考虑应变率效应的结构抗震分析方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土木工程中应用的材料都有一定的率敏感性,对结构进行抗震分析时有必要考虑材料的应变率效应。然而,目前缺乏在抗震分析中考虑材料应变率效应的方法。本文采用理论分析和数值模拟相结合的方法,对连续性倒塌分析方法、应变率对钢筋混凝土(RC)框架结构和输电塔-线体系非线性响应的影响、pushover分析中考虑应变率效应的方法、非线性时程分析中考虑应变率效应的方法、应变率对RC框架结构和输电塔-线体系连续性倒塌的影响这些方面进行了研究。主要研究内容如下:
     (1)提出了在连续性倒塌分析中单元丧失承载能力后仍考虑其质量的方法。基于《混凝土结构设计规范》(GB50010-2010),分别采用提出的方法和“生死单元”方法,编制了大型有限元软件ABAQUS的子程序。通过对RC柱的静态和动态加载试验进行数值模拟,对开发的子程序进行了验证。
     (2)通过对某四层RC框架结构进行增量动力时程分析,研究了材料的应变率效应对结构最大顶点位移、最大基底剪力、最大层间位移和能力曲线的影响。通过对某输电塔-线体系进行增量动力时程分析,研究了材料的应变率效应对输电塔和导(地)线响应的影响。
     (3)基于结构动力学基本原理,提出了在pushover分析中考虑应变率效应的方法。将pushover分析过程看作一个1/4循环,1/4循环的时间取结构等效线性单自由度体系周期的1/4,提出了两种考虑应变率效应的方法。通过对两个模型进行pushover分析和增量动力时程分析,验证了提出方法的有效性。
     (4)提出了一种在结构非线性时程分析中考虑应变率效应的简化、实用方法。采用该方法时,需要对结构进行两次非线性时程分析。通过第一次的分析可以估算结构不同位置的应变率水平,然后对计算模型修改,最后对其进行第二次分析。通过对三个简易结构进行数值模拟,验证了提出方法的可靠性。
     (5)采用开发的子程序,对某RC框架结构和输电塔-线体系进行了连续性倒塌分析,研究了材料的应变率效应对结构抗倒塌能力和连续性倒塌过程的影响。
Most materials used in civil engineering are sensitive to strain rate, which should be considered in seismic analysis. But at present, there is lack of method for considering strain rate effect. Using theoretical analysis and numerical simulation, progressive collapse analysis method, influences of strain rate on the nonlinear response of RC frame structure and transmission tower-line system, the methods for considering strain rate effect in pushover analysis and nonlinear time history analysis, influences of strain rate on the progressive collapse of RC frame structure and transmission tower-line system are studied. The primary contents are listed as follows:
     (1) The method that the mass of the elements is still retained rather than removal after elements lose the load-bearing capacity is proposed. According to the "code for design of concrete structures"(GB50010-2010), the user subroutine VUMAT that can be implemented in the advanced finite element program ABAQUS is coded. The simulated results of a RC column under static and dynamic loading modes are consistent with experimental results.
     (2) Incremental dynamic analysis of a four-storey RC frame structure is conducted to study the effects of strain rate on the maximum top displacement, maximum base shear, maximum storey drift, capacity curve of the structure. Incremental dynamic analysis of a transmission tower-line system is conducted to study the effects of strain rate on the nonlinear responses of tower and line.
     (3) Based on the basic dynamic theory of structure, pushover analysis methods considering strain rate effect are proposed. The process of pushover analysis can be treated as a1/4cycle, the analysis time takes a quarter of the period of the equivalent linear single degree freedom system. Two methods are proposed. Incremental dynamic analysis and pushover analysis of two structures are conducted, the results indicate the reliability of the proposed methods.
     (4) A simplified and practical method considering strain rate effect in nonlinear time history analysis is proposed. First, perform nonlinear time-history analysis without considering strain rate effect. Then the model can be modified according to estimated strain rate. Finally, perform nonlinear time-history analysis again. The effectiveness of the proposed method is proved by three numerical examples.
