黄颡鱼微卫星标记的开发及其遗传连锁图谱的构建
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄颡鱼(Pelteobagrus fulvidraco Richardson)属鲶形目(Siluriformes)、鲿科(Bagridae)、黄颡鱼属(Pelteobagrus),广泛分布于我国长江、黄河、珠江及黑龙江各水系。近年来已成为我国一些地区的优质养殖鱼类。针对野生黄颡鱼群体遗传结构、遗传多样性及黄颡鱼遗传连锁图谱等遗传背景的研究对于黄颡鱼种质资源的保护和利用及最终实现黄颡鱼良种的培育具有重要的基础意义。本研究在黄颡鱼微卫星标记开发的基础上,对采集于4个水系的12个野生黄颡鱼群体的遗传结构和遗传多样性进行了分析,并采用AFLP标记和微卫星标记构建了黄颡鱼的第一代遗传连锁图谱。主要研究结果如下:
     (1) FIASCO法开发黄颡鱼微卫星引物
     物种特异性微卫星标记是对该物种开展各项遗传背景研究的基础。本研究采用FIASCO法对黄颡鱼微卫星引物进行了开发和筛选,实验中共挑取594个阳性克隆,77个克隆送出测序,75个测序成功获得完整序列,其中含有符合要求的微卫星重复序列(二核苷酸重序列复次数大于等于8,三核苷酸序列复次数大于等于6,四核苷酸序列复次数大于等于6)的克隆序列54个,占测序克隆总量的70.13%。
     54个含有微卫星的序列共设计出43对引物,有20对引物能够稳定地扩增出预期大小的目的条带,多态性检测显示其中16个位点具有多态性,4个位点在检测群体中呈单态性。16个多态位点中有10个位点符合哈温平衡,其余6个位点经Bonferroni校正后显著偏离哈温平衡(P值为0.0000至0.0059)。16个多态性位点的等位基因数为3-11个,平均等位基因数5.4个;期望杂合度(He)范围为0.6372至0.8772,平均期望杂合度0.7521;观测杂合度为(Ho)范围为0.1250至0.9500,平均观测杂合度0.5990;多态信息含量(PIC)范围为0.3841至0.8809,平均多态信息含量0.6534。
     (2)数据库搜索法筛选黄颡鱼微卫星标记
     与物种功能基因相对应或本身就是功能基因一部分的Ⅰ型标记在鱼类的遗传学研究尤其是对具有良好经济性状的品种选育种中是非常有效的分子标记,本研究中利用GenBank公共数据库中搜索到的6条含有微卫星序列的黄颡鱼功能基因序列设计出9对引物,有5对引物可以扩增出稳定的目的条带。多态性检测结果显示,有3个位点具有多态性,位点EST01和EST07在检测群体呈单态性。3个微卫星位点的等位基因数为2-4个,观测杂合度为0.5750-0.9750,期望杂合度范围为0.4949-0.7516,多态信息含量在0.3693-0.6940之间,除位点EST06符合哈温平衡外,其余2个位点经Bonferroni校正后均显著偏离哈温平衡(P值分别为0.0000和0.0062)。3个多态性微卫星标记均为Ⅰ型微卫星标记。
     (3)黄颡鱼野生群体遗传多样性和遗传结构的微卫星分析
     遗传多样性和遗传结构是一个物种的重要特征,反映一个物种适应环境的能力和对环境变迁持续进化的潜力,同时也反映了生态适应进化、环境变迁与自然选择的效应。本研究利用8个微卫星标记对采自4个水系的12个野生黄颡鱼群体(共460个样本)进行了群体遗传多样性和遗传结构分析,12个黄颡鱼野生群体的期望杂合度(He)在0.6222-0.6940之间,观测杂合度(Ho)在0.4489-0.9611之间,等位基因丰度AR在3.2794-4.1543之间,有效等位基因数在3.1-4.4之间,多态信息含量PIC为0.4968-0.6378。12个黄颡鱼遗传多样性普遍处于较高水平,但采自珠江水系的西江群体XJR的遗传多样性最低,并在位点Pf428显示出单态性。
     NJ聚类和UPGMA聚类结果均显示12个群体被分为3支:西江群体为独立的一支,巢湖群体CHL、黑龙江干流群体HLJR和洪泽湖群体HZL构成第二支,其余8个位于长江中下游的黄颡鱼群体组成了第三支,三个分支的划分恰好与各群体所处水系的位置相同。基于遗传距离DA构建的带有自展值的UPGMA聚类树也显示出相同的聚类结果。分子方差分析显示总变异的11.69%来自于三个黄颡鱼地理分支间的变异,6.02%来自于地理组群内群体间变异,而群体内变异占总变异的82.29%,黄颡鱼三个地理分支间的遗传分化系数为0.1771(P<0.001),遗传分化程度为中度。
     群体间遗传距离与地理直线距离的Mantel检测结果显示,12个黄颡鱼群体间的遗传距离(Nei氏无偏距离)与地理直线距离的对数之间无显著相关性(r=0.3937,R2=0.155,P=0.9200),黄颡鱼群体间的遗传距离不符合地理隔离模式。
     (4)黄颡鱼遗传连锁图谱的构建
     遗传连锁图谱的构建是黄颡鱼遗传学研究的一个重要方向,为进一步了解黄颡鱼基因组成、基因克隆及重要经济性状定位奠定基础,实现对黄颡鱼遗传改良和新品种培育提供资料。本研究利用81对AFLP引物组合产生的411个多态性位点和15个微卫星标记,以黄颡鱼单对亲本及其杂交F1代为作图群体,运用拟测交策略分别构建了黄颡鱼雌雄遗传连锁图谱。
     在黄颡鱼雄性连锁图谱中,100个AFLP标记组成了13个连锁群(遗传标记数量大于4)、6个三联体和7个连锁对,总图距为1142.2 cM。其中框架图总长度为813.2 cM,连锁群长度为17.1 cM至194.2 cM,标记间平均间隔距离为15.6 cM。雌性连锁图谱中,由75个标记组成的6个连锁群,7个三联体,13个连锁对,总图距为1115.8 cM。其中框架图长度为612.2 cM,连锁群长度介于60.3 cM至160.0 cM之间,标记间平均间隔距离为22.3 cM。由雄性和雄性连锁图谱估算的黄颡鱼基因组长度分别为1951.7 cM和2180.4 cM。所构建的雄性和雌性黄颡鱼框架图谱覆盖率分别为41.67%和28.08%。如果将三联体和连锁对也考虑进去,雄性和雌性黄颡鱼图谱总覆盖率则分别为58.53%和51.18%。
Yellow catfish(Pelteobagrus fulvidraco Richardson), a member of the family Bagridae of order Siluriformes, is widely distributed in most of water systems in China. Due to its high-quality meat, yellow catfish has become increasing important as a high-value species in aquaculture. Basic knowledge on the genetic diversity, population structure and linkage map of yellow catfish is essential to the effective conservation of wild germ plasm resource, further studies of genetics and marker-assisted breeding in this species. Here, we developed microsatellite loci from yellow catfish, and estimated the genetic diversity and population structure of the yellow catfish for 12 wild populations (N = 460 individuals from ten lakes and two rivers) based on eight polymorphic microsatellite markers. Meanwhile, a primary genetic linkage map of yellow catfish was also constructed. The main contents include:
     (1) Isolation of microsatellite loci from yellow catfish by FIASCO protocol
     Twenty microsatellite loci from yellow catfish(Pelteobagrus fulvidraco Richardson) have been isolated using the fast isolation by AFLP of sequences containing repeats (FIASCO) protocol, sixteen loci were polymorphic and four ones were monomorphic. Those polymorphic loci were characterized by genotyping 40 individuals. The observed number of alleles ranged from 3 to 11 with an average of 5.4 of each locus. The expected and observed heterozygosities ranged from 0.6372 to 0.8770 with a mean value of 0.7521 and from 0.1250 to 0.9500 with a mean value of 0.5990, respectively. And the polymorphic information content indexes were varied from 0.3841 to 0.8809 with an average of 0.6534. Among these polymorphic microsatellite loci, ten ones conformed to Hardy-Weinberg Equilibrium. These microsatellite markers would be useful for investigating the genetic diversity and population structure of yellow catfish.
