, the stress and deformation distribution of each key parts ofjoints were investigatd, and the influence of the following factors on sturcturalbehavior of joints, e.g. hidden weld absent or not, axial force properties of braces,axial force of chords on the sides of joints, braces overlap or not, were discussed.
     Secondly, the dissertation studies the applicability of finite element model forultimate bearing capability of CHS-to-SHS N-joints. Considering various factors thatmay affect ultimate bearing capacity of joints such as element type, weld modeling,constraint conditions, loading modes, length of chords and braces, non linear analysis, etc., an effective and elaborate finite element model is established as the basis ofparameter analysis and is employed in the analysis of experimental joints. Theanalysis results are in good agreement with experimental results, which indicates thatthis model can well simulate the bearing capacity of CHS-to-SHS N-joints.
     Thirdly, the dissertation points out deficiencies of code formulas by the contrastbetween experimental results and computational results according to code formulas ofbearing capacity of CHS-to-SHS N-joints, and then systematically carries outvariable parameter analysis on the bearing capacity of CHS-to-SHS N-joints. Theauthor, focusing on the influence of the following factors on failure mode andultimate bearing capacity of joints, e.g. geometry parameters, axial force of chords onthe sides of joints, hidden weld absent or not, axial force properties of braces, etc.,finds out the regular pattern of influence of the above parameter variation onstructural behavior of joints.
     Fourthly, on the basis of formulas of China Code for Design of Steel Structures(GB50017-2003), the dissertation, by means of parameter regression analysis,obtains the correction coefficient for bearing capability of partially overlapCHS-to-SHS N-joints when considering factors such as geometry parameter, hiddenweld absent or not, axial force properties of braces, etc., puts forward influencecoefficient for axial force of chords, and thus proposes the computational formula forbearing capacity of partially overlap CHS-to-SHS N-joints. In accordance with thefinite element analysis results the author simplifies the computational formulas forbearing capacity of gap CHS-to-SHS N-joints in the code so as to make its formulathe same as that of overlap joint, and puts forward correction coefficient of theformula. The comparison and statistic analysis between experimental data and finiteelement data indicates that the formula proposed by this dissertation has higherprecision.
     Finally, through establishing appropriate space coordinates, the dissertation putsforward intersecting line equations for overlap CHS-to-SHS N-joints by means ofcurve surface equations and thus proposes a practical computational formula forlength of each constituent part of joint intersecting line employing infinitesimalmethod on matter the hidden weld is absent or not. Finally, the author obtainssimplified computational formula for intersecting line length of overlap CHS-to-SHSN-joints by means of linear regression so as to calculate the length of welding seam.
