新型骨修复材料可降解哌嗪基聚氨酯脲的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
修复骨缺损是这几个世纪以来人们一直深入探索研究的重点课题之一。骨是自然界中一种活的生物材料,当其受到损伤或者损坏时,仅依靠骨自身的修复能力是无法愈合的,需要通过骨移植,将合适的骨材料替代品填充于缺损部位,以便新骨生成。以生物材料为基础的人工骨替代材料成为研究开发热点,其具有广阔的发展潜力和应用前景,有望成功解决临床上骨缺损的难题。基于骨组织工程材料的要求,本文设计并制备了新型骨修复材料生物可降解哌嗪基聚氨酯脲(P-PUU),采用傅立叶变换红外光谱仪(FTIR)、凝胶色谱-多角激光光散射仪(GPC-MALLS)、核磁共振仪(NMR)、示差扫描量热仪(DSC)、高精度原子力显微镜(AFM)以及常规化学分析方法对所制备材料化学结构及化学物理性质进行系统表征;然后采用拉伸实验、动态力学分析以及弯曲试验对P-PUUs力学性能以及形状记忆行为性能测试进行考察;接着详细考察了P-PUUs材料的亲/疏水性、体外生物降解性以及热降解性能;最后对P-PUUs材料的细胞相容性进行了全面评价。主要研究内容和结论如下:
     1.以辛酸亚锡(Sn(Oct)2)为引发剂,小分子二胺哌嗪(PP)为助引发剂构成共引发体系,引发D,L-丙交酯熔融开环聚合,制备作为P-PUU材料原料之一的羟基封端聚乳酸基大分子醇(PDLLA diol)。优化了胺类物质作为助引发剂D,L-丙交酯熔融开环聚合的反应条件;重点考察了助引发剂用量对PDLLA diol分子量的影响;并对PDLLA diol的结构及热性能进行表征。
     ①FTIR和1H NMR的结果表明,通过哌嗪作为引发剂成功制备了羟基封端聚乳酸;以端羟基聚乳酸的分子量和收率为目标,单因素优化胺类物质助引发PDLLA diol合成条件:最佳反应温度为150℃,最佳反应时间为24h。
     ②羟值分析、1H NMR及GPC-MALLS的检测结果表明,调节D,L-丙交酯单体和助引发剂PP的比例关系,可以获得不同分子量的羟基封端聚乳酸。③DSC分析表明,PDLLA diol材料的玻璃化转变温度(Tg)具有分子量依赖性,随分子量的增加,玻璃化温度可由15.95℃增至32.15℃。
     2.以PDLLA diol为软段,1,6-六亚甲基二异氰酸酯(HDI)和PP为扩链剂,在无水甲苯溶剂体系下,以Sn(Oct)2为催化剂二步法扩链,制备了一系列嵌段P-PUUs材料。研究了软硬段比例、反应温度及扩链剂类型等因素对P-PUUs合成的影响。并对P-PUUs材料的结构与热性能进行了表征。
     ①FTIR、1HNMR及13C NMR的分析结果表明,羟基封端聚乳酸大分子醇与异氰酸酯发生反应,并经PP扩链,成功制备高分子量的P-PUUs材料。其中最佳的PP扩链温度为:30℃。
     ②调节软段分子量和软硬段比例可以获得一系列梯度哌嗪含量的P-PUUs材料,其理化性能也不同。
     ③检测交联度的重量分析法结果表明,与丁二胺作为扩链剂相对,哌嗪作为扩链剂能避免P-PUUs材料制备过程中的交联现象。
     ④DSC热分析结果表明,其Tg与软硬段组分关系密切,随着硬段含量升高,Tg呈上升趋势;同时在P-PUUs材料的DSC曲线上观察到两个温度转变区:一个为软段分子温度转变(20℃附近),另一个为材料的玻璃化温度,表明P-PUUs具有典型软硬段热不相容性现象。
     ⑤高精度AFM对P-PUUs单分子膜层进行扫描结果表明,观察到P-PUUs材料的分子结构,证实P-PUUs材料成功制备,同时也明显观察到聚氨酯脲类材料的典型软硬段结构分离现象。
     3.采用拉伸以及动态力学分析(DMA)实验,考察了软段分子量和软硬段的比例对P-PUUs材料力学特质行为的影响,同时运用拉伸试验来考察P-PUUs材料形状记忆特性行为。
     ①机械拉伸试验试验结果表明,P-PUUs材料呈现良好的机械力学特性。随着硬段含量增加,弹性模量和弹性强度呈上升趋势,断裂伸长率呈相反趋势;随着软段分子量的增大,P-PUUs材料的弹性模量和弹性强度呈下降趋势,断裂伸长率则上升;扩链剂的选择对聚氨酯材料的影响也较大,PP具有刚性的六元环,既能增加材料的力学性能,同时通过较低交联度也能提高材料的力学特性。
     ②DMA结果表明,P-PUUs材料的硬段含量增加,DMA的存储模量随着上升,内摩擦(Tanδ)转变温度也随之上升,所得的Tg也上升。
     ③P-PUUs材料拥有良好的形状记忆性能,形状固定率均大于95%,形状回复率(Rr)可以达到93%以上;形状固定率随着硬段含量的增加而上升,而固定率则相反。
     4.考察了P-PUUs材料的亲/疏水性及降解行为。亲/疏水性的评价指标为静态水接触角和24h材料的整体吸水率;降解行为包括生物降解行为和热降解行为,前者的评价指标为失重率、吸水率、pH值变化以及样品表面形貌的变化,后者考察其热稳定性及降解活化能;另外本研究重点研究了扩链剂的选择对聚氨酯脲材料降解性能的影响。
     ①亲疏水性研究表明,P-PUUs的静态水接触角小于对照组PDLLA,吸水率大于PDLLA组,硬段的引入能改善材料的亲疏水性质,同时P-PUUs的亲水性随着硬段含量的增加,呈上升趋势;但亲水性随着软段分子量的增加呈下降趋势。
     ②体外降解实验表明,P-PUUs材料与PDLLA对照组相比,在降解前期,失重率和介质pH值下降较大,但是随后降解减缓,失重率和介质的pH值下降缓慢,没有加速阶段出现,表明材料降解过程受其亲疏水性和降解产物两方面的影响,P-PUUs降解过程中释放的碱性物质能够中和PDLLA片段降解产物中的酸性物质,避免酸致自催化现象。
     ③扩链剂的选择和聚氨酯材料降解行为密切相关,考察的降解行为包括生物降解和热降解,在生物降解方面,胺类扩链剂能提高聚氨酯材料的稳定性,能起到控制生物降解的速率作用;而在热降解方面,醇类扩链剂获得的氨基甲酸酯键比胺类扩链剂获得的脲基稳定;运用Ozawa-Flynn-Wall法计算出三种不同扩链剂制备的三种不同聚氨酯脲材料的热降解活化能,也进一步证明上述结论。
     5.基于大鼠成骨细胞与PDLLA及P-PUUs膜材的相互作用的评价模型,从细胞前期形态、细胞黏附、铺展和增殖及后期的分化、矿化等几个方面入手,对PDLLA及P-PUUs材料的细胞相容性进行了系统地分析比较。