     (2) Development of type I makers of yellow catfish based on Public Data Base
     Five microsatellite loci were obtained based on sequences of six microsatellite-containing genes by searching Genbank. Among these loci, three ones were polymorphic. The observed number of alleles ranged from 2 to 4. The expected and observed heterozygosities ranged from 0.4949 to 0.7516 and from 0.5750 to 0.9750, respectively. And the polymorphic information content indexes were varied from 0.3693 to 0.6940. Only one polymorphic loci conformed to Hardy-Weinberg Equilibrium. These typeⅠmarkers would play an important role in map construction, QTL analysis, gene mapping and marker-assisted selection of yellow catfish.
     (3) Population structure and genetic diversity of the yellow catfish inferred from microsatellite markers
     We estimated the genetic diversity and population structure of the yellow catfish for 12 wild populations (N=460 individuals from ten lakes and two rivers) based on eight polymorphic microsatellite markers. The expected and observed heterozygosities of these populations ranged from 0.6222 to 0.6940 and from 0.4489 to 0.9611, respectively. The mean number of alleles and the number of effective alleles were varied from 3.2794 to 4.1543 and from3.1 to 4.4, respectively. These genetic indices indicated the genetic diversity of wild yellow catfish populations was at a high level. However, the population XJR sampled from Xijiang River of Guangdong Province showed lowest level of genetic diversity and monomorphism at locus Pf428 was detected while other populations showing polymorphism at the locus.
     Cluster analysis revealed three clusters that reflected geographical separation and isolation, for each cluster represented one geographic group. Population XJR being located in Xijiang River in southern China formed a separate cluster. The large cluster included almost all populations in the middle and lower reaches of Yangtze River Basin with only one exception (the population CHL). Population CHL and the other two populations (HLJR and HZL) whose sits belong to northern river system of China formed the third cluster. AMOVA showed that a major portion (82.29%) of the total genetic variation resulted from the within-populations component, while among geographic groups variation and the variance among population within groups accounted for 11.69% and 6.02% of the total genetic variation, respectively. The differenciation among three geographic groups were highly significant (FST=0.1771, P<0.001). However, when we further analyzed correlation between genetic and geographical distances with the Mantel test, the result showed no significant correlation between genetic and geographical distances (r=0.3937, R2=0.155, P=0.9200).
     (4) A primary linkage map of yellow catfish based on AFLP and microsatellite markers
     Genetic linkage map is useful for genetic improvement and selective breeding of yellow catfish. Linkage maps were constructed using an intraspecific F1cross and amplified fragment length polymorphism (AFLP) markers.411 AFLP markers produced from eighty-one selected AFLP primer combinations and fifteen microsatellite markers were polymorphic in either of the parents and segregated in the progeny. Among these segregating markers,100 were mapped to 13 linkage groups, six triplets and seven doublets of the male map, covering a total of 1142.2 cM. The total length of male framework map was 813.2 cM with an average marker spacing of 14.2 cM. And 75 markers were assigned to six linkage groups, seven triplets and thrirteen doublets of the female map, covering a total of 1115.8 cM. The total length of female framework map was 612.2 cM with an average marker spacing of 28.3 cM. None of the fifteen microsatellite markers was assigned to the genetic maps. The estimated genome length of P. fulvidraco was 1951.7 cM for the male and 2180.4 cM for the female, respectively. Genome coverage was estimated to be 41.67% and 28.08% for the female and male framework maps respectively, rising to 58.53% (male) and 51.18% (female) when associated markers were included.
     The genetic maps presented here will serve as a basis for the construction of a high-resolution genetic map and mapping of economically important genes.