     (5) By using the coded program, the strain rate effects on the collapse-resistent capacity and collapse process of RC frame structure and transmission tower-line system are studied.
引文
[1]Abrams D A. Effect of rate of application of load on the compressive strength of concrete[C]. Proceedings of American Society for Testing Materials,1917,17: 364-377.
    [2]Jones P G, Richart F E. The effect of testing speed on strength and elastic properties of concrete[C]. Proceedings of American Society for Testing Materials,1936,36: 380-391.
    [3]Watstein D. Effect of straining rate on the compressive strength and elastic properties of concrete[J]. ACI Journal.1953,49(4):729-744.
    [4]Cowell W L. Dynamic properties of plain Portland cement concrete[R]. Technical Report No. R447, US Naval Civil Engineering Laboratory. Port Hueneme, California, 1966.
    [5]Atchley B L, Furr H L. Strength and energy absorption capabilities of plain concrete under dynamic and static loadings[J]. ACI Journal,1967,64(11):745-756.
    [6]Hughes B P, Gregory R. Concrete subjected to high rates of loading in compress i on [J]. Magazine of Concrete Research,1972,24(78):25-36.
    [7]Tedesco J W, Powell J C, Ross C A, et al. A strain-rate dependent concrete material model for ADINA[J]. Computers and Structures,1997,64(5/6):1053-1067.
    [8]Spark P R, Menzies J B. The effect of rate loading upon the static and fatigue strengths of plain concrete in compression [J]. Magazine of Concrete Research,1973, 25(83):73-80.
    [9]Evan R H. Effect of rate of loading on some mechanical properties of concrete[C]. Proceedings of conference on mechanical properties of non-metallic brittle materials, London,1968,175-192.
    [10]Zheng S, Haussler-combe U, Eibl J. New approach to strain rate sensitivity of concrete in compression[J]. Journal of Engineering Mechanics.1999, 125(12):1403-1410.
    [11]Fu, H C, Erki, M A, and Seckin, M. Review of effects of loading rate on concrete in compression[J]. Journal of Structural Engineering,1991,117(12):3645-3659.
    [12]董毓利,谢和平,赵鹏.不同应变率下混凝土受压全过程的实验研究及其本构关系[J].水利学报,1997,7:72-77.
    [13]闫东明.混凝土动态力学性能试验与理论研究[D].大连:大连理工大学,2006.
    [14]张皓.材料应变率效应对钢筋混凝土框-剪结构地震反应的影响[D].大连:大连理工大学,2012.
    [15]陈肇元,阚永魁.高标号混凝土用于抗爆结构的若干问题[R].科学研究报告集第四集:钢筋混凝土结构构件在冲击荷载下的性能.北京:清华大学出版社.1986.
    [16]肖诗云,林皋,逯静洲等.应变率对混凝土抗压特性的影响[J].哈尔滨建筑大学学报,2002,35(5):35-39.
    [17]李敏.材料的率相关性对钢筋混凝土结构动力性能的影响[D].大连:大连理工大学,2011.
    [18]Takeda J, Tachikawa H, Fujimoto K. Mechanical behavior of concrete under higher rate loading than in static test[J]. Mechanical Behavior of Materials,1974, 2:479-486.
    [19]Gran J K, Florence A L, Colton J D. Dynamic triaxial tests of high-strength concrete[J]. Journal of Engineering Mechanics,1989,115(5):891-904.
    [20]Fujikake K, Mori K, Uebayashi K, et al. Dynamic properties of concrete materials with high rates of tri-axial compressive loads [J]. Structures and Materials,2000, 8:511-522.
    [21]Bischoff P H, Perry S H. Compressive behavior of concrete at high strain rates[J]. Materials and Structures,1991,24(6):425-450.
    [22]Mel linger F M, Birkimer D. Measurement of stress and strain on cylindrical test specimens of rock and concrete under impact loading[R]. Technical Report 4-46, U. S Army corps of Engineers, Ohlo River Division Laboratories, Cincinnati, Ohio, Apr.1966,71.
    [23]Ross C A, Jerome D M, Tedesco J W, et al. Moisture and strain rate effects on concrete strength[J]. ACI Materials Journal,1996,93(33):293-300.