引文
[1]陈以一,陈扬骥.钢管结构相贯节点的研究现状.建筑结构,2002,32(7):52-55
    [2] Packer J A, Henderson J E, Cao J J(曹俊杰).空心管结构连接设计指南.第1版.北京:科学出版社,1997,1-10
    [3]王伟.圆钢管相贯节点非刚性性能及对结构整体行为的影响效应:[同济大学博士学位论文].上海:同济大学,2005,1-5
    [4]金谷弘.钢管接合部の局部变形に关する实验的研究.见:日本建筑学会论文报告集.东京:日本建筑学会,1961,8-14
    [5]鹫尾健三,东乡武,三井宜之.钢管トラス节点弦材管の关する实验的研究.见:日本建筑学会论文报告集.东京:日本建筑学会,1967,20-27
    [6] Gibstein M B. The static strength of T-joints subjected to in-plane bending. DetNorske Veritas Report,1976:76-137
    [7] Sparrow K D, Stamenkovic A. Experimental determination of the ultimate staticstrength of T-joints in circular hollow steel sections subjects to axial andmoment, Proc. Int. Conf., Joints in Structural Steel Work, Teeside,1981
    [8] Kurobane Y, Makino Y, and Ochi K. Ultimate resistance of unstiffened tubularjoints. Journal of Structural Engineering, ASCE,1984,110(2):385-400
    [9] Makino Y. Experimental study on ultimate capacity and deformation for tubularjoints:[Doctoral dissertation of Osaka University]. Osaka: Osaka University,1984,5-15
    [10] Scola S, Redwood R G. Behaviour of axially loaded tubular V-joints. Journal ofConstructional Steel Research,1990,16(2):89-109
    [11] Paul J C, Makino Y, and Kurobane Y. Ultimate resistance of unstiffenedmultiplanar tubular TT-and KK-joints, Journal of Structural Engineering,ASCE,1994,120(10):2853-2870
    [12] Jubran J S, Cofer W F. Finite-element modeling of tubular joints. I: numericalresults. Journal of Structural Engineering, ASCE,1995,121(3):496-508
    [13] Jubran J S, Cofer W F. Finite-element modeling of tubular joints. II: designequations. Journal of Structural Engineering, ASCE,1995,121(3):509-516
    [14] Lee M M K, Wilmshurst S R. Parametric study of strength of tubularmultiplanar KK-Joints. Journal of Structural Engineering, ASCE,1996,122(8):893-904
    [15] Lee M M K, Wilmshurst S R. Strength of multiplanar tubular KK-joints underantisymmetrical axial loading. Journal of Structural Engineering, ASCE,1997,123(6):755-764
    [16] Makino Y, Kurobane Y, and Ochi K. Database of test and numerical analysisresults for unstiffened tubular joints. Journal of Structural Engineering, ASCE,1996,122(6):571-579
    [17] Kang C T, Moffat D G, and Mistry J. Strength of DT tubular joints with braceand chord compression. Journal of Structural Engineering, ASCE,1998,124(7):775-783
    [18] Soh C K, Chan T K, and Yu S K. Limit analysis of ultimate strength of tubularX-joints. Journal of Structural Engineering, ASCE,2000,126(7):790-797
    [19] Dexter E M, Lee M M K. Static Strength of axially loaded tubular K-joints. I:behavior. Journal of Structural Engineering, ASCE,1999,125(2):194-201
    [20] Dexter E M, Lee M M K. Static Strength of axially loaded tubular K-joints. II:ultimate capacity. Journal of Structural Engineering, ASCE,1999,125(2):202-210