引文
1.常玉梅,李绍戊,梁利群,孙效文.微卫星标记的制备策略.中国生物工程杂志,2005:210-214
    2.车家甫.巢湖渔业资源保护利用现状和存在的问题.水产学杂志,1995,8(2):18-20
    3.戴晔,候水生,刘小林.Myostatin基因研究进展.畜牧兽医杂志,2005,2(6):12-14
    4.丁言伟,彭作刚,张训蒲,何舜平.黄颡鱼属两种鱼类的线粒体ND4基因序列变异性分析.水生生物学报,2006,30(4):413-419
    5.杜长斌,楼允东,沈俊宝,孙孝文.微卫星分子标记技术在鱼类遗传连锁图谱构建中的应用·上海水产大学学报,2000,19(3):254-258
    6.方耀林,汪登强,刘绍平,伍刚,廖伏初,陈大庆.长江中游湖泊中黄颡鱼线粒体DNA的遗传变异.中国水产科学,2005,12(1):56-61
    7.高泽霞,王卫民,周小云.DNA分子标记技术及其在水产动物遗传上的应用研究.生物技术通报,2007,(2):108-113
    8.耿德贵,张大生,程伟,邹寿昌,陈刚.黄颡鱼染色体的C-带、Ag-NORs、荧光带和复制带显带的研究.遗传,1999,(2):21-23
    9.郭金峰,王玉,马洪雨,岳永生.三个黄颡鱼群体遗传多样性及亲缘关系的微卫星标记分析.氨基酸和生物资源,2006,28(3):5-8
    10.郭昱嵩,王中铎,刘楚吾,陈志明,刘筠.9种常见笛鲷微卫星位点筛选与遗传多样性分析.热带海洋学报,2010,29(3):82-86
    11.过龙根,谢平,倪乐意,胡万明,李洪远.巢湖渔业资源现状及其对水体富营养化的响应研究.水生生物学报,2007,31(5):700-705
    12.蒋鹏,尹洪滨,张研,李大宇,孙效文.雄性普通黄颡鱼与所保护受精卵问的亲缘关系分析.动物学报,2008,54(5):798-804
    13.黎裕,贾继增,王天宇.分子标记的种类及其发展.生物技术通报,1999,(4):19-22
    14.李捷,李新辉,谭细畅,李跃飞,何美峰,罗建仁,林建志,苏少芳.广东肇庆西江珍稀鱼类省级自然保护区鱼类多样性.湖泊科学,2009,21(4):556-562
    15.李大宇,殷倩茜,侯宁,孙效文,粱利群.黄颡鱼(Pelteobagrus eupogon)不同生态地理分布群体遗传多样性的微卫星分析.海洋与湖沼,2009,40(4):460-469
    16.李红蕾,宋林生,王玲玲,胥炜,相建海.栉孔扇贝EST中微卫星标记的筛选.高技术通讯,2003,12:72-75
    17.李宏俊,刘晓,杜雪地,宋蕊,张国范,胡景杰,包振民.海湾扇贝微卫星标记开发及其分离方式分析.海洋科学,2009,33(12):4-8
    18.李捷,李新辉,贾晓平,李跃飞,何美峰,谭细畅,王超,蒋万祥.西江鱼类群落多样性及其演变.中国水产科学,2010,17(2):298-311
    19.李明芳,郑学勤.开发SSR引物方法之研究动态.遗传,2004,26(5):769-776
    20.李强,万建民SSRHunter,一个本地化的SSR位点搜索软件的开发.遗传,2005,27(5):808-810
    21.李思发,王强,陈永乐.长江、珠江、黑龙江三水系的鲢、鳙、草鱼原种种群的生化遗传结.构与变异.水产学报,1986,10(4):351
    22.林红,夏德全,杨弘.遗传连锁图谱及其在鱼类遗传育种中的应用.中国水产科学,2000,7(1):95-98
    23.刘汉勤,崔书勤,侯昌春,徐江,陈宏溪.从XY雌鱼雌核发育产生YY超雄黄颡鱼.水生生物学报,2007,31(5):718-725
    24.刘仁虎,孟金陵MapDraw在Excel中绘制遗传连锁图的宏.遗传,2003,25(3):317-321
    25.刘贤德,张国范.运用拟测交策略构建遗传图谱的理论依据及研究进展.海洋科学,2008,32(10):81-85
    26.刘晓慧,王义权.分子标记技术在水产动物研究中的应用.厦门大学学报(自然科学版),2008,47(增2):228-231
    27.刘彦,刘凌云.鲇鱼和黄颡鱼染色体高分辨G-带带型研究.北京师范大学学报(自然科学版),1987,(3):81-87
    28.刘云国,孙修勤.水产动物遗传连锁图谱的构建策略.海洋科学进展,2008,26(3):381-385
    29.刘臻,鲁双庆,张建社等.黄颡鱼微卫星标记筛选及特征分析.农业生物技术学报,2008,16(4):604-609
    30.鲁翠云,孙效文,梁利群AFLP分析黄颡鱼雌雄个体的遗传差异.水产学杂志,2007,20(2):24-28
    31.马洪雨,姜运良,郭金峰,岳永生.利用微卫星标记分析东平湖黄颡鱼的遗传多样性.激光生物学报,2006,15(2):136-139
    32.钱新娥,黄春根,王亚民,熊飞.鄱阳湖渔业资源现状及其环境监测.水生生物学报,2002,26(6):612-617
    33.曲若竹,侯林,吕红丽,李海燕.群体遗传结构中的基因流.遗传,2004,26(3):377-382
    34.沈国华.从洪泽湖环境状况看湖区未来养殖渔业的前景.江西水产科技,2006,107:2-5
    35.盛岩,郑蔚虹,裴克全,马克平.微卫星标记在种群生物学研究中的应用.植物生态学报,2002,26(增刊):119-126
    36.宋平,潘云峰,向筑,,胡珈瑞,胡隐昌,藜从利.黄颡鱼RAPD标记及其遗传多样性的初步分析.武汉大学学报(理学版),2001,47(2):233-237.
