PHA基因原核表达载体的构建及功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了分析验证phaA、phaB和phaC三个基因的生物学功能,本实验采用PCR技术,从合成PHA的pseudomanas sp.菌株的亚克隆基因组片段中,分离出phaA、phaB和phaC三个基因片段,定向克隆至原核表达载体pBV220上,构建了三个原核生物表达载体pBV-A、pBV-B和pBV-C,通过对表达载体诱导表达,表达蛋白产物的SDS-PAGE分析、生物活性与功能分析,确定了基因phaA、phaB和phaC的生物学功能。结果表明:
     1.利用所提取的开放阅读框架的序列设计三对引物,采用PCR技术,从合成PHA的亚克隆片段中分离出phaA、phaB和phaC三个基因片段,经凝胶电泳分析表明,所克隆的三个基因分子量大小与推测的三个开放阅读框架中基因片段大小一致。
     2.将phaA、phaB和phaC片段双酶切后,定向克隆至原核表达载体pBV220,构建了三个原核表达载体pBV-A、pBV-B和pBV-C;经酶切分析表明,所克隆的三个基因phaA、phaB和phaC置于表达载体的正确阅读框架下。
     3.利用温度诱导外源基因的表达,发现诱导后2小时外源基因开始表达,所表达蛋白的量随着时间的增加而增加,当诱导时间为4小时后外源基因表达的增加量趋于平稳,确定4小时为较为合适的诱导时间。
     4.表达载体pBV-A、pBV-B和pBV-C经诱导表达,发现所表达的蛋白均为可溶性蛋白,没有包涵体出现;蛋白经SDS—PAGE分析表明,基因phaA表达的蛋白分子量为42kDa,与β—酮硫裂解酶分子量大小一致;基因phaB表达的蛋白分子量为26kDa,与乙酰乙酰CoA还原酶分子量大小一致;基因phaC表达的蛋白分子量为63kDa,与PHA合成酶分子量大小一致。
     5.将phaA、phaB和phaC基因表达的蛋白产物混和后,加入底物乙酰CoA,于230nm—240nm波长下,对反应产物进行扫描,发现在波长235nm处有明显的PHA特异吸收峰;表明混和物中有PHA的产生,所表达的蛋白具有生物学活性和特定功能,证实所克隆的phaA、phaB和phaC就是合成PHA所需的三个基因。
To indetify the function of phaA, phaB and phaC, three genes were amplifed from the subclone of pseudomanas sp. producing PHAs (Poly- 3 -hydroxyalkanoates) by PCR. PCR products were inserted into pBV-220 with double digestion of restriction enduonuclease. The expression vectors of pBV-A pBV-B and pBV-C were constructed by orientaional cloning. Through SDS-PAGE, bioactivity and function analysis of expressed protein, the function of phaA, phaB and phaC was confirmed. The results were as follows:
    1. Using primes designed according to the sequence of three extracted ORFs (openig reading frame). phaA, phaB and phaC were amplifed from the subclone of pseudomanas sp. producing PHA by PCR. The Gel Electrophoresis analysis showed that the molecular weights of cloned phaA, phaB and phaC were equal to fragment speculated from three ORFs.
    2. phaA, phaB and phaC were inserted to pBV-220 with double digest of restriction enduonuclease. The expression vectors of pBV-A, pBV-B and pBV-C were constructed by orientaional cloning. Indefication of expression vector with restriction enduonuclease digest showed that phaA phaB and phaC were in right ORFs.
    3. The analysis of expressed protein in different time showed that the exoteric gene began to express after 2 hour and the quantity of the protein increased with the time increase. But the quantity of the protein increase slowly when the exoteric gene was induced after 4 hour. The result showed that 4 hour was a proper time.
    4. The expressed result of pBV-A, pBV-B and pBV-C showed that the expressed protein was soluble and no inclusion body was been found. SDS-PAGE analysis show the molecular weight of protein expressed by phaA was 42kDa which was equal to 3-ketohilase , the molecular weight of protein expressed by phaB was 26kDa which was equal to acetoacetyl-CoA reductase, and the molecular weight of protein expressed by phaC was 63kDa which was equal to PHA synthase.