    [21] Gazzola F, Lee M M K, Dexter E M. Design equation for overlap tubularK-joints under axial loading. Journal of Structural Engineering, ASCE,2000,126(7):798-808
    [22] Fung T C, Soh C K, Gho W M, et al. Ultimate capacity of completelyoverlapped tubular joints I. An experimental investigation. Journal ofConstructional Steel Research,2001,57(8):855-880
    [23] Fung T C, Soh C K, Gho W M, et al. Ultimate capacity of completelyoverlapped tubular joints II. Behavioral study. Journal of Constructional SteelResearch,2001,57(8):881-906
    [24] Choo Y S, Qian X D, Liew J Y R, et al. Static strength of thick-walled CHSX-joints—Part I. New approach in strength definition. Journal of ConstructionalSteel Research,2003,59(10):1201-1228
    [25] Choo Y S, Qian X D, Liew J Y R, et al. Static strength of thick-walled CHSX-joints—Part II. Effect of chord stresses. Journal of Constructional SteelResearch,2003,59(10):1229-1250
    [26] Gho W M, Yang Y, and Gao F. Failure mechanism of tubular CHS joints withcomplete overlap of braces. Thin-walled Structures.2006,44(6):655-666
    [27] Gho W M, Yang Y. Parametric equation for static strength of tubular circularhollow section joints with complete overlap of braces. Journal of StructuralEngineering, ASCE,2008,134(3):393-401
    [28] Choo Y S, Qian X D, and Wardenier J. Effects of boundary conditions andchord stresses on static strength of thick-walled CHS K-joints, Journal ofConstructional Steel Research,2006,62(4):316-328
    [29]陈继祖,陆化普.焊接管节点设计承载力公式研究.大连工学院学报,1986,25(2):47-52
    [30]杨国贤,陈延国.受拉T型管节点静承载力分析的实用计算法.大连工学院学报,1987,26(2):101-106
    [31]陈铁云,朱正宏,吴水云.塑性节点法的研究及其在薄壳结构中的应用.计算力学学报,1991,8(3):342-248
    [32]沈祖炎.直接焊管结构节点极限承载力的计算.钢结构,1991,4(4):34-38
    [33]沈祖炎,陈扬骥,陈以一等.上海市八万人体育场屋盖的整体模型和节点试验研究.建筑结构学报,1998,19(2):2-10
    [34]陈以一,沈祖炎,詹琛等.直接汇交节点三重屈服线模型及试验验证.土木工程学报,1999,32(6):26-31
    [35]詹琛,陈以一,沈祖炎.圆钢管节点的强度计算公式.钢结构,1999,14(1):26-29
    [36]贺东哲,王元清,李少甫.管节点承载力的非线性有限元分析.工程力学,2000,17(4):50-55
    [37]陈以一,王伟,赵宪忠等.圆钢管相贯节点抗弯刚度和承载力实验.建筑结构学报,2001,22(6):25-30
    [38]朱庆科,舒宣武.平面K型钢管相贯节点极限承载力有限元分析.华南理工大学学报,2002,30(12):62-66
    [39]舒宣武,朱庆科.空间KK型钢管相贯节点极限承载力有限元分析.华南理工大学学报,2002,30(10):103-106
    [40]陈以一,陈扬骥,詹琛等.圆钢管空间相贯节点的实验研究.土木工程学报,2003,36(8):24-30
    [41]陈以一,沈祖炎等.圆钢管相贯节点滞回特性的实验研究.建筑结构学报,2003,24(6):57-62
    [42]舒兴平,朱邵宁,夏心红等.长沙贺龙体育场钢屋盖圆管相贯节点足尺试验研究.建筑结构学报,2003,25(3):8-13
    [43]舒兴平,朱邵宁,朱正荣. K型圆钢管搭接节点极限承载力研究.建筑结构学报,2004,25(5):71-77
    [44]朱邵宁.圆钢管相贯节点极限承载力分析与足尺试验研究:[湖南大学硕士学位论文].长沙:湖南大学土木工程学院,2003,10-44
    [45]祝磊,石永久,王元清. TX型圆管相贯节点空间作用下的极限承载力分析.钢结构,2004,19(2):20-23
    [46]罗尧治,张楠. K型搭接节点承载力性能分析及建议公式.钢结构,2004,19(3):23-26
    [47]童乐为,陈茁,陈以一等.不同焊接方式下圆钢管节点力学性能的试验比较.结构工程师,2006,22(2):57-62
    [48]赵宏康,戴雅萍,吕西林.苏州国际博览中心屋盖结构分析和并联K形圆钢管相贯节点研究.建筑结构学报,2006,27(4):51-60
    [49]赵宪忠,陈誉,陈以一等.平面K型圆钢管搭接节点静力性能的试验研究.建筑结构学报,2006,27(4):23-29
    [50]陈誉,赵宪忠,陈以一.平面K型圆钢管搭接节点有限元参数分析与极限承载力计算公式.建筑结构学报,2006,27(4):30-36
    [51] CECS280:2010.钢管结构技术规程.北京:中国计划出版社,2010,29-31
    [52]童乐为,周丽瑛,陈以一等.上海旗忠网球中心屋盖支座圆管节点强度研究.建筑结构学报,2007,28(1):35-42
    [53]童乐为,王斌,陈茁等.弯曲弦杆的圆钢管节点静力性能研究.建筑结构学报,2007,28(1):28-34
    [54]陈誉,彭兴黔.空间KK型双弦杆圆钢管搭接节点有限元参数分析与极限承载力计算公式.建筑结构学报,2007,28(3):37-45