    37.孙效文,鲁翠云,贾智英,梁利群,曹顶臣.水产动物分子育种研究进展.中国水产科学,2009,16(6):981-990
    38.田燚,孔杰,王伟继.中国对虾遗传连锁图谱的构建.科学通报,2008,53(5):544-555
    39.童芳芳,汤明亮,杨星.用RAPD和SCAR复合分子标记对黄颡鱼属进行种质鉴定.水生生物学报,2005,29(4):465-468
    40.王伟,尤锋,高天翔,张培军.山东近海牙鲆(Paralichthys olivaceus)自然和养殖群体10个微卫星基因座位的遗传多态性分析.海洋与湖沼,2004,35(6):530-537
    41.王伟,尤锋,高天翔,张培军.鱼类微卫星标记的研究进展.海洋科学,2006,30(10):81-86
    42.王伟继,岳志芹,孔杰,王清印AFLP分子标记技术的发展及其在海洋生物中的应用.海洋水产研究,2005,26(1):80-84
    43.王小林.洪泽湖渔业现状及发展对策.现代渔业信息,2001,16(8):13-16
    44.王晓蕾,周勤.关于珠江流域水环境与生态安全问题的探讨.水利规划与设计,2005,(4):5-7
    45.王欣,张胜宇.洪泽湖渔业发展与生态环境保护的基本途径.2008,23(3):19-23
    46.吴勤超,梁宏伟,李忠,呼光富,罗相忠,沈子伟,邹桂伟.黄颡鱼微卫星标记的筛选及三个野生群体的遗传结构分析.生物技术通报,2010,(3):154-163
    47.肖调义,张学文,章怀云,唐湘北,苏建明,刘臻.洞庭湖四种黄颡鱼基因组DNA遗传多样性的RAPD分析.中国生物工程杂志,2004,24(3):84-89
    48.辛文婷,孙中武,尹洪滨,孙源.黄颡鱼雌雄差异的SRAP标记.东北林业大学学报,2009,37(5):112-113
    49.薛良义,孙升,肖章奎,杨巧一,叶放,童丽娟.大黄鱼肌肉生长抑制素基因微卫星序列多态性分析.中国生物化学与分子生物学报,2008,24(10):980-985
    50.杨严鸥,甘永成,姚峰.长江水系鱼类分布的模糊聚类分析.湖北农学院学报,1997,17(4):270-264
    51.俞菊华,李建林,曹丽萍,吴婷婷,杨弘.黄颡鱼Sox9基因的分离及分析.农业生物技术学报,2005,13(5):620-623
    52.岳志芹,王伟继,孔杰,戴继勋,王清印.分子标记构建中国对虾遗传连锁图谱的初步研究.高技术通讯,2004,14(5):88-93
    53.张云武,张亚平.微卫星及其应用.动物学研究,2001,22(4):315-320
    54.张增翠,侯喜林.SSR分子标记开发策略及评价.遗传,2004,26(5):763-768
    55.郑伟,徐彦山,王秀兰.应用RAPD和SCAR复合分子标志鉴定东北黄颡鱼.水利渔业,2007,27(11):11-12
    56.郑先云,郭亚平,马恩波AFLP分子标记技术的发展.生命的化学,2003,23(1):65-67
    57.钟业喜,陈姗.采砂对鄱阳湖鱼类的影响研究.江西水产科技,2005,101:15-18
    58.周汉书.长江渔业资源及其评价.资源科学,1984,(2):47-53
    59.周秋白,李风波,周莉.黄颡鱼与长须黄颡鱼种间的RAPD标记.水生生物学报,2006,30(4):482-485
    60.朱晓东,耿波,李娇,孙效文.利用30个微卫星标记分析长江中下游鲢群体的遗传多样性.遗传,2007,29(6):705-713
    61. Allen P J, Amos W, Pomeroy P P.,Twiss S D. Microsatellite variation in grey seals (Halichoerus grypus) shows evidence of genetic differentiation between two British breeding colonies. Molecular Ecology,1995,4:653-662
    62. Allendorf F, Ryman N, Utter F. Genetics and fishery management: Past, present and future. In: Ryman N and Utter F M eds., Population Genetics and Fishery Management. Washington:University of Washington Press,1987.1-20
    63. Altukhov Y P, Salmenkova E A. Stock transfer relative to natural organization, management and conservation of fish populations. In: Ryman N and F M Utter eds., Population Genetics and Fishery Management. Washington:University of Washington Press,1987.333-344
    64. Avise J C. Molecular Markers, Natural History and Evolution. New York: Chapman & Hall, 1994
    65. Balloux F, Logon-Moulin N. The estimation of population differentiation with microsatellite markers. Molecular Ecology,2002,11:155-165
    66. Baverstock P R and Moritz C. Sampling:Project Design. In:Hillis D M, Moritz C, Mable B eds., Molecular Systematics,2nd ed. Massachusetts:Sinauer Associates Press,1996.17-28
    67. Bierne N, Launey S, Naciri-Graven Y, Bonhomme F. Early effect of inbreeding as revealed by microsatellite analyses on Ostrea edulis larvae. Genetics,1998,55:190-195
    68. Botstein D, White R L, Skolnick M, Davis R W. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. The American Journal of Human Genetics,1980,32: 314-331
    69. Brookfield J F Y. A simple new method for estimating null allele frequency from heterozygote deficiency. Molecular Ecology,1996,5:453-455
    70. Brown B and Epifanio J. Nuclear DNA. In: Hallerman E M ed., Population genetics: principles and applications for fisheries scientists. American Fisheries Society:Bethesda, Maryland, 2003.101-123
    71. Bruford M W and Wayne R K. Microsatellites and their application to population genetic studies. Current Opinion in Genetics and Development,1993,3:939-943
    72. Callen D F, Thompson A D, Shen Y, Phillips H A, Richards R I, Mulley J C, Sutherland G R. Incidence and origin of "null" alleles in the (AC)n microsatellite markers. American Journal of Human Genetics,1993,52:922-927
    73. Callen D F, Thompson A D, Shen Y, Phillips H A, Richards R I, Mulley J C, Sutherland G R. Incidence and origin of null alleles in the (AC)n microsatellite markers. Am. J. Hum. Genet.1993,52: 922-927
    74. Carvalho G R and Hauser L. Molecular genetics and the stock concept in fisheries.In: Carvalho G R, Pitcher T J eds., Molecular Genetics in Fisheries. London:Chapman & Hall Press, 1995.55-80
    75. Cavalli-Sforza L L and Edwards A W E Phylogenetic analysis:models and estimation procedures. Evolution,1967,21:550-570
    76. Cavalli-Sforza L L. The DNA revolution in population genetics. Trends in Genetics, 1998,14(2):60-65
    77. Chakraborty R and Leimar O. Genetic variation within a subdivided population. In:Ryman N, Utter F M eds., Population Genetics and Fishery Management. Washington:University of Washington Press,1987.89-120
    78. Chakraborty R, Formage M, Guequen R and Boerwinkle E. Population genetics of hypervariable loci:analysis of PCR based VNTR polymorphism within a population.In:Burke T, Dolf G, Jeffreys A J, Wolff R eds., DNA fingerprinting:Approaches and Applications. Basel: Birkhauser Verlag Press,1991.127-143
    79. Cheng L, Liu L, Yu X, Wang D, Tong J. A linkage map of common carp (Cyprinus carpio) based on AFLP and microsatellite markers. Animal Genetics,2010,41(2):191-198
    80. Coimbra M R M, Kobayashi K, Koretsugu S, et al. A genetic linkage map of the Japanese flounder, Paralichthys olivaceus. Aquaculture,2003,220:203-218
    81. Crow J F, Kimura M. An Introduction to Population Genetics Theory. London:Harper & Row, 1970