    5. Adding the acetyl -CoA to the protein mixture of phaA, phaB and phaC, the mixture was analysed with the wavelength of 230-240nm. The results showed that the absorption peak for PHA could be found at the wavelength of 235nm. From all facts given above, it could be confirmed that three cloned genes have bioactivity and biological function synthesizing PHA.
引文
1. Ye Liang,Li Cong & Song Yanru. Construction of Plant seed-specific expression vectors PSCB and the obtainment of transgenic Brassica napus H165 expressing ploy-3-hydrobutyrate synthetic genes. Chinese science Bulletin. 2000,45(13):1206-1230.
    1. Anderson, A.J.,Dawes, E.A..Occurrence, metabolism, metabolic role and industrial use of bacterial polyhydroxyal-kanoates. Mcrob. Rev. 1990,54:450.
    2. Dieter Jendtossek, Andtea Frisse, Ssterid Behtends, Meike Andermann, Hartnut D. Kratzin,Thomas Stanislawski, and Hans G. Schlegel. Biochemical and molecular characterization of the pseudomonas lemoignei polyhydroxyalkanoate depolymerase system. Journal of bacteriology. 1995,2:596~607.
    3. Poirier Y, Nawrath C.. Production of polyhydroxyalkanoates, a family of biodrgradable and elastomers,in bacteria and plants, Bio/Techology. 4995,13:142~150.
    4. Dowes E A, Senior P J.. The role and regulation of energy reseve polymers in microorganisms.Adv microb Physio. 1973,10:135~138.
    5. Lemoigne M.. Products of dehydration and of polymerization of b-hydroxybutyric acid. Bull Soc Chem Biol, 1926,8:770~782.
    6. Lee, S. Y..Bacterial polyhydroxyalkanoates. Biotechno. Bioeng, 1996, 49:1~14.
    7. Schubert P, Steinbuchel A, Schlegel H G. Cloning of the Alcaligenes eutropbus genes for synthesis of poly-β-hydroxybutyrate(PHB) and synthesis of PHB in Escherichia coli. J Bacteriol. 1988,170:5838~5847.
    8. Matsusaki H, Abe H, Doi Y. Biosynthesis and properties of poly(3-hydroxybutyrate-co-3-hydroxyalkanoates) by recombinant strains of Pseudomonas sp. 61-3. Biomacromolecules.2000;1(1):17~22.
    9. Matsusaki H, Abe H, Taguchi K, Fukui T, Doi Y. Biosynthesis of poly (3-hydroxybutyrate-co-3-hydroxyalkanoates) by recombinant bacteria expressing the PHA synthase gene phaC1 from Pseudomonas sp.61-3. Appl Microbiol Biotechnol, 2000,53(4):401~409.
    10. Zhang S, Kamachi M, Takagi Y, Lenz RW, Goodwin S. Comparative study of the relationship between monomer structure and reactivity for two poly hydroxyalkanoate synthases. Appl Microbiol Biotechnol, 2001,56(1-2):131-136.
    11. de Roo G, Kellerhals MB, Ren Q, Witholt B. Kessler B, Production of chiral R-3-hydroxyalkanoic acids and R-3-hydroxyalkanoic acid methylesters via hydrolytic degradation of polyhydroxyalkanoate synthesized by pseudomonads. Biotechnol Bioeng,2002,20;77(6):717~722.
    12. Durner R, Witholt B, Egli T. Accumulation of Poly[(R)-3-hydroxyalkanoates] in Pseudomonas oleovorans during growth with octanoate in continuous culture at different dilution rates.Appl Environ Microbiol, 2000,66(8):3408~3414.
    13. Kraak M N, Kessler B, Witholt B. In vitro activities of granule-bound poly (R)-3-hydroxyalkanoate polymerase C1 of Pseudomonas oleovorans-development of an
    
    activity test for medium-chain-length-poly(3-hydroxyalkanoate)polymerases. Eur J Biochem, 1997,250(2):432~439.
    14. Schubert P, Steinbuchel A, Schlegel H G. Cloning of the Alcaligenes eutrophus genes for synthesis of poly-β-hydroxybutyrate(PHB) and synthesis of PHB in Escherichfa coli. J Bacteriol, 1988,170:5838~5847.