     ①与PDLLA对照组相比,P-PUUs不利于早期黏附与铺展,成骨细胞对P-PUU表面的适应期较长;但P-PUUs材料随着硬段含量的增加,细胞在其上的粘附与铺展能力呈增强趋势。表明材料和细胞之间的相互作用是一个复杂的过程,并不完全依赖于材料的亲疏水性。
     ②从细胞在P-PUUs上的增殖行为来看,相比于PDLLA组,P-PUUs材料更能促进成骨细胞增殖,同时随着硬段含量的增加,细胞在材料上的增殖行为也增强。采用波尔兹曼函数S模型对细胞增殖行为数据进行拟合比较,进一步证实上述结论。并提出采用生物群体生长的逻辑斯谛方程来对细胞在材料上生命行为进行评价。
     ③通过检测蛋白质含量、碱性磷酸酶含量、无机钙分泌量以及定量PCR检测目标基因等方法来考察成骨细胞在材料上的分化、矿化能力,结果表明,P-PUU材料具有促进成骨细胞分化及矿化能力,而且并不缩短细胞的生长分化周期;同时随着硬段含量的增加,促进作用更加明显。
Last centuries, bone repair engineering is one of the most important topics for us to explore. Bone, a live biomaterial in the nature, is a good example of a dynamic tissue, since it has a unique capability of self-regenerating or self-remodeling to a certain extent throughout the life. However, many circumstances call for bone grafting owing to bone defects either from traumatic or from non-traumatic destruction. In the case of severe defects and loss of volume, bone cannot be healed by itself and grafting is required to restore function without damaging living tissues. So far, the grafting based biomaterial was attracted more and more attention and had potentiality to solve this clinical puzzle. In the repair, the suitable biomaterial scaffold is need with many excellent properties, such as biodegradablity, appropriate mechanical properties and biocompatibility and so on. In my present, a novel biodegradable piperazine-based poly (urethane urea) (P-PUU) is synthesized to meet the requirement of scaffold material in bone repair. Some methods of fourier transform infrared spectrometry (FTIR), Gel permeation chromatography with multi angle laser light scattering (GPC-MALLS), differential scanning calorimeter (DSC), nuclear magnetic resonance spectrometer (NMR), high resolving capability atomic force microscope(AFM) and classical chemical analysis were used to characterize its structures. Then mechanical tensile testing and dynamic mechanical analysis (DMA) were used to explore mechanical and shape memory properties of P-PUUs. Thirdly, the hydrophilicity/hydrophobicity, biodegradation and thermal degradation of the P-PUUs were investigated. Thereafter, the cell biocompatibility of P-PUUs was systemically evaluated. The main works and conclusions are included as follows:
     1. Hydroxy group ended poly (D, L-lactide) (PDLLA diol) was synthesized by melt ring-opening polymerization of D, L-lactide using Sn (Oct) 2 as initiator and piperazine as coinitiator. Then, the conditions of ring-opening polymerization of D, L-lactide with piperazine as coinitiator were optimized. An extensive investigation effort was expended in understanding the effects of dosage of coinitiator on the molecular weight and the structure and thermal properties were characterized.