    82. Crow J F. Basic concepts in population, quantitive and evolutionary genetics. New York: Freeman W H & Company,1986
    83. de Meeus T, Humair P,Crunau C, Delaye C, Renaud F. Non-Mendelian transmission of alleles at microsatellite loci:an example in Ixodes ricinus, the vector of Lyme disease. International Journal for Parasitology,2004,34:943-950
    84. Di Rienzo A, Peterson A C, Garza J C, Valdes A M,Slatkin M and Freimer N B. Mutational processes of simple-sequence repeat loci in human populations. Proceedings of the National Academy of Sciences,1994,91(8):3166-3170
    85. Dobrowolski M P, Tommerup I C, Blakeman H D, O'Brien P A. Non-Mendelian inheritance revealed in a genetic analysis of sexual progeny of Phhthora cinnamomi with microsatellite markers. Fungal. Genet. Biol., 2002,35:197-212
    86. Estoup A, Presa P, Krieg F, Vaiman D and Guyomard R. (CT)n and (GT)n microsatellites:a new class of genetic markers for Salmo trutta L. (brown trout). Heredity,1993,71:488-496
    87. Estoup A, Presa P, Krieg F, Vaiman D, Guyomard R. (CT)n and (GT)n microsatellites:a new class of genetic markers for Salmo trutta L. (brown trout).Heredity,1993,71:488-496
    88. Ewens W J. The sampling theory of selectively neutral alleles. Theoretical Poplation Biology, 1972,3:87-112
    89. Excoffier, Laval L G, Schneider S. Arlequin ver.3.0:An integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online,2005,1:47-50
    90. Falconer D S. Introduction to Quantitative Genetics, New York: Longman Scientific and Technical,1989
    91. FAO. Conservation of the Genetic Resources of Fish: Problems and Recommendations. FAO Fisheries Technical Paper No.217. Rome:Food and Agriculture Organisation of the United Nations, 1981
    92. Felsenstein J. Confidence limits on phylogenies:an approach using the bootstrap. Evolution, 1985,39(4):783-791
    93. Felsenstein J. PHYLIP:Phlogeny Inference Package. Seattle: University of Washington,1993
    94. Ferguson A, Taggart J B, Prodohl P A, McMeel O, Thompson C, Stone C, McGinnity P, Hynes R A. The application of molecular markers to the study and conservation of fish populations, with special reference to Salmo. Journal of Fish Biology,1995,47:103-126
    95. Ferguson A, Taggart J B, Prodohl P A, McMeel O, Thompson C, Stone C, McGinnity P, Hynes R A. The application of molecular markers tothe study and conservation of fish populations, with special reference to Salmo. Journal of Fish Biology,1995,47:103-126.
    96. Ferguson M. The role of molecular genetic markers in the management of cultured fish. In: Carvalho G R, Pitcher T J eds., Molecular Genetics in Fisheries. London: Chapman & Hall Press, 1995.81-104
    97. Gall G A E. Inbreeding. In: Ryman N and Utter F M eds., Population Genetics and Fishery Management. Washington:University of Washington Press,1987.47-88
    98. Goldstein D B, Linares A R, Cavalli-Sforza L L, Feldman M W. An evaluation of genetic distances for use with microsatellite loci. Genetics,1995,139:463-471
    99. Goudet J. Fstat version 1.2:a computer program to calculate Fstatistics. Journal of Heredity, 1995,86(6):485-486
    100. Goudet J:PCA-GEN for Windows, version 1.2.1. [http://www2.unil.ch/popgen/softwares/pcagen.htm] webcite University of Lausanne, Lausanne, Switzerland; 1999
    101. Guo S W, Thompson E A. Performing the exact test of Hardy-Weinberg proportion for multiple alleles. Biometrics,1992,48:361-372
    102. Hallerman E M. Population genetics:principles and applications for fisheries scientists. American Fisheries Society, Bethesda, Maryland,2003:458
    103. Hansen M M. Application of molecular markers in population and conservation genetics, with special emphasis on fishes. DSc Thesis, Faculty of Natural Sciences, University of Aarhus,2003, 68
    104. Hauser L, Ward R D. Population identification in pelagic fish:the limits of molecular markers. In: Carvalho G R ed., Advances in Molecular Ecology. Oxford: IOS Press,1998.191-224
    105. Hedgecock D, Li Q, Hubert S, BuclJin K, Ribes V. Widespread null alleles and poor cross-species amplification of microsatellite DNA loci cloned from the Pacific oyster, Crassostrea gigas. Journal of Shellfzsheries Research.2004,23:379-385
    106. Hernandez J L, Weir B S. A disequilibrium coefficient approach to Hardy-Weinberg testing. Biometrics,1989,45:53-70
    107. Hu Guang-Fu, Liang Hong-Wei, Li Zhong, Wang Chang-Zhong, Wu Qin-Chao, Xiang-Jiang Liu, Luo Xiang-Zhong, Zou Gui-Wei. Isolation and characterization of polymorphic microsatellite markers in the yellow catfish, Pelteobagrus fulvidraco. Conservation Genet Resour,2009,1:63-66
    108. Ibrahim Okumu, Yilmaz Ciftci. Fish Population Genetics and Molecular Markers:Ⅱ-Molecular Markers and Their Applications in Fisheries and Aquaculture. Turkish Journal of Fisheries and Aquatic Sciences,2003,3:51-79
    109. Ihssen P E, Booke H E, Casselman J M, McGlade J M, Payne N R, Utter F M. Stock identification:materials and methods. Canadian Journal of Fisheries and Aquatic Science,1981,38: 1838-1855
    110. Jarne P, Lagoda P J L. Microsatellites, from molecules to populations and back. Trends in Ecology and Evolution,1996,11(10):424-429
    111. Keinan A, Mullikin J C, Patterson N, Reich D. Accelerated genetic drift on chromosome X during the human dispersal out of Africa. Nature Genet,2009,41:66-70
    112. Kent E H, Bruce S W. Genetics in geographically structured populations:defining, estimating and interpreting FST. Nature Reviews Genetics,2009,10:639-650