    15. Peoples O P, Sinskey A J. Poly-β-hydroxybutyrate(PHB)biosynthesis in Alcaligenes eutrophus H16. J Biol Chem, 1989,264(26):15298~15303.
    16. Solaiman D K, Ashby R D, Foglia T A. Medium-chain-length poly(beta-hydroxy alkanoate) synthesis from triacylglycerols by Pseudomonas saccharophila.Curr Microbiol,1999,38(3):151~154.
    17. Oliver P.People and Anthony J. Sinskey. Poly-β-hydroxybutyrate(PHB) biosynthesis in Alcaligenes eutrophus H16, The journal of biological chemistry.264(26):15298-15303.
    18. Hiromi Matsusaki, Sumihide Manji, Kazunori Taguchi,Mikiya Kato,Toshiaki Fukui,Yoshiharu Doi. Cloning and molecular analysis of the ploy(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyalkanoate)biosynthesis genes in Pseudomonas sp. strain 61-3. Jouranal of bacteriology, 1998,10:6459-6467.
    19. Mukai K, Yamada K,Doi Y. Kinetics and mechanism of heterogeneous hydrolysis of poly[(R)-3-hydroxybutyrate] film by PHA depolymerases. Int J Biol Macromol. 1993,15(6):361~366.
    20. Kim do Y, Nam J S, Rhee Y H. Characterization of an Extracellular Medium-Chain-Length Po-ly(3-hydroxyalkanoate) Depolymerase from Pseudomonas alcaligenes LB19. Biomacromo lecules.2002,3(2):291~296.
    21. Lee S Y.. Plastic bacteria? progress and prospect for polyhydroxyalkanoate production in bacteria. Tibtech, 1996, 14: 431-438.
    22. Poirier Y, Dennis D E, Klomparens K. Perspectives on the production of polyhydroxyalkanoates in plants. FEMS Micrbiol Rev, 1992,103:237~246.
    23. Poirier Y, Dennis D E, Klomparens K, Somerville. Polyhydroxybutyrate a biodegradable thermoplastic produced in transgenic plants. Science, 1992,256:520~523.
    24. Padgatte S R. Strategies for production of PHA polymers in plants. Annul Meeting of ASPP&CSPP—Symposia Minisymposia. Plant Physiology. 1997, 114(Suppl):3.
    25. Poirier Y, Schechtman L A, Satkowski M M..Synthesis of high molecular weight poly [+]-(-)-3-hydroxybutyrate in transgenic Arabidopsis thaliana.Plant Cell Int J Biol Macromol, 1995,17:7~12.
    26. Nawrath C, Poirier Y, Somerville C. Targeting of the polyhydroxybutyrate biosynthetic pathway to the plastics of Arabidopsis thaliana in high levels of polymer accumulation. Proc Natl Acad Sci USA, 1994,91:12760~12764.
    27. Nawrath C, Somerville C R. Plastid targeting of the enzymes required for the production of polyhydroxybutyrate in high plants. 1994,26(1):21-27.
    28. White K A..Targeting of bacterial PHB enzymes to plant plastids. In: 4th International Congress of Plant Molecular Biology Organized by the International Society for Plant
    
    Molecular Biology. Amsterdam. Dordrecht: Kluwer Academic Publish, 1994.
    29. White K A.Targeting of bacterial PHB enzymes to plastids. Plant Physiology, 1994,105(Suppl):114.
    30. Smith E.The production of poly—β—hydroxybutyrate in transgenic oil seed rape plants. In: 4th International Congress of Plant Molecular Biology Organized by the International Society for Plant Molecular Biology. Amsterdam. Dordrecht:Kluwer Academic Publish, 1994.
    31. Ashby RD, Foglia TA, Solaiman DK, Liu C, Nunez A. Eggink G, Viscoelastic properties of linseed oil-based medium chain length poly(hydroxyalkanoate) films:effects of epoxidation and curing. Int J Biol Macromol. 2000,27(5):355~361.
    32. Bohmert K, Balbo I, Steinbuchel A, Tischendorf G, Willmitzer L. Constitutive Expression of the beta -Ketothiolase Gene in Transgenic Plants. A Major Obstacle for Obtaining Polyhydroxybutyrate-Producing Plants. Plant Physiol. 2002,128:1282~1290.