    [24]Ross C A, Tedesco J W, Kuennen S T. Effect of strain rate on concrete strength [J]. ACI Materials Journal,1995,92(1):37-47.
    [25]Tedesco J W, Ross C A, Kuennen S T. Experimental and numerical analysis of high strain rate splitting tensile test[J]. ACI Materials Journal,1993, 90(2):162-169.
    [26]Tedesco J W, Ross C A. Numerical Analysis of high strain rate concrete direct tension tests[J]. Computers and Structures,1991,40(2):313-327.
    [27]Ross C A, Thompson P Y, Tedesco J W. Split-llopkinson pressure-bar tests on concrete and mortar in tension and compression[J]. ACI Materials Journal,1989, 86(5):475-481.
    [28]Reinhardt H W, Rossi P Van Mier, Jan G M. Joint investigation of concrete at high rates of loading[J]. Materials and Structures,1990,23(3):213-216.
    [29]Birkimer D L, Lindemann R. The impact strength of concrete materials[J]. ACI Journal.1971,68:47-49.
    [30]Mcvay M K. Spall damage of concrete structures[R]. Technical Report SL-88-22, U. S. Army Corps of Engineers, Waterways Experiment Station, Vicksburg, Miss,1988.
    [31]Suaris W, Shah S P. Properties of concrete subjected to impact[J]. Journal of Structural Engineering,1983,109(7):1727-1741.
    [32]尚仁杰.混凝土动态本构行为研究[D].大连:大连理工大学,1994.
    [33]尚仁杰,赵国藩,黄承逵.低周循环荷载作用下混凝土轴向拉伸全曲线的试验研究[J].水利学报,1996,(7):82-87.
    [34]肖诗云,林皋,王哲,逯静洲.应变率对混凝土抗拉特性的影响[J].大连理工大学学报,2001,41(6):721-725.
    [35]闫东明,林皋等.变幅循环荷载作用下混凝土的单轴拉伸特性[J].水利学报,2005,36(5):593-597.
    [36]Malvar L J, Ross C A. Review of strain rate effects for concrete in tension [J]. ACI Materials Journal,1998,95(6):435-439.
    [37]Davis E A. The effect of speed of stretching and the rate of loading on the yielding of mild steel[J]. J. Appl. Mech.,1938,5(4):137-140.
    [38]Manjoine M J. Influence of rate of strain and temperature on yield stress of mild steel [J]. Journal of Applied Mechanics,1944,11:211-218.
    [39]Mahin S A, Bertero V V. Rate of loading effects on uncracked and repaired reinforced concrete members[R]. Rep. No. EERC 72-9, Universtity of California, Berkeley, California,1972.
    [40]Chang K C, Lee G C. Strain rate effect on structural steel under cyclic loading[J]. Journal of Engineering Mechanics,1987,113(9):1292-1301.
    [41]Restrepo-Posada J I, Dodd L L, Park R et al. Variables affecting cyclic behavior of reinforcing steel[J]. Journal of Structural Engineering,1994,120(11): 3178-3196.
    [42]陈肇元.高强钢筋在快速变形下的性能及其在抗爆结构中的应用[R].科学研究报告第四集:钢筋混凝土结构构件在冲击荷载下的性能.北京:清华大学出版社.1986.
    [43]宋军.应变率敏感材料物理参量的研究及其工程应用[D].北京:清华大学,1990.
    [44]杨道明,于捷,李紫桐,等.高应变率下三种钢材性能及损伤机理的实验研究[J].兵工学报,1992,3:65-73.
    [45]林峰,顾祥林,匡昕听,等.高应变率下建筑钢筋的本构模型[J].建筑材料学报,2008,11(1):14-20.
    [46]李敏,李宏男.建筑钢筋动态试验及本构模型[J].土木工程学报,2010,43(4):70-75.
    [47]Bertero V V, Rea D, Mahin S, et al. Rate of loading effects on uncracked and repaired reinforced concrete members[C]. Proceeding of fifth world conference on earthquake engineering, Rome,1973(1):1461-1471.