    [55]吴捷,戴雅萍,赵宏康.内隐藏焊缝不焊的K形搭接节点承载力.天津大学学报,2008,28(1):28-34
    [56]吴捷,蒋剑峰,戴雅萍等. K形圆钢管搭接节点受力特点及极限承载力分析研究.工业建筑,2009,39(1):122-127
    [57]李自林,吴亮秦,朱斌等. N型圆钢管相贯节点力学性能的试验研究.土木工程学报,2008,41(7):48-54
    [58]赵宪忠,陈誉,陈以一等.平面KT型圆钢管搭接节点静力性能的试验研究.工业建筑,2010,40(4):108-111
    [59]陈誉,赵宪忠.平面KT型圆钢管搭接节点有限元参数分析与承载力计算.建筑结构学报,2011,32(4):134-141
    [60]余志祥,严雁军,许浒.树形管结构多维相贯节点承载力非线性分析.空间结构,2011,17(1):49-55
    [61]武振宇,张耀春.直接焊接钢管节点静力工作性能的研究现状.哈尔滨建筑大学学报,1996,29(6):102-109
    [62] Wardenier J, Mouty J. Design rules for predominantly statically loaded weldedjoints with hollow sections. Welding in the World,1976,17(6):134-156
    [63] Packer J A. Ultimate strength of gapped joints in RHS trusses. Journal ofStructural Engineering, ASCE,1982,108(2):411-431
    [64] Packer J A. Web crippling of rectangular hollow sections. Journal of StructuralEngineering, ASCE,1984,110(10):2357-2373
    [65] Bauer D, Redwood R G. Triangular truss joints using rectangular tubes. Journalof Structural Engineering, ASCE,1988,114(2):408-424
    [66] Zhao X L, Hancock G J. T-joins in rectangular hollow sections subject tocombined actions. Journal of Structural Engineering, ASCE,1991,117(2):2258-2277
    [67] Zhao X L, Hancock G J. Square and rectangular hollow sections subject tocombined actions. Journal of Structural Engineering, ASCE,1992,118(3):648-668
    [68] Fraster G S. Performance of welded rectangular hollow structural sectiontrusses:[Doctoral dissertation of University of Toronto]. Toronto: University ofToronto,1991,10-60
    [69] Yu Y. The static strength of uniplanar and multiplanar connections inrectangular hollow sections:[Doctoral dissertation of Delft University]. Delft:Delft University,1997,1-50
    [70] Liu D K, Wardenier J. Multiplanar influence on the strength of RHS multiplanargap KK-joints. Proceedings9th International Symposium on Tubular Structures.2001, Düsseldorf,203-212
    [71] Liu D K, Wardenier J. The strength of multiplanar gap KK joints of rectangularhollow sections under axial loading. Proceedings11th International Offshoreand Polar Engineering Conference,2001, Stavanger,15-22
    [72] Liu D K, Wardenier J. The strength of multiplanar overlap KK-joints ofrectangular hollow sections under axial loading. Proceedings12th InternationalOffshore and Polar Engineering Conference.2002, Kitakyushu,34-40
    [73] Liu D K, Wardenier J. The strength of multiplanar KK-joints of square hollowsections. Proceedings10th International Symposium on Tubular Structures.2003, Madrid,197-205
    [74] Liu D K, Chen Y, and Wardenier J. Design recommendations for RHS-K jointswith50%overlap. Proceedings15th International Offshore and PolarEngineering Conference.2005, Seoul,308-315
    [75]沈祖炎,张志良.焊接方管节点极限承载力计算.同济大学学报,1990,18(3):273-279
    [76]张志良,沈祖炎,陈学潮.方管节点极限承载力的非线性有限元分析.土木工程学报,1990,23(1):12-22
    [77]武振宇,张耀春.直接焊接T型钢管节点性能的试验研究.钢结构,1999,14(2):36-40
    [78]武振宇,张耀春.轴向力作用下T型方管节点的塑性铰线分析.土木工程学报,2002,35(4):20-24
    [79]武振宇,张耀春.弯矩作用下不等宽T型方管节点的塑性铰线分析.建筑结构学报,2003,24(4):65-69
    [80]武振宇,谭慧光,张耀春.不等宽T型方管节点静力工作性能的研究.哈尔滨建筑大学学报,2002,35(6):14-17