     ①FTIR, 1HNMR revealed that PDLLA diol was successfully obtained by using above-mentioned system. The optimization conditions of ring-opening polymerization of D, L-lactide with piperazine as coinitiator were as follows: reaction time, 24h; reaction temperature, 150℃.
     ②Hydroxyl value, 1H NMR and GPC-MALLS analysis indicated that PDLLA diol with different molecular could synthesized by varying the ratio of D, L-lactide/PP.
     ③The results of DSC indicated that the glass transition temperature (Tg) depended on its molecular weight and the Tg increased from 15.95 to 32.15℃with the increasing of molecular weight.
     2. A series of P-PUUs materials were prepared based on PDLLA diol as the soft segment, hexamethylene diisocyanate (HDI) and piperazine (PP) as the chain extender. The effects of the reactive temperature and ratio of hard segment/soft segment were discussed, and the structure and thermal properties of P-PUUs were characterized.
     ①FTIR, 1H NMR and 13C NMR exhibited that, PDLLA diol have successfully reacted with HDI, and then P-PUUs with high molecular weight could obtained by chain extending reaction with PP as the chain extender. The optimization extending reaction was 30℃, nearby the room temperature.
     ②By varying the molecular weight of soft segment and the ratio of soft segment/hard segment, the P-PUUs with gradient contents of piperazine could be synthesized. Therefor, those materials would have different physicochemical properties for application in bone repair.
     ③The weight analysis for the degree of cross-linking showed that comparing with BDA as the chain extender, PP as the chain extender can make the synthesis process of polyurethanes easier to control and lead the polyurethanes with low or no degree of crosslinking, which lays a solid foundation for physical properties of the P-PUUs.
     ④The results of DSC showed that Tg could be regulated by the ratio of hard segment/soft segment and with the content of hard segment raising, Tg of P-PUUs rose. In addition, two temperature transitions in DSC curves of P-PUUs were obviouly observed: the slight transition was cosed to the Tg of PDLLA diol, could be attributed to the internal loosening of soft segments, the other one represented the Tg of P-PUUs. This implied that typical phase separation of P-PUUs due to the thermodynamic incompatibility of the two segments might occur.
     ⑤The results of high resolving capability AFM for scanning the monomolecular layer of P-PUUs indicated that the P-PUUs were successfully obtained with typical phase separation.
     3. The mechanical properties of P-PUUs were characterized by mechanical tensile testing and DMA, and the influences of molecular weight of soft segment, the ratio of soft segment/hard segment were investigated. The shape memory behaviors were also studied by the tensile testing.