    [48]Mutsuyoshi H, Machida A. Dynamic properties of reinforced concrete piers[C]. Proceedings eighth world conference on earthquake engineering,San Francisco, 1984(6):299-306.
    [49]Shah S, Wang M L, Chung L. Model concrete beam-column joints subjected to cyclic loading at two rates[J]. Materials and Structures,1987,20(2):85-95.
    [50]Chung L, Shah S P. Effects of loading rate on anchorage bond and beam-clumn joints[J]. ACI Structural Journal,1989,86(2):132-142.
    [51]Gutierrez E, Magonette G. Experimental studys of loading rate effects on reinforced concrete columns[J]. Journal of Engineering Mechanics,1993,119(5):887-904.
    [52]Kulkarni S M, Shah S P. Response of reinforced concrete beams at high strain rates[J]. ACI Structural Journal,1998,95(6):705-715.
    [53]Zhang X X, Ruiz G, Yu R C. Experimental study of combined size and strain rate effects on the fracture of reinforced concrete[J]. Journal of Materials in Civil Engineering,2008,20(8):544-551.
    [54]陈肇元,史岚青.钢筋混凝土梁在静速和快速变形下的弯曲性能[R].科学研究报告第四集:钢筋混凝土结构构件在冲击荷载下的性能.北京:清华大学出版社,1986.
    [55]陈肇元,罗家谦.钢筋混凝土轴压和偏压构件在快速变形下的性能[R].科学研究报告第四集:钢筋混凝土结构构件在冲击荷载下的性能.北京:清华大学出版社,1986.
    [56]龙亚平.钢筋混凝土柱快速加载试验及动力滞回规律研究[D].长沙:湖南大学,2010.
    [57]Wei J, Quintero R, Galati, et al. Failure modeling of bridge components subjected to blast loading. Part1:Strain rate-dependent damage model for concrete[J]. International Journal of Concrete Structures and Materials,2007,1(1):19-28.
    [58]Chen L, Fang Q, Zhang Y, et al. Rate-sensitive numerical analysis of dynamic responses of arched blast doors subjected to blast loading[J].Transactions of Tianjin University,2008,14(5):348-352.
    [59]阎石,张亮,王丹.钢筋混凝土板在爆炸荷载作用下的破坏模式分析[J].沈阳建筑大学学报,2005,21(3):177-180.
    [60]Pankaj P, Lin E. Material Modelling in the Seismic Response Analysis for the Design of RC Framed Structures[J]. Engineering Structures,2005,27(7):1014-1023.
    [61]Bhowmick A K, Driver R G, Grondin G Y. Seismic analysis of steel plate shear walls considering strain rate and P-delta effects[J]. Journal of Constructional Steel Research,2009,65(5):1149-1159.
    [62]Asprone D, Frascadore, et al. Influence of strain rate on the seismic response of RC structures, Engineering Structures,2012,35:29-36.
    [63]Li M, Li H N.Effects of strain rate on reinforced concrete beam[J]. Advanced Material Research,2011,243-249:4033-4036.
    [64]Zhang H, Li H N,Wang Zh. Study on strain rate effect in high-rise reinforced concrete shear wall structure. Advanced Materials Research,2011,243-249: 5854-5857.
    [65]Freeman S A, Nicoletti J P and Tyrell J V. Evaluations of existing Buildings for seismic risk-A case study of puget sound naval shipyard[C]. Proceedings of the U.S. national conference on earthquake engineers, Washington,1975:113-122.
    [66]Fajfar P, Fischinger M. N2-A method for non-linear seismic analysis of regular structures [C]. Proceedings of the 9th World Conference on Earthquake Engineering, Japan,1988,5:111-116.
    [67]Fajfar P, Vidic T and Fischinger M. Seismic demand in medium and long period structures[J]. Earthquake Engineering and Structural Dynamics,1989, 18(3):1133-1144.
    [68]Fajfar P and Krawinkler H. Nonlinear seismic analysis and design of reinforced concrete buildings[M]. Elsevier Applied Science, London and New York,1992.