    113. Kimura M and Weiss G H. The stepping-stone model of population structure and the decrease of genetic correlation with distance. Genetics,1964,49:561-576
    114. Kocher T D, Lee W J, Sobolewska H, Penmanb D, McAndrewb B. A genetic linkage map of a cichlid fish, the tilapia(Oreochromis niloticus). Genetics,1998,148:851-858
    115. Kong Yi, Guo Baoying, Xie Congxin, Fan Qixue, He Xugang, Yang Ruibin, Shao Jian. The isolation via enrichment and characterization of 9 dinucleotide microsatellite markers in Pelteobagrus fulvidraco. Conservation Genet Resour,2009,1:353-355
    116. Kosambi D D. The estimation of map distance from recombination values. Ann Eugen,1944, 12(3):172-175
    117. Lallias D, Lapegue S, Hecquet C, Boudry P, Beaumont A R. AFLP-based genetic linkage maps of the blue mussel (Mytilus edulis). Animal Genetics,2007,38(4):340-349
    118. Lander E S, Green P, Abrahamson J, Barlow A, Daly M J, et al. MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics,1987,1:174-181
    119. Larkin P A. A perspective on population genetics and salmon management. Canadian Journal of Fisheries and Aquatic Science,1981,38:1469-1475
    120. Launey S, Hedgecock D. High genetic load in the Pacific oyster Genetics,2001,159: 255-265
    121. Lee B Y, Lee W J, Todd J S, Carleton K L, Howe A E, Hulata G, Slettan A, Stern J E, Terai Y, Kocher T D. Second-Generation Genetic Linkage Map of Tilapia(Oreochromis spp.). Genetics, 2005,170(1):237-244
    122. Lewis A F, Brad S E, Dean R J. Loss of genetic diversity due to hatchery culture practices in barramundi (Lates calcarifer). Aquaculture,2006,261:1056-1064
    123. Li L, Guo X. AFLP-Based Genetic Linkage Maps of the Pacific Oyster Crassostrea gigas Thunberg. Marine Biotechnology,2003,6(1):26-36
    124. Li Q, Xu Y, Yu R, Kijima A. An AFLP Genetic Linkage Map of Pacific Abalone(Haliotis discus hannai). Journal of Ocean University of China,2007,6(3):259-267
    125. Li Z, Li J, Wang Q, He Y, Liu P. AFLP-based genetic linkage map of marine shrimp Penaeus (Fenneropenaeus) chinensis. Aquaculture,2006,261:463-472
    126. Lindahal K F. His and hers recombinational hotspots. Trends Genet,1991,7:273-276
    127. Liu Z J, Cordes J F. DNA marker technologies and their applications in aquaculture genetics. Aquaculture,2004,238:1-37
    128. Liu Z, Karsi A, Li P, Cao D, Dunhama R. An-AFLP-Based genetic linkage map of channel catfish (Ictalurus punctatus) constructed by using an interspecific hybrid resource family. Genetics, 2003,165(2):687-694
    129. Mantel N. The detection of disease clustering and a generalized regression approach. Cancer Research,1967,27:209-220
    130. May B and Krueger C C. Use of allozyme data for population analysis. Whitmore D H ed., Electrophoretic and Isoelectric Focusing Techniques in Fisheries Management. Boston:CRC Press, 1990.157-171
    131. McConnell S K, O'Reilly P, Hamilton L, Wright J N, Bentzen P, Polymorphic microsatellite loci from Atlantic salmon (Salmo salar)-genetic differentiation of North American and European populations. Can. J. Fish. Aquat. Sci.,1995,52:1863-1872
    132. Murphy R W, Sites J W, Buth D G and Haufler C H. Proteins:Isozyme Electrophoresis. In: Hillis D M, Moritz C, Mable B K eds., Molecular Systematics,2nd ed., Massachusetts:Sinauer Associates,1996
    133. Negi M S, Devic M. Delseny M, Lakshmikumaran M. Identification of AFLP fragments linked to seed coat colour in Brassica juncea and conversation to a SCAR marker for rapid selection. Theor Appl Genet,2000,101:146-152
    134. Nei M. Analysis of gene diversity in subdivided populations. Proceedings of the National Academy of Sciences,1973,70(12):3321-3323
    135. Nei M. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics,1978,89:583-590
    136. Nei M. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics,1978,89:583-590
    137. Nei M. Genetic distance and molecular phylogeny. In:Ryman N and Utter F M eds., Population Genetics and Fishery Management. Washington: University of Washington Press:1987. 193-224
    138. Nei M. Genetic distance between populations. The American Naturalist,1972,106:283-292
    139. Nei M. Mathematical models of speciation and genetic distance.In:Karlin S, Nevo E eds. Population Genetics and Ecology. London: Academic Pres,1976,723-766
    140. Nei M., Tajima F., Tateno Y. Accuracy of estimated phylogenetic trees from molecular data. J. Mol. Evol.1983,19:153-170
    141. Neigel J E. A comparison of alternative strategies for estimating gene flow from genetic markers. Annual Review of Ecology and Systematics,1997,28:105-128
    142. Nelson K, Soule M. Genetical conservation of exploited fishes.In: Ryman N and Utter F M eds., Population Genetics and Fishery Management. Washington: University of Washington Press, 1987,345-368
    143. Nikaido A, Yoshimaru H, Tsumura Y, Suyama Y, Murai M, Nagaasaka K. Segregation distortion for AFLP markers in Cryptomeria japonica. Genes Genet Syst,1999,74:55-59
    144. Moen T, Fjalestad K T, Munck H, et al. A multistage testing strategy for detection of quantitative trait loci affecting disease resistance in Atlantic salmon. Genetics,2004,167:851-858
    145. O'Connell M, Skibinski D O F, Beardmore J A. Absence of restriction site variation in the mitochondrial ND5 and ND6 genes of Atlantic salmon amplified by the polymerase chain reaction. Journal of Fish Biology,1995,47:910-913