    [81]武胜,武振宇.等宽K型间隙方管节点静力工作性能的研究.哈尔滨工业大学学报,2003,35(3):270-275
    [82]武胜,武振宇.一杆等宽K型间隙方管节点静力工作性能研究.哈尔滨工业大学学报,2003,35(5):513-519
    [83]武振宇,张壮南,丁玉坤等. K型、KK型间隙方钢管节点静力工作性能的试验研究.建筑结构学报,2004,25(2):32-38
    [84]丁玉坤,武振宇,张华山等. K型、KK型搭接方管节点的试验研究.土木工程学报,2005,38(4):25-31
    [85]武振宇,丁玉坤. KK型搭接方管节点极限承载力的非线性有限元分析.建筑科学与工程学报,2007,24(2):30-35
    [86]武振宇,张耀春.等宽T型方管节点静力工作性能与设计.土木工程学报,2004,37(4):23-28
    [87]陈以一,彭礼.矩形钢管贯通式节点抗弯性能研究.建筑结构学报,2004,25(3):1-7
    [88]赵鹏飞,钱基宏,赵基达等.单项受力状态下矩形钢管相贯节点的承载力研究.建筑结构学报,2005,26(6):54-63
    [89]赵鹏飞,钱基宏,赵基达等.复合受力状态下矩形钢管相贯节点的承载力研究.建筑结构学报,2005,26(6):64-70
    [90]赵鹏飞,赵志雄,钱基宏等.复合受力状态下矩形钢管相贯节点的试验研究.建筑结构学报,2005,26(6):71-85
    [91]范重,彭翼,李鸣等.国家体育场焊接方管桁架双弦杆KK节点设计研究.建筑结构学报,2007,28(2):41-48
    [92]童乐为,王新翼,陈以一等.国家体育场焊接方管桁架双弦杆KK型节点试验研究.建筑结构学报,2007,28(2):49-64
    [93]陈以一,李万祺,赵宪忠等.国家体育场焊接方管桁架单K节点试验研究.建筑结构学报,2007,28(2):54-58
    [94]范重,胡纯炀,彭翼等.国家体育场桁架柱内柱节点设计研究.建筑结构学报,2007,28(2):59-65
    [95]童乐为,朱俊,陈以一等.国家体育场桁架柱内柱多腹杆焊接节点性能研究.建筑结构学报,2007,28(2):66-72
    [96]范重,胡纯炀,彭翼等.国家体育场桁架柱外柱节点设计研究.建筑结构学报,2007,28(2):73-80
    [97]赵宪忠,闫澍,陈龙中等.国家体育场桁架柱外柱节点试验研究.建筑结构学报,2007,28(2):81-96
    [98]曾毅恒,朱丹,赵基达等.北京A380大跨机库节点承载力试验研究.土木工程学报,2008,41(2):29-34
    [99] Packer J A, Mashiri F R, Zhao X L, et al. Static and fatigue design ofCHS-to-RHS welded connections using a branch conversion method. Journal ofConstructional Steel Research,2007,63(1):82-95
    [100]陈誉,唐菊梅.平面K形圆主管方支管节点承载力试验研究与有限元分析.建筑结构学报,2011,32(10):56-64
    [101]Packer J A. A theoretical analysis of welded steel joints in rectangular hollowsections:[Doctoral dissertation of University of Nottingham]. Nottingham:University of Nottingham,1978,190-194
    [102]Gandhi P, Berge S. Fatigue behavior of T-joints: square chords and circularbraces. Journal of Structural Engineering, ASCE,1998,124(4):399-404
    [103]Li C B, Jae K L. Fatigue strength and stress concentration factors ofCHS-to-RHS T-joints. Journal of Constructional Steel Research,2003,59(5):627-640
    [104]Mashiri F R, Zhao X L. Plastic mechanism analysis of welded thin-walledT-joints made up of circular braces and square chords under in-plane bending.Thin-Walled Structures,2004,42(5):759-783
    [105]Mashiri F R, Zhao X L, and Grundy P. Stress concentration factors and fatiguebehaviour of welded thin-walled CHS-to-RHS T-joints under in-plane bending.Engineering Structures,2004,24(13):1861-1875
    [106]刘建平,郭彦林,陈国栋.方圆相贯节点极限承载力研究.建筑结构,2001,31(8):21-24
    [107]刘建平,郭彦林. K型方、圆相贯节点的极限承载力非线性有限元分析.建筑科学,2001,17(2):50-53
    [108]刘建平,郭彦林.管节点弹塑性大挠度有限元分析.青海大学学报(自然科学版),2001,19(1):38-42
    [109]舒兴平,朱正荣. N型方圆钢管相贯节点足尺试验研究.建筑结构学报,2006,27(1):66-70
    [110]朱正荣,舒兴平.搭接N型方圆钢管节点极限承载力研究.湖南大学学报(自然科学版),2008,35(1):11-15
    [111]朱正荣.搭接N型方圆钢管相贯节点极限承载力分析及足尺试验研究:[湖南大学硕士学位论文].长沙:湖南大学土木工程学院,2005,42-66
    [112]邓芃,王来,刘艳.主方支圆空间KT形管节点空间效应和极限承载力研究.建筑结构,2011,41(8):79-82
    [113]王秀丽,朱少华,杨文伟.不同搭接率时主方支圆钢管节点的承载力分析.兰州理工大学学报,2011,37(4):120-124
    [114]王元清,石永久,祝磊等.方管圆管混合空间钢管节点承载性能的非线性分析.建筑结构学报,2004,25(4):72-75
    [115]Makino Y, Kurobane Y, Ochi K, et al. Database of test and numerical analysisresults for unstiffened tubular joints, IIW Doc. XV-E-96-220, Hungary,1996