    [69]Applied Technology Council. Seismic evaluation and retrofit of concrete buildings [S]. ATC-40, California,1996.
    [70]Building Seismic Safty Council. NEHRP Guildelines for the seismic rehabilitation of buildings[S]. FEMA-273, Federal Emergency Management Agency,1997.
    [71]Krawinkler H and Seneviratna G P. Pros Cons of a pushover analysis of seismic performance evaluation[J]. Engineering Structures,1997,20:452-464.
    [72]Chopra A K and Goel R K. Capacity-demand-diagram methods based on inelastic design spectrum[J]. Earthquake Spectra,1999,15(4):636-656.
    [73]Gupta B and Kunnath S K. Adaptive Spectra-based Pushover Procedure for Seismic Evaluation of Structures[J]. Earthquake Spectra,2000,16(2):367-391.
    [74]Chopra A K and Goel R K. A Modal Pushover Analysis Procedure for Estimating Seismic Demands for Buildings[J]. Earthquake Engineering and Structural Dynamics,2002, 31(3):561-582.
    [75]Chopra A K and Goel R K. Statistics of single-degree-of-freedom estimate of displacement for pushover analysis of buildings[J]. Journal of Structural Engineering, ASCE,2003,129(4):459-468.
    [76]Chopra A K, Goel R K and Chinatanapakdee C. Evaluation of a modified MPA procedure assuming higher modes as elastic to estimate seismic demands[J]. Earthquake Spectra,2004,20(3):757-778.
    [77]Chopra A K and Goel R K. Evaluation of model and FEMA pushover analyses:SAC buildings[J]. Earthquake Spectra,2004,20(1):225-254.
    [78]Chopra A K and Goel R K. Evaluation of model pushover analysis to compute member forces[J]. Earthquake Spectra,2005,21(1):125-139.
    [79]Kalkan E and Kunnath S K. Adaptive model combination procedure for nonlinear static analysis of building structures[J]. Journal of Structure Engineering,2006, 132(11):1721-1731.
    [80]Kunnath S K and Kalkan E. Evaluation of seismic deformation demands using nonlinear procedures in multistory steel and concrete moment frames[J]. Journal of Earthquake Technology,2004,41(1):159-181.
    [81]Asprone D, Frascadore R, Ludovico M D et al. Influence of strain rate on the seismic response of RC structures[J]. Engineering Structures,35:29-36.
    [82]叶燎原,潘文.结构静力弹塑性分析(push-over)的原理和计算实例[J].建筑结构学报,2000,21(1):37-51
    [83]杨溥,李东,李英民等.抗震结构静力弹塑性分析(Push-over)方法的研究进展[J].重庆建筑大学学报,2000,22:87-92.
    [84]侯钢领,何政,吴斌,欧进萍.钢筋混凝土结构的屈服位移Chopra能力谱损伤分析与性能设计[J].地震工程与工程振动,2001,21(3):29-35.
    [85]王威,孙景江.基于改进能力谱法的位移反应估计[J].地震工程与工程振动,2003,23(6):22-43.
    [86]李刚,刘永.不同加载模式下不对称结构静力弹塑性分析[J].大连理工大学学报,2004,44(3):350-355.
    [87]尹华伟,易伟建.结构地震反应Pushover位移形状向量的选取[J].湖南大学学报,2004,31(5):88-93.
    [88]刘畅,邹银生,陈敏.偏心结构考虑扭转的三维Pushover分析[J].建筑科学与工程学报,2005,22(2):47-50.
    [89]吕西林,朱杰江.高层建筑结构推覆分析及对设计的启示[J].建筑结构学报,2005,26(6):100-107.
    [90]侯爱波,汪梦甫,周锡元.Pushover分析方法中各种不同的侧向荷载分布方式的影响[J].世界地震工程,2007,23(3):120-128.
    [91]门进杰,史庆轩,周琦.建筑结构考虑刚度变化的Pushover水平侧向力分布[J].哈尔滨工业大学学报,2009,41(10):184-187.
    [92]ASCE. (2005a). Minimum design loads for buildings and other structures[S]. ASCE 7-05/ANSI A58, Reston, Va.