    146. O'Reilly P, Wright J M. The evolving technology of DNA fingerprinting and its application to fisheries and aquaculture. J. Fish Biol.,1995,47:29-5
    147. O'Connell M and Wright J M. Microsatellite DNA in fishes. Reviews in Fish Biology and Fisheries,1997,7:331-363
    148. O'Connell M, Danzmann R G, Cornuet J M, Wright J M and Ferguson M M. Differentiation of rainbow trout(Oncorhynchus mykiss) populations in Lake Ontario and the evaluation of the stepwise mutation and infinite allele mutation models using microsatellite variability. Canadian Journal of Fisheries and Aquatic Science,1997,54:1391-1399
    149. Ohta T and Kimura M. The model of mutation appropriate to estimate the number of electrophoretically detectable alleles in a genetic population. Genetic Research,1973,22:201-204
    150. Ohta T. Linkage disequilibrium due to random genetic drift in finite subdivided populations. Proceedings of the National Academy of Sciences,1982,79:1940-1944
    151. Olsen J B, Seeb L W, Bentzen P and Seeb J E. Genetic interpretation of broad-scale microsatellite polymorphism in odd-year pink salmon. Transactions of the American Fisheries Society, 1998,127:535-550
    152. Palumbi S R. Nucleic Acids Ⅱ:The Polymerase Chain Reaction.In:Hillis D M, Moritz C, Mable B K eds., Molecular Systematics 2nd ed. Massachusetts:Sinauer Associates.1996
    153. Pan J, Wang X, Song W, Chen J, Li C, Zhao Q. Molecular cloning and expression pattern of myostatin gene in yellow catfish(Pelteobagrus fulvidraco). DNA Sequence,2007:18(4):279-287
    154. Park L K. and Moran P. Developments in molecular genetic techniques in fisheries.In: Carvalho G R and Pitcher T J eds., Molecular Genetics in Fisheries. London: Chapman & Hall,1995
    155. Park S D E. Trypanotolerance in West African Cattle and the Population Genetic Effects of Selection [Ph.D. thesis] University of Dublin,2001
    156. Parker P G, Allison A, Snow A A, Schug M D, Gregory C, Booton G C, Fuerst P A. What molecules can tell us about populations:choosing and using a molecular marker. Ecology,1998,79: 361-382
    157. Pearson K. On lines and planes of closest fit to systems of points in space. The Philosophical Magazine,1901,2:559-572
    158. Pemberton J M, Slate J, Bancroft D R, Barrett J A. Non-amplifying alleles at microsatellite loci:caution for parentage and population studies. Molecular Ecology,1995,4:249-252
    159. Perez F, Erazo C, Zhinaula M, et al. A sex-specific linkage map of the white shrimp Penaeus (Litopenaeus) vannamei based on AFLP markers. Aquaculture,2004,242:105-118
    160. Raymond M, Rousset F. GENEPOP:population genetics software for exact tests and ecumenicism. Journal of Heredity,1995,86:248-249
    161. Rexroad C E, Palti Y, Gahr S A and Vallejo R L. A second generation genetic map for rainbow trout(Oncorhynchus mykiss). Genetics,2008,9:74-87
    162. Reynolds J, Weir B S and Cockerham C C. Estimation of the coancestry coefficient: basis for a short-term genetic distance. Genetics,1983,105:767-779
    163. Robinson W P. The extent, mechanism, and consequences of genetic variation, for recombination rate. Am J Hum Genet,1996,59:1175-1183
    164. Rogers J S. Measures of genetic similarity and genetic distance. Studies in Genetics 3th ed., Texas:University of Texas,1972.145-153
    165. Rosenberg N A. DISTRUCT: a program for the graplucal display of population struchme. Molecular Ecology Notes,2004,4:137-138
    166. Rousset F and Raymond M. Testing heterozygote excess and deficiency. Genetics.1995.140: 1413-1419
    167. Rousset F. Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics,1997,145:1219-1228
    168. Sakamoto T, Danzmann R G, Gharbi K, et al. A microsatellite linkage map of rainbow trout (Oncorhynchus mykiss) characterized by large sex-specific differences in recombination rates. Genetics,2000,155:1331-1345
    169. Schlotterer C. and Pemberton J. The use of microsatellites for genetic analysis of natural populations. Molecular Ecology and Evolution: Approaches and Applications,1994,69:203-214
    170. Serapion J, Kucuktas H, Feng J, Liu Z. Bioinformatic mining of type I microsatellites from expressed sequence tags of channel catfish (Ictalurus punctatus). Mar. Biotechnol.,2004,6:364-377
    171. Shriver M D, Jin L, Chakraborty R and Boerwinkle E. VNTR allele frequency distributions under the stepwise mutation model: a computer simulation approach. Genetics,1993,134:983-993
    172. Singer A, Perlman H, Yan Y, et al. Sex-specific recombination rates in Zebrafish (Danio rerio). Genetics,2002,160:649-657
    173. Slatkin M. A measure of population subdivision based on microsatellite allele frequencies. Genetics,1995,139:457-462
    174. Slatkin M. Isolation by distance in equilibrium and non-equilibrium populations. Evolution, 1993,47(1):264-279
    175. Slatkin M. Rare alleles as indicators of gene flow. Evolution,1985,39(1):53-65
    176. Sokal R, Rohlf F J. Biometry. New York: Freeman W H & Company.1981
    177. Sokal R R, Jacquez GM, Wooten M. Spatial autocorrelation analysis of migration and selection. Genetics,1989,12:845-855
    178. Sunnucks P. Efficient genetic markers of population biology. Trends in Ecology and Evolution,2000,15:199-203
    179. Swofford D L, Olsen G J, Waddell P J, Hillis D M. Phylogenetic inference.In:Hillis D M, Moritz C, Mable B K eds., Molecular Systematics,2nd ed. Massachusetts:Sinauer Associates Press, 1996.407-514