    33.谢安勇,崔晓江,宋艳茹.phbB,phbC基因克隆、序列分析及植物表达载体的构建.植物学报,1995,37(8):581~588。
    34.雍伟东,梁铁冰,谢安勇.生物可降解塑料PHB的研究—phbB,phbC基因在大肠杆菌及马铃薯中的表达及对马铃薯植株的转化和检测.植物学报,1998,40(7):615~621。
    35.叶梁,李枞,宋艳茹.3—酮硫裂解酶基因phbA的克隆与序列分析及其功能检测.科学通报,1999,44(4):398~402。
    36.张中林,张景昱,李轶女等.油菜叶绿体基因组同源重组片段的克隆及phb基因定点整合载体的构建.植物生理学报,2001,27(3):235~242
    37. Muller-R6bert B T, Sonnewald U, Willmitzer L.Inhibition of the ADP—glucose pyrophosphorylase in transgenic potatoes leads to sugar—storing tubers and influences tuber formation and expression of tuber storage protein genes. EMBO J, 1992,11:1229~1238.
    38.叶梁,李枞,宋艳茹.种子特异性表达载体pSCB和pSCAB的构建及表达聚羟基丁酸合成相关基因的转基因油菜的获得.科学通报,2000,45(5):516~521。
    39.张景昱,苏宁,张中林,赵华燕,朱生伟,宋艳茹.通过叶绿体工程表达聚3—羟基丁酸酯合成相关基因.科学通报,2002,47(11):845~849。
    40. Heifetz P B. Genetic engineering of the chloroplast. BiosciBiotechnol 8iochem, 2001,65(7): 1688~1691.
    41. Zbang J Y, Ye L, Li L, et al.. Obtainment of transgenic tobacco harboring phbA, phbB and phbC genes by twice transformation. Acta Bot Sin, 2001, 43(1): 59~62.
    42. Kindle K L, et al. High-frenquency transformation of Chlamydomonas reinhardt [J]. Proc Natl Acad Sci USA, 1990, 87, 1228~1232.
    43. Sidoro V A, Kasten D. Pang S Z., et al..Stable chloroplasts transformation in potato:use of green flourenscent protein as a plastie marker [J] .Plant J, 1999,19:209~216.
    44. Sugita M. The choroplast genome[J].Plant Mol Biol, 1992, 19:149~168.
    45. Sugita M, Sugiura M. Regulation of gene expression in chloroplasts of higher plants [J].Plant Mol Biol, 1996, 32: 315~326.
    46. Allison L A, Simon L D, Maliga P. Deletion of rpoBreveals a second distinct transcription
    
    system in plastids of higher plants [J]. Mol Gen Genet, 1990, 221: 245~250.
    47.侯丙凯,于惠敏,夏光敏.用于叶绿体遗传化的表达载体.遗传,2002,24(1):100~103。
    48. Svab Z, Maliga P. High-frequency plastid transformation in tobacco by selection for a chimeric aadA [J].Proc NatI Acad Sci USA, 1993,90:913~917.
    49. Carrer H, Hockenberry T N, Svab Z, et al.. Tissue-and stage-specific modulation of RNA editing of the psbF and psbL transcript from spinach plastids-a new regulatory mechanism. Mol Gen Genet, 1993,240:238~244.
    50. Fox J L.. Plants may get the bugs out of plastics making. ASM news, 1998,64(9):480~491.
    51. Padgatte S R.Strategies for production of PHA polymers plants. Annul Meeting of ASPP&CSPP-Symposia. Plant Physiology, 1997,114(Suppl):3~7.
    52. struhl K, Cameron J R, Davis R W..Functional genetic expression of eukaryotic DNA in Escherichia coli. Proc. Natl Acd, Sci, USA. 1976 73:1471~1475.
    53. Vapnek D, Hautala J A, Jacobson J W et al.. Expression in Escherichia coli K-12 of the structural gene of for catabolic dehydroquinase of Neurospora crassa. Proc. Natl. Acad.Sci. USA. 1977,74(8):508~512.
    54. Chang A C Y, Nunberg J N, Kaufman R J et al.. Phenotyic expression in E.coif of a DNA sequence coding for mouse dihydrofolate reductase. Nuture, 1978,275:617~624.