    [93]Menchel K. Progressive collapse:comparison of main standards, formulation and validation of new computational procedures[D]. Bruxelle:Universite Libre De Bruxelles,2009.
    [94]Cundall P A, Stract 0 D L. A distinct numerical model for granular assemblies[J]. Geotechnique,1979,29(1):47-65.
    [95]Meguro K, Hakuno M. Fracture analysis of concrete structures by the modified distinct element method[J]. Structural Engineering/Earthquake Engineering,1989, 6(2):283-294.
    [96]孙利民,秦东,范立础.扩展散体单元法在钢筋混凝土桥梁倒塌分析中的应用[J].土木工程学报,2002,35(6):53-58.
    [97]王强,吕西林.框架结构在地震作用下倒塌的离散单元法仿真分析[J].地震工程与工程振动,2006,26(6):77-82.
    [98]张富文,吕西林.框架结构不同倒塌模式的数值模拟与分析[J].建筑结构学报,2009,30(5):119-125.
    [99]侯健.考虑块体间碰撞作用的混凝土框架结构空间倒塌反应分析[J].工程力学,2010,27(6):89-97.
    [100]顾祥林,印小晶,林峰,王英.建筑结构倒塌过程模拟与防倒塌设计[J].建筑结构学报,2010,31(6):179-187.
    [101]王勖成.有限单元法[M].北京:清华大学出版社,2003:1-2.
    [102]Sun J S, Lee K H, Lee H P. Comparison of implicit and explicit finite element methods for dynamic problems[J]. Journal of Material Processing Technology,2000, 105(1-2):110-118.
    [103]江晓峰,陈以一.大跨桁架体系的连续性倒塌分析与机理研究[J].工程力学,2010,27(1):76-83.
    [104]陆新征,江见鲸.世界贸易中心飞机撞击后倒塌过程的仿真分析[J].土木工程学报,2001,34(6):8-10.
    [105]Isobe D, Tsuda M. Seismic collapse analysis of reinforced concrete framed structures using the finite element method[J]. Earthquake Engineering and Structural Dynamics,2003,32(13):2027-2046.
    [106]陆新征,林旭川,叶列平,李易,唐代元.地震下高层建筑连续倒塌数值模拟研究[J].工程力学,2010,27(11):64-70.
    [107]Kwasniewski L. Nonlinear dynamic simulations of progressive collapse for a multistory building[J]. Engineering Structures,2010,32(5):1223-1235.
    [108]卢啸,陆新征,张万开等.特大地震作用下超高层建筑的倒塌模拟[J].中国科学,2011,41(11):1405-1416.
    [109]刘传卿.钢框架结构连续性倒塌分析模型及应用[J].北京工业大学学报,2011,37(1):109-115.
    [110]梁仁杰,吴京,王春林等.考虑P-Δ效应的结构地震倒塌及影响因素分析[J].建筑结构学报,2013,34(2):69-75.
    [111]Munjiza A, Owen D R J, and Bicanic N. A combined finite-discrete element method in transient dynamics of fracturing solids[J]. Engineering Computions,1995, 12(2):145-174.
    [112]Munjiza A, Bangash T, and John N W M. The combined finite-discrete element method for structural failure and collapse[J]. Engineering Fracture Mechanics,2004, 71 (4-6):469-483.
    [113]Paavilainen J, Tuhkuri J, and Polojarvi A.2D combined finite-discrete element method to model multi-fracture of beam structures[J]. Engineering Computions, 2009,26 (6):578-598.
    [114]Meguro K, and Tagel-Din H. Applied element method for structural analysis:theory and application for linear materials[J]. Struct Engrg./Earthquake Engrg.,2000, 17(1):21s-35s.
    [115]Meguro K, Tagel-Din H. Applied element simulation of RC structures under cylic loading[J]. Journal of structural engineering,2001,127(11):1295-1305.
    [116]Sasani M. Response of a reinforced concrete infilled-frame structure to removal of two adjacent columns[J]. Engineering Structures,2008,30(9):2478-2491.