     ①The results indicated that P-PUUs have nice mechanical properties. The tensile modulus and tensile strength increased with the increasing of the hard segment content, while the elongation at break had the opposite trend. With the raising of the molecular weight of soft segment, the tensile modulus and tensile strength decressed, but the elongation at break increased. PP as chain extender could improve the mechanical properties with two methods: one is that PP has a six-atom rigid ring, which was introduced into the backbone of the P-PUUs to improve tensile modulus and tensile strength, the other one is that PP as chain extender can reduce the dregree of crosslinking.
     ②The results of DMA showed that the storage modulus and the transitions of Tanδincreased with the hard segment content rising.
     ③P-PUUs had good shape memory properties with large shape fixation ratio (Rf, all above 95%) and shape recovery ratio (Rr, all above 93%). Meanwhile, the shape memory properties were affected by the components and the hard segment content. Rr decreased with the increasing of the hard segment content, however, Rf had the opposite trend.
     4. The hydrophilicity/hydrophobicity, biodegradation and themal degradation of P-PUUs were investigated. The evaluation indicators of hydrophilicity/hydrophobicity were static water contact angle and water absorption ratio, while the evaluation indicators of degradation behavior were the weight loss ratio and pH value changes, surface topography, moreover, the themal degradation were studied by thermogravimetric analysis and activation energy. In addition, the effect of different chain extenders on degradation properties of segmented polyurethanes was investigated.
     ①The static water contact angle of P-PUUs was smaller than PDLLA controls and the water absorption ratio was more than PDLLA controls. This is mainly due to the fact that the hydrophilic PP segment could form more hydrogen bond with water molecules and improved the hydrophilicity of P-PUUs. Meanwhile, the hydrophilicity had an uptrend with the increasing of hard segment content.
     ②Data of hydrolytic degradation of the polymers during 12 weeks indicated that the in vitro degradation stability of P-PUUs was more than PDLLA control, because the alkaline substance during the degradation of P-PUUs could eliminate or weaken the acid induced auto-catalysis.
     ③The results revealed that chain extender played an important role in biodegradation and thermal degradation of polyurethanes. During the biodegradation, polyurethane with amine style chain extender had more stability than those with hydroxyl chain extender, however, during thermal degradation the carbamate revealed more stability than urea bond. The results of the thermal degradation of polyurethanes were confirmed by the activation energy, which was calculated from the TGA data according to Ozawa-Flynn-Wall method.
     5. The cytocompatibility of P-PUUs was evaluated by employing primary SD rat osteoblasts as the model cells and poly (DL-lactic acid) (PDLLA) as the control. The osteoblasts morphology, cell attachment and spreading, cell proliferation, cell differentiation and mineralization ability were systemically detected to indicate the cytocompatibility of P-PUUs.
     ①Initial morphology, adhesion, spreading of osteoblasts on all P-PUU films is no better than those on PDLLA film. Furthermore, with the increased amount of hard segments in P-PUUs, both cell doubling rate and migration rate correspondingly increased. Those results revealed that the interaction between cell and material was a complicated process, not only completely depended on the hydrophilicity of matetials.
     ②The results of cell proliferated behaviors on different films showed that P-PUUs could promoted the proliferation of osteoblast, and with the the increasing of the hard segment content, the positive regulation was more and more obvious. These results were confirmed by Boltzmann function sigmoidal fit. Based on it, we hypothesized that the interaction between cell and material could be ascribed to biocenose growth Logistic model.
     ③Osteoblast on different P-PUUs films all exhibited lower physiological functions compared to those on PDLLA films within the first 10 days after seeding. Thereafter, however, the osteoblasts on P-PUUs demonstrated better differentiation and mineralization than those on PDLLA films, and P-PUU-3 > P-PUU-2 > P-PUU-1.
引文
[1] Langer R, Vacanti JP. Tissue engineering [J]. Science, 1993, 260(5110): 920-926.
    [2]崔福斋,杜昶.骨组织工程[J].世界医疗器械, 1999, 5(1): 50-54.
    [3] Hutmacher DW. Scaffolds in tissue engineering bone and cartilage [J]. Biomaterials. 2000, 21(24): 2529-2543.
    [4] Zhang R, Ma PX. Porous poly (L-lactic acid)/apatite composites created by biomimetic process [J]. J Biomed Mater Res, 1999, 45(4): 285-293.
    [5] Thomson RC, Yaszemski MJ, Powers JM, et al. Hydroxyapatite fiber reinforced poly (alpha-hydroxy ester) foams for bone regeneration [J]. Biomaterials, 1998, 19(21): 1935-1943.