    55. Guarante L, Roberts T M and Ptashne M.A technique for expression ekarytic genes in bacteria.science, 1980,209:1428~1430.
    56. Davis J and Smith D I. Plasmid determined resistance to antimicrobial agents. Ammu, revievw, Microbiol, 1978,32:69~71.
    57. Datta N, Plasmid classification:Incompatibility grouping. In plasmids of medical.environmental and commercial inprotance, 1979,3.
    58. Russell D R, Bennett G N. Construction and analysis of in vivo activity of E.coil promoter hybrids and promoter mutants that alter the-35 to-10 spacing. Gene, 1982,20:231~243.
    59. Yang Y G, Zhang H T, Tong Q, Yang Y H, Wang Y, Yeng S L, Gong Y. Construction of a novel engineering stranin E. coli G830, Which is adoptable to high-cell-density fermentation. Acta Biochimica et Biophysica Sinica, 2001,33(3):296~302.
    60. Yang Y G, Tong Q, Hu T S,Qan YC, Yang S L, Gong Y. The application of a movel lytic system to the recovery of recombinant proteins in E.coli.Acta biochimica et Biphysica Sinica, 2000,32(3):211~216.
    61. Tong Q, Yang, Y G, Zhang H T, Chen Y, Yang S L, Gong Y. The thioredoxin reductase-deficient E.coli mutant enchances expression into solution of recombinant proteins containing Cysresidues. Acta Biochimica et Biphysica sinica, 2001,33(1),31~34.
    62. Ahamirano M.,Golbik R, zahn R et al..folding chromatography with immobilized mani-chaperones. Proc Natl Acad Sci, USA, 1997,94:3576~3578.
    63. Rozema H, Oellman S H.Artifical Chaperone-assisted refolding of denatured-reduced lysozyme:modulation of the competition between renaturation and
    
    aggregation. Bachemistry, 1996,35:15760~15771.
    64. Holmgren A. Thioredxion and glutaredoxin systems. J Biol Chem, 1989, Aug25;264(24)1363~1366.
    65. Hirota K,Matsui M, Murata M, Takashima Y, Cheng FS, Itoh T, Fukuda K, Junjin Y..Nucleoredoxin, glutaredoxin, and thioredoxin dirrerentially regulate NF-kappaB, ap-1, AP-1, and CREB activation in hek293 cells. Biochem Biophys Res commun 2000 Jul 21,274(1):177~182.
    66. Kiefhaher T, Rudolph R, Kohler H, et al..Protein aggregation in vitro and in vivo:a quantitative model of the kinetic competiton between folding and aggregaton. Biol technology, 1991,9:825~829.
    67. Xie Y, Wetlaufer D B. Control of aggregation in protein refolding:the temperature-leap tactic. Protein Sci, 1996,5(3):517~523
    68. Guise A D, West S M, Chaudhuri J B. Protein folding in vivo and renaturation of recombinant proteins from inclusion bodies. Mol Biotech, 1996,6(1):53~64.
    69. Sadana A. Protein refolding and inactivation during biseparation:bioprocessing implications. Biotech Bioeng, 1995,48(5):481~489.
    70. Thomas J G, Ayling A, Baney X F. Molecular chaperones, foldingcatalysts and the recovery of active recombinat protens from E. coli:to fold or refold. Appl biochem biotechnol, 1997,66(3):197~238.
    71. Elizabeth F. Karan, Brandy S. Russell, Kara L. Bren. Characterization of Hydrogenobacter ther mophilus cytochromes c552 expressed in the cytoplasm and periplasm of E.coli.Journal of Biological Inorganic Chemistry, 2002,7(3):262~270.
    72. Metheringham R., Tyson K. L., Crooke H., et al.. Effects of mutations in gemes for proteins involved in disulphide bond formation in the periplasm on the activities of anaerobically induced electron transfer chans in E. coli K12. Molecular Genetics and Genomics, 1996,253(27):95~102.
    73. Stathopoulos C., Georgiou G., Earhart C. F..Characterization of E.coli expression an Lpp'OmpA(46-159)-PhoA fusion protein localized in the outer membrane. Applied Microbiology and Biotechnology, 1996,45:112~119.