    180. Tamura K, Dudley J, Nei M & Kumar S. MEGA4:Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular Biology and Evolution,2007,24:1596-1599
    181. Thai B T, Burridge C P, Austin C M. Genetic diversity of common carp (Cyprinus carpio L.) in Vietnam using four microsatellite loci. Aquaculture,2007,269:174-186
    182. Utter F M. Biochemical genetics and fishery management: an historical perspective. Journal of Fish Biology, supplement A,1991,39:1-20
    183. Utter F, Aebersold P and Winans G. Interpreting genetic variation detected by electrophoresis. In:Ryman N and Utter F M eds., Population Genetics and Fishery Management. Washington: University of Washington Press,1987.21-46
    184. Vos P, Hogers R, Blecker M, et al. AFLP:a new technique for DNA fingerpriting. Nucleic Acids Research,1995,23:4407-4414
    185. Wang D, Mao H L, Chen H X, Liu H Q, Gui J F. Isolation of Y- and X-linked SCAR markers in yellow catfish and application in the production of all-male populations. Animal Genetics, 2009,40(6):978-981
    186. Wang L, Song L, Guo X, et al. A preliminaray genetic map of Zhikong scallop (Chlamys farreri Jones et Preston 1904). Aquaculture Research,2005,36:643-653
    187. Wang D, Mao H L, Chen H X, Liu H Q, Gui J F. Isolation of Y- and X-linked SCAR markers in yellow catfish and application in the production of all-male populations. Animal Genetics, 2009,40(6):978-981
    188. Wang Z, Wu Q, Zhou J, Ye Y. Geographic Distribution of Pelteobagrus fulvidraco and Pelteobagrus vachelli in the Yangtze River Based on Mitochondrial DNA Markers. Biochemical Genetics,2004,42(11/12):391-400
    189. Ward R D, Grewe M. Appraisal of molecular genetic techniques in fisheries. In:Carvalho G R, Pitcher T J eds., Molecular Genetics in Fisheries., London: Chapman & Hall Press,1995.29-54
    190. Ward R D, Woodwark M and Skibinski D O F. A comparison of genetic diversity levels in marine, freshwater and anadromous fishes. Journal of Fish Biology,1994,44:213-232
    191. Weber J L. Informativeness of human (dC-dA)n. (dG-dT)n polymorphisms. Genomics,1990, 7:524-530
    192. Weir B S and Cockerham C C. Estimating Fstatistics for the analysis of population structure. Evolution,1984,38(6):1358-1370
    193. Weir B S. Intraspecific Differentiation. In: Hillis D M and Moritz C eds., Molecular Systematics. Massachusetts: Sinauer Associates Press.1990.373-410
    194. Weir B S. Intraspecific differentiation. In:Hillis D M, Moritz C, Mable B K eds., Molecular Systematics,2nd ed. Massachusetts:Sinauer Associates Press,1996.385-406
    195. Williamson J H. Broodstock management for imperilled and other fishes. In: Wedemeyer G A ed., Fish hatchery management,2nd ed. American Fisheries Society, Bethesda, Maryland,2001: 397-482
    196. Wilson K, Li Y, Whan V, et al. Genetic mapping of the black tiger shrimp Penaeus monodon with amplified fragment length polymorphism. Aquaculture,2002,204:297-309
    197. Wright B S. The genetical structure of populations. Annual Eugenics,1951,15:323-354
    198. Wright S. The Theory of Gene Frequencies. London: The University of Chicago Press,1969
    199. Wu H, Zhan X, Guo Y, Zhang Z, Zhu L, Yan L, Li M, Wei F W. Isolation and characterization of twelve novel microsatellites in yellow catfish, Pelteobagrus fulvidraco. Conservation Genetics,2008,10(3):755-757
    200. Yang R. Estimating hierarchical F-statistics. Evolution,1998,52(4):950-956
    201. Yilmaz Ciftci, Ibrahim Okumu. Fish Population Genetics and Applications of Molecular Markers to Fisheries and Aquaculture:I- Basic Principles of Fish Population Genetics. Turkish Journal of Fisheries and Aquatic Sciences,2002,2:145-155
    202. Yu Z and Guo X. Identification and mapping of disease-resistance QTLs in the eastern oyster, Crassostrea virginica Gmelin. Aquaculture,2006,254:160-170
    203. Yue G H, Li Y, Chen F, Lim L C, Orban L. Comparison of three DNA marker systems for assessing genetic diversity in Asian arowana (Scleropages formosus). Electrophoresis,2002,23: 1025-1032
    204. Yue G H, Zhu ZY, Lo L C,. Genetic variation and population structure of Asian seabass (Lates calcarifer) in the Asia Pacific region. Aquaculture,2009,293:22-28
    205. Zaid A, Hughes H G, Porceddu E, Nicholas F. Glossary of biotechnology and genetic engineering. FAO Research and Technology Paper No.7, Rome, Italy,1999
    206. Zhan A B, Bao Z M, Wang X L, Hu J J. Microsatellite markers derived from bay scallop Argopecten irradians expressed sequence tags. Fisheries Science,2005,71:1341-1346
    207. Zhan A B, Bao Z M, Yao B, Wang X L, Hui M, Hu J J. Polymorphic microsatellite markers in the Zhikong scallop Chlamys farreri. Molecular Ecology Notes,2006,6:127-129.
    208. Zhan A B, Hu J J, Wang X L, Lu W, Hui M, Bao Z M. A panel of polymorphic EST-derived microsatellite loci for the bay scallop(Argopecten irradians). Journal of Molluscan Studies. 2006,72:436-438
    209. Zhang X, Li Y, Gao Z, Wang W. Isolation and characterization of polymorphic microsatellite loci from yellow catfish(Pelteobagrus fulvidraco). Conservation Genetics Resources,2009, 1(1):131-135
    210. Zouros E. On the relation between heterozygosity and heterosis:an evaluation of the evidence from marine mollusks. Isozymes,1987,15:255-270

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700