    [6]向鸿照.纳米羟基磷灰石/聚酰胺/壳聚糖复合骨组织修复材料研究[D].成都.四川大学博士学位论文, 2007.
    [7] Leiggene CS, Curtis R, Muller AA,et al. Influence of copolymer composition of polylactide implants on cranial bone regeneration [J]. Biomaterials, 2006, 27:202–207.
    [8] Nampoothiri KM, Nair NR, John RP. An overview of the recent developments in polylactide (PLA) research [J]. Bioresource Technol,2010,101:8493–8501.
    [9] Bertoldi C, Zaffe D, Consolo U. Polylactide/polyglycolide copolymer in bone defect healing in humans[J]. Biomaterials, 2008, 29:1817-1823.
    [10] Puppi D, Chiellini F, Piras AM, et al. Polymeric materials for bone and cartilage repair, Prog Polym Sci ,2010,35: 403–440.
    [11]赵婷婷,梁书恩,王建华.可生物降解的聚氨酯材料研究进展[J].化工新型材料, 2008, 36 (12): 7-9.
    [12] Howard GT. Biodegradation of polyurethane: a review [J]. Int Biodeterior Biodegrad, 2002, 49: 245-252.
    [13] Guelcher S. Biodegradable Polyurethanes: Synthesis and applications in regenerative medicine [J]. Tissue Eng Part B, 2008, 14(1): 3-14.
    [14] Santerre JP, Woodhouse K, Laroche G, et al. Understanding the biodegradation of polyurethanes: From classical implants to tissue engineering materials [J]. Biomaterials, 2005, 26: 7457-7470.
    [15] Ayres E, Ore′fice RL, Yoshida MI. Phase morphology of hydrolysable polyurethanes derived from aqueous dispersions [J]. Eur Polym J, 2007, 43: 3510-3521.
    [16]陈海平,乔迁,涂根国.聚氨酯材料的化学降解机理[J].辽宁化工, 2007, 38(7):535-539.
    [17]刘凉冰.聚氨酯的化学降解[J].弹性体, 2003, 13(1): 53~57.
    [18] Chattopadhyay DK, Webster DC. Thermal stability and flame retardancy of polyurethanes [J]. Prog Polym Sci, 2009, 34: 1068-1133.
    [19] Fromstein JD, Woodhouse KA. Elastomeric biodegradable polyurethane blends for soft tissue applications [J]. J Biomater Sci Polym Ed, 2002, 13: 391-399.
    [20] Bruin P, Veenstra GJ, Nijenhuis AJ, et al. Design and synthesis of biodegradable poly (ester-urethane) elastomer networks composed of non-toxic building blocks [J]. Makromol Chem Rapid Commun, 1988, 9: 589-596.
    [21] Storey RF, Wiggins JS, Puckett AD. Hydrolyzable poly (ester-urethane) networks from L-lysinediisocyanate and D, L-lactide/e-caprolactone homo-and copolyester triols [J]. J Polym Sci, Part A: Polym Chem, 1994, 32: 2345-2351.
    [22] Guelcher SA, Srinivasan A, Hafeman AE, et al. Synthesis, in vitro biocompatibility and biodegradation, and mechanical properties of two-component polyurethane scaffolds: effects of water and polyol composition [J]. Tissue Eng, 2007, 13: 2321-2326.
    [23] Guelcher SA, Patel V, Gallagher K, et al. Synthesis and biocompatibility of polyurethane foam scaffolds from lysine diisocyanate and polyester polyols [J]. Tissue Eng, 2006, 12: 1247-1253.
    [24] Zhang JY, Beckman EJ, Piesco NJ, et al. A new peptide-based urethane polymer: synthesis, biodegradation, and potential to support cell growth in vitro [J]. Biomaterials, 2000, 21: 1247-1253.
    [25] Zhang JA, Wu MY, Yan JJ. Anionic poly (lactic acid)–polyurethane micelles as potential biodegradable drug delivery carriers [J]. Colloids Surf A, 2009, 337: 200-204.
    [26] Wang YL, Li YG, Luo YF, et al. Synthesis and characterization of a novel biodegradable thermoplastic shape memory polymer [J]. Mater Lett, 2009, 63(3-4): 347-349.
    [27] Chan LH, Correa R.S, Rodríguez JV, et al. Degradation studies on segmented polyurethanes prepared with HMDI, PCL and different chain extenders [J]. Acta Biomaterialia, 2010, 6: 2035-2044.