    74. Van den Hombergh J. P. T. W., Fraissinet-Tachet L., Van de Vondervoort P. J. I., et al..Production of the homologous pectin lyase B protein in six genetically defined protease deficient Aspergillus niger mutant strains. Current Genetics ,1997,1(21):71~81.
    75. Johan R, Alex R.,Lothar S..Protein of soluble and active recombination murine interlukin-2 in E. coli:High level expression, Kil induced release ,and purification, protin expres puris. 1995,6:481~486.
    76. Pugsley A P, Bayan N, sauvonnet N. Disulfide bond formation in secercton pomponet Pulk provides a possible-explanation for the role of DsbA in pulluanase secretion. J Bacterial, 2001,193:1312~1319.
    77. Russel M, Model P, Holmgren A. Thioredoxin or glutaredoxin in Escherchia roli is essential for sulfare reduction but not for deqxyribonn pieotide
    
    synthesis. Jbacteril, 1990,172:1923~1929.
    78. Alticri M.,Suit J.L.,Fan M. L.J.,Luria S E.. Expression of the coined ColE1 Kil gene in normal and kil Escherichia coli .J bachteriol, 1986, 168:648~654.
    79. Pugsley A. P.,Schwartz M..Colicio E2 release:Lysis, Leakage or secretion?possible role of a phospholipase. EMBO M, 1984,3:2393~2397.
    80. Suit J L, Luzia S E..Expression of the kil gene of the ColEI plasmid in Escherichia coli kil~r mutants causes release of periplamid enzymes and of colicin without cell death.J Bacteriol, 1988,170:4963~4966.
    81. Chen J.D., Lai Shau Yan, Huang Shiang Long. Molecular cloning, characteriztion and sequencing of the hemolysin gene from edwardsiella tarda.Archives of Microbiology, 1996,165(1):9~17.
    82. Devireddy L. R., R. Raghavan, S. Ramachandran, et al.. The fusion protein of peste des petits ruminants virus is a hemolysin. Archives of Virology, 1999,144(24):1241~1247.
    83. Mollenkopf H.J., Gentschev I., A. Bubert, et al.. Extracellular Pagc-Hlya fusion protein for the generation and identific of salmonella-sepcific antibodies. Applied Microbiology and Biotechnology, 1996,45(25): 629~637.
    84. Pratap J., Dikshit K. L..Effect of segnal peptide changes on the extracellular processing of streptokinase from E.coli requirement for secondary structure at the cleavage junction.Molecular Genetics and Genomics (formerly Molecular and General Genetics MGG),1998,258(28): 326~333.
    85. Anne Fjellbirkeland, Vahid Bemanian, Ian R. McDonald, et al.. Molecular analysis of an outer membrane protein, MopB, of methylococus capsulatus(Bath) and structural comparisons with proteins of the Ompa family. Archives of Microbiology, 2000,173: 346~351.
    86. Van der Wal F.J., C. M. ten Hagen-Jongman, B.Oudega, et al.. Optimization of bacteriocin-release-protein induced protein release by E.coli:extracellular production of the periplasmic molecular chaperone FaeE. Applied Microbiology and Biotechnology, 1995,44:459~465.
    87. Johan R, Alex R, Lothar S..Protein of soluble and active recombinant mumine iterlukin 2 in E. coli:High level expression, Kil induced release, and purfication, protein expres purify, 1995,6:481~486.
    88. Mori H, Yano T. High density cultivation of biomass in fed-batch system with Do-stat.J chem. Eng, 1979,12:313~319.
    89. Konstantinov K, Kishimoto M. A balanced Do-stat and its application to the control acetic and excrition by recombinat Escherichia Coli. Biotechnol Bioeng, 36:750~758.
    90. Riesenberg D, schulz V, Knorre W A, et al..High cell density cultivation of Escherichia coli at controlled specific growth rate..Journal of Biotechology, 1991,20:17~27.
    91. Fudu Miao, Dhinakar S.. Over expression of cloned genes:Using recombinant Escherichia coli regulated by a T_7 promoter:two-stage continuous cultures and model sitmulations.Biotechol Bioeng, 1993,42:74~80.
    92. Landwall P, Holme T..Removal of inhititors of bacterial growth by dialysis culture .J
    
    Gen Microbiol, 1995,103:345~352.