    [117]喻莹,罗尧治.基于有限质点法的结构倒塌破坏研究Ⅰ:基本方法[J].建筑结构学报,2011,32(11):17-26.
    [118]喻莹,罗尧治.基于有限质点法的结构倒塌破坏研究Ⅱ:关键问题与数值算例[J].建筑结构学报,2011,32(11):27-35.
    [119]喻莹.基于有限质点法的空间钢结构连续倒塌破坏研究[D].杭州:浙江大学,2010.
    [120]童林旭.城市生命线系统的防灾减灾问题:日本阪神大地震生命线震害的启示[J].城市发展研究,2000,(3):8-12.
    [121]谢强,李杰.电力系统自然灾害的现状与对策[J].自然灾害学报,2006,15(4):126-131.
    [122]张子引,赵彪,曹伟炜,李勇,葛正翔.四川汶川8.0级地震电网受灾情况调研与初步分析[J].电力技术经济,2008,20(4):1-4.
    [123]李宏男,白海峰.高压输电塔-线体系抗灾研究的现状与发展趋势[J].土木工程学报,2007,40(2):39-46.
    [124]李宏男,王前信.大跨越输电塔体系的动力特性[J].土木工程学报,1997,30(5):28-36.
    [125]岳茂光,李宏男,王东升,翟桐.行波激励下输电塔-导线体系纵向地震反应分析[J].中国电机工程学报,2006,26(23):145-150.
    [126]全伟,李宏男,岳茂光.多点激励下输电塔-导线体系纵向地震反应分析[J].中国电机工程学报,2008,27(10):75-80.
    [127]沈国辉,孙炳楠,何运祥等.大跨越输电塔线体系的地震响应研究[J].工程力学,2008,25(11):212-217.
    [128]田利,李宏男,黄连壮.多点激励下输电塔-线体系的侧向地震反应分析[J].中国电机工程学报,2008,28(6):108-114.
    [129]李宏男,胡大柱,黄连状.地震作用下输电塔体系塑性极限状态分析[J].中国电机工程学报,2006,26(24):192-199.
    [130]任超.极端环境条件下大跨越输电塔线体系的动态响应分析[D].苏州:苏州大学,2010.
    [131]熊铁华,梁枢果,邹良浩等.大跨越钢管混凝土输电塔地震作用弹塑性分析[J].工程力学,2012,29(11):158-164.
    [132]Albermani F, Kitipornchai S, Chan R W K. Failure analysis of transmission towers[J]. Engineering Failure Analysis,2009,16(6):1922-1928.
    [133]黄庆华.地震作用下钢筋混凝土框架结构空间倒塌反应分析[D].上海:同济大学,2006.
    [134]GB50010-2010,混凝土结构设计规范[S].北京:中国建筑工业出版社,2011.
    [135]ABAQUS Inc. ABAQUS Analysis User's Manual[M]. American:ABAQUS INC.,2008.
    [136]尚兵,庄卓.基于ABAQUS梁单元的钢筋混凝土材料子程序[C].北京力学会第17届学术年会论文集,2011.
    [137]Vamvatsikos D, Cornell C A. Incremental dynamic analysis[J]. Earthquake Engineering and Structural Dynamics,2002,31(3):491-514.
    [138]Bracci J M, Kunnath S K, Reinhorn A M. Seismic performance and retrofit evaluation for reinforced concrete structures [J]. Journal of Structural Engineering,1997, 123(1):3-10.
    [139]Pankaj P, Lin E. Material modelling in the seismic response analysis for the design of RC framed structures[J]. Engineering Structures,2005,27(7):1014-1023.
    [140]赵国藩.高等钢筋混凝土结构学[M].北京:机械工业出版社,2005.
    [141]马千里,叶列平,陆新征,缪志伟.采用逐步增量弹塑性时程方法对RC框架结构推覆分析侧力模式的研究[J].建筑结构学报,2008,29(2):132-140.
    [142]Lee J, and Fenves G L. Plastic-damage model for cyclic loading of concrete structures[J]. Journal of Engineering Mechanics,1998,124(8):892-900.
    [143]D1 5073-2000.水工建筑物抗震设计规范[S].

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700