    [116]吴捷.圆钢管结构K形搭接节点受力性能及设计方法研究:[东南大学硕士学位论文].南京:东南大学土木工程学院,2006,1-8
    [117]AWS D1.1/D1.1M:2008. Structural Welding Code-Steel (21st Edition). Miami:AWS,2008
    [118]API RP2A-WSD. Recommended practice for planning, designing andconstructing fixed offshore platforms. Washington D. C.: API,2007
    [119]ANSI/AISC360-05. Specification for Structural Steel Buildings. Chicago:AISC,2005
    [120]GB50017-2003.钢结构设计规范.北京:中国国计划出版社,2003
    [121]EN1993-1-8. Eurocode3: Design of Steel Structure Part1-8: Design of joints.Brussels: CEN,2005
    [122]Packer J A, Wardenier J, Zhao X L,et al. Design guide for rectangular hollowsection (RHS) joints under predominantly static loading (2nd Edition). Germany:CIDECT,2009
    [123]Wardenier J, Kurobane Y, Packer J A, et al. Design guide for circular hollowsection (CHS) joints under predominantly static loading (2nd Edition). Germany:CIDECT,2008
    [124]日本建筑学会(API).钢管结构设计施工指南及解说.东京:丸善株式会社,1990
    [125]吴亮秦,李自林,韩庆华.垫板加强N形圆钢管相贯节点静力性能试验研究.建筑结构学报,2010,31(10):83-88
    [126]Yin Y, Han Q H, Bai L J,et al. Experimental Study on hysteretic behaviourof tubular N-joints. Journal of Constructional Steel Research,2009,65(2):326-334
    [127] JGJ81-2002.建筑钢结构焊接技术规程.北京:中国建筑工业出版社,2001:1-30
    [128] GB/T2975-1998.钢及钢产品力学性能试验取样位置及试样制备.北京:中国建筑工业出版社,1998,1-36
    [129] GB/T228-2002.金属材料室内拉伸试验方法.北京:中国建筑工业出版社,2002,1-25
    [130]舒兴平.高等钢结构分析与设计.北京:科学出版社,2006,254-306
    [131]Wardenier J. Hollow sections in structural applications. Netherlands: BouwenMet Staal,2002,10-25
    [132]郝文化. ANSYS土木工程应用实例.北京:中国水利水电出版社,2005,1-2
    [133]王新敏. ANSYS工程结构数值分析.北京:人民交通出版社,2007,367-437
    [134]美国ANSYS公司北京办事处. ANSYS用户使用手册.北京:机械工业出版社,1998,1-50
    [135]陈誉.平面K型圆钢管搭接节点静力性能研究:[同济大学博士学位论文].上海:同济大学土木工程学院,2006,39-45
    [136]陈誉.焊缝模型对圆钢管节点极限承载力影响有限元分析.郑州轻工业学院学报(自然科学版),2008,23(5):57-61
    [137]Van Der Vegte G J, De Koning C H M, et al.Numerical simulation ofexperiments on multiplanar steel X-joints.International Journal of Offshore andPolar Engineering,1991,1(3):200–207
    [138]Lee C K, Chew S P, Lie S P, et al. Fatigue study of partially overlapped circularhollow section K-joints. Part1: Geometrical models and mesh generation.Engineering Fracture Mechanics,2009,76(8):2445-2463
    [139]Lee C K, Chew S P, Lie S P, et al. Comparison of fatigue performances ofgapped and partially overlapped CHS K-joints, Engineering Structures,2011,33(1):43-52
    [140]Cofer W F, Jubran J S. Analysis of welded tubular connections using continuumdamage mechanics, Journal of structural Engineering, ASCE,1992,118(3):828-845
    [141]J.沃登尼尔著.钢管截面的结构应用.张其林,刘大康译.上海:同济大学出版社,2004,74-76
    [142]孙建东.K型系列圆钢管节点静力性能和设计方法研究:[同济大学博士学位论文].上海:同济大学土木工程学院,2009,23-50
    [143]Van der Vegte G J, Liu D K, Makino Y, et al. New chord load functions forcircular hollow sections joints. CIDECT report5BK-4/03,2003
    [144]陈誉,刘俊,陈以一等.无偏心K型圆钢管搭接节点焊缝长度计算,结构工程师,2006,23(2):32-35
    [145]沈祖炎,陈扬骥.关于直接汇交钢管节点的焊缝计算,同济大学学报,1985,13(2):98-111

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700