    93.方志友.合成PHA基因组克隆片段的序列分析及相关基因的分离.安徽农业大学,硕士论文,2002。
    94. Xie G, DeMarco R, Blevins R, et al..Storing biological sequence databases in relational form. Bioinfomties, 2000,16(3):288~289.
    95. Attwood T.K., Parry D.J..Introduction to bioinformatitcs Attwood T.K., Parry D. J.. 生物信息学导论(罗静初等译). 2002, 北京大学出版社。
    96. Gray W R. Disulfide structure of highly bridged peptide:A New strategy for analysis. Protein Science, 1993,2:1732.
    97.张智清,姚立红,侯云德.含P_RP_L启动子的原核高效表达载体的组建及其应用.病毒学报,1990,6(2):111~116.
    98.林万明.PCR技术操作和应用指南[M].北京:人民军医出版社,1993,249。
    99. Filichkin S A, Gelvin S B. Effect of diethyl sulfoxide concetrtion on specifity of primer matching in PCR. Biotechniques, 1992,12:828~830.
    100. Moreau A, Duez C, Dusant J. GC-rich template amplification by inverse PCR DNA polymerase and solvent effects. Methods Mol Biol,1997,67:47~53.
    101.张虹,蒋亚琴,张惠展.改进的PCR法克隆带小棒链霉菌cefD基因.华东理工大学学报,2002,28(3):252~255。
    102. Kruys V, Marinx O, Shaw G,et al..Translation blockade imposed by eytokine-derived UA-rich sequence, science,1989;245(4920):852.
    103. Kruys V, Wathelet M, Poupart P, et al..The 3'untranslated region of the human interon-beta mRNA has a inhibitory effect on translation.Proc Natl Acad Sci USA, 1987;84(17):6030.
    104. Novagen. pET system Manual[M]. 9th Edition, 2000.
    105. Ausubel FM, Brent R, Kingston R E, et al..Short protocols in molecular biology, third ed.Boston:john Wiley & Sons, Inc, 1995,625~658.
    106. Marchuk D. Drumm M. Saulino A. et al..Construction of T-vectors, a rapid and general system for direct cloning of unmodified PCR products.Nucl Acids Res, 1991,19(5):1154~1158.
    107.陈慰峰,李燕,王歙.肿瘤相关抗原基因HCA519在昆虫细胞中的表达和纯化.2002,18(1):50~54。
    108. Marchuk D, Drumm M, Saulino A, et al..Construction of T-vectors, a rapid and general system for direct cloning for direct cloning of unmodified PCR products. Nucleic Acids Res, 1991,19:1154~1156.
    109. Tessier LH, Sondermeyer P, Faure T,et al..The influence of mRNA primary and secondary structure on human IFN-gamma gene expression in E. coli.Nuel Acids RES, 1984;12(20):7663~7667.
    110. De Smit M H, Van Duin J. Control of translation of by mRNA secondary struture in Escherichia coli,A quantitative analysis of literature date. J mol biol,1994;244(2):144~148.
    111.刘红岩,马雁冰,李智华,姬秋彦,周丽,郭仁.人白介素—6基因的克隆表达和纯化的研究.白求恩医科大学学报,1999,25(1):14~19。
    
    
    112.白俊杰,马进,简清,李新辉,罗建仁.鲤鱼生长激素基因克隆及原核表达.中国生物化学与分子生物学报,1999,15(3):409~412。
    113.吴乃虎.基因工程原理(第二版):上册,北京科学出版社,1999,229~230。
    114. Ganoza M C, Kofoid E C, marlie P, et al..Potentail secondary structure at translatior-initiation sites. Nucleic Acids Res, 1987,15:345~360.
    115. Shaw G, Kaman R.A conserved AU sequence from the 3'untranslated region of GM-CSF mRNA mediates selective mRNA degradtion .Cell,1986,46(5):659~662.
    116.张平武.重组αβ干扰素在大肠杆菌中高效表达及其释译调控研.第二军医大,博士论文,1994。
    117. Desmit M H,Van D J. Control of translation by mRNA secondary structure in Escherchia coli:A quantative analysis of literature data. J Mol Biol,1994,244:144~155.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700