    [28] Ba′ez JE, Ferna′ndez AM, Richa AM, et al. A novel route toα,ω-telechelic poly (Ε-caprolactone) diols, precursors of biodegradable polyurethanes, using catalysis by decamolybdate anion [J]. Polymer, 2006, 47: 8420-8429.
    [29] Jia WJ, Liu CB, Deng HX, et al. Synthesis, characterization, and thermal properties of biodegradable polyetheresteramide-based polyurethane [J]. Mater Lett, 2006, 60: 3686-3692.
    [30] Tatai L, Moore TG, Gunatillake PA. Thermo plastic biodegradable polyurethanes: The effectof chain extender structure on properties and in-vitro degradation [J]. Biomaterials, 2007, 28: 5407-5417.
    [31] Andreas L, Annette MS, Michael S, et al. Shape-memory polymer networks from oligo (ε-caprolactone) dimethacrylates [J]. J Polym Sci, Part A: Polym Chem, 2005, 43: 1369-1381.
    [32] Bertmer M, Buda A, Blomenkamp H, et al. Biodegradable shape- memory polymer networks: characterization with solid-state NMR [J]. Macromolecules, 2005, 38: 3793-3799.
    [33] Nagata M, Sato Y. Synthesis and properties of photocurable biodegradable multiblock copolymers based on poly (-caprolactone) and poly (L-lactide) segments [J]. J Polym Sci, Part A: Polym Chem, 2005, 43(11): 2426-2439.
    [34]罗丙红,全大萍,廖凯荣. PLGA组织工程支架的构建及降解行为研究[J].中山大学学报(自然科学版), 2003, 42(2): 46-49.
    [35] Cai Q, Zhao YL, Wang SG. Synthesis and properties of star-shaped polylactide attached to poly (amidoamine) dendrimer [J]. Biomacromolecules, 2003, 4: 828-834.
    [36] Wang YL, Huang MN,Luo YF. In vitro degradation of poly (lactide -co-p-dioxanone)-based shape memory poly (urethane-urea) [J]. Polym Degrad Stab, 2010, 95(4): 549-556.
    [37] Baumann GF. Polymeric polyisocyanates in urethane foams. Polyurethane technology [M]. New York: Wiley Inter science Publishers, 1969:95-116.
    [38] Szycher M, Poirier VL, Dempsey DJ. Detection of a toxic product released by a polyuret hane2containing film using a composting test [J]. J Elastomers Plast, 1983, 15: 81-95.
    [39]杜民慧,李建树,魏阳等.生物医用脂肪族聚氨酯的合成、表征及血液相容性研究[J] .生物医学工程学杂志, 2003,20(2) : 273-276.
    [40] Mondal S. Recent developments in temperature responsive shape memory polymers[J]. Mini-Rev Org Chem, 2009, 6: 114-119.
    [41] Zhang H, Wang HT, Zhong W, et al. A novel type of shape memory polymer blend and the shape memory mechansim[J].Polymer,2009,50:1596-1601.
    [42] Lendlein A, Kelch S. Shape-memory polymers[J].Angew Chem Int Ed,2002, 41:2034-2057.
    [43] Liu C, Qin H, Mather PT. Review of progress in shape-memory polymers[J]. J Mater Chem ,2007, 17: 1543-1558.
    [44] Lendlein A, Kelch S. Shape-memory polymers as stimuli-sensitive implant materials [J]. Clin Hemorheol Micro, 2005, 32: 105-116.
    [45] Lv HB, Liu YJ, Zhang DX, et al. Solution-responsive shape-memory polymer driven by forming hydrogen bonding [J]. Adv Mat Res, 2008, 47(50): 258-261.
    [46] Wong YS, Xiong Y, Venkatraman SS, et al. Shape memory in un-cross-linked biodegradable polymers [J]. J Biomater Sci Polym Ed, 2008, 19(2): 175-191.
    [47] Lu XL, Cai W, Gao ZY. Shape-memory behaviors of biodegradable poly(L-lactide -co-ε-caprolactone) copolymers [J]. J Appl Polym Sci, 2008, 108: 1109-1115.
    [48] Lu XL, Sun ZJ, Cai W, et al. Study on the shape memory effects of poly(L-lactide -co-ε-caprolactone) biodegradable polymers [J]. J Mater Sci: Mater Med, 2008, 19:395-399.
    [49] Ning L, Ning WD, Kang YS. Hydrogen-bonding properties of segmented polyether poly- (urethane urea) copolymer [J]. Macromolecules, 1997, 30: 4405-4409.
    [50] Wang W, Wang WS, Chen XS, et al. Hydrogen bonding and crystallization in biodegradable multiblock poly (esterure thane) copolymer[J]. J Polym Sci PartB:Polym Phys, 2009,47: 685-695.
    [51] Mondal S, Hu JL. Segmented shape memory polyurethane and its water vapor transport properties[J]. Des Monom Polym, 2006, 9 (6): 527-532.
    [52] Ji FL, Hu JL, Li TC, Wong YW. Morphology and shape memory effect of segmented polyurethanes. Part I: with crystalline reversible phase[J]. Polymer, 2007, 48(17): 5133-5137.
    [53]黄美娜.可预防骨不连的骨修复新型形状记忆聚氨酯-脲的研究[D].重庆.重庆大学博士学位论文. 2010.
    [54] Oprea S. Synthesis and properties of new polyurethane elastomers: influence of hard segment structure[J]. Polimery,2010, 55(2): 111-117.
    [55] Petrovic ZS, Budinski-Simendic J. Study of the effect of soft-segment length and concentration on properties of poly(ether urethanes). I. The effect on physical and morphological properties [J]. Rubber Chem Technol, 1985, 58: 685-700
    [56] Petrovic ZS, Budinski-Simendic J. Study of the effect of soft-segment length and con- centration on properties of polyetherurethanes.II. The effect on mechanical properties [J]. Rubber Chem Technol, 1985, 58: 701-712.
    [57] Lai YC, Quinn ET. Control of hard segment size in polyurethane formation[J]. Polym Sci Poly Chern, 1995, 33: 1767-1772.
    [58] Merline JD, Nair CP, Gouri C, Sadhana R, Ninan KN. Poly(urethane -oxazolidone): synthesis, characterisation and shape memory properties[J]. Eur Polym J, 2007, 43 (8): 3629.
    [59] Christopher MY, Robin S, David S, et al. Strong, tailored, biocompatible shape-memory polymer networks [J]. Adv Funct Mater, 2008, 18: 2428-2435.
    [60] Steffen K, Susi S, Annette MS, et al. Shape-memory polymer networks from oligo [(ε-hydroxycaproate)-co-glycolate]dimethacrylates and butyl acrylate with adjustable hydrolytic degradation rate[J]. Biomacromolecules, 2007, 8: 1018-1027.
    [61] Andreas L, Jorg Z, Feng YK, et al. Controlling the switching temperature of biodegradable, amorphous, shape-memory poly(rac-lactide)urethane networks by incorporation of differentcomonomers[J]. Biomacromolecules, 2009, 10: 975-982.
    [62] Zheng X, Zhou S, Li X, et al. Shape memory properties of poly (D,L-lactide) /hydroxyapatite composites [J]. Biomaterials, 2006, 27: 4288-4295.
    [63] Hsu SH, Tang CM, Tseng HJ. Biostability and biocompatibility of poly (ester urethane) -gold nanocomposites[J]. Acta Biomaterialia, 2008, 4: 1797-1808.
    [64] Zheng XT, Zhou SB, Xiao Y, et al. Shape memory effect of poly(D,L-lactide)/Fe3O4 nanocomposites by inductive heating of magnetite particles [J]. Colloids Surf B: Bio- interfaces, 2009, 71(1): 67-72.
    [65] Hu JL, Meng QH. A review of shape memory polymer composites and blends[J]. Composites:Part A, 2009, 40: 1661-1672.
    [66] Machado HB, Correia RN, Covas JA. Synthesis, extrusion and rheological behavior of PU/HA composites fo biomedical applications[J]. J Mater Sci: Mater Med, 2010, 21: 2057-2066.
    [67] Guan JJ, Stankus JJ, Wagner WR, et al. Preparation and characterization of highly porous, biodegradable polyurethane scaffolds for soft tissue applications[J]. Biomaterials, 2005, 26: 3961-3971.
    [68] Courtney T, Sacks MS, Stankus J, et al. Design and analysis of tissue engineering scaffolds that mimic soft tissue mechanical anisotropy[J]. Biomaterials,2006, 27: 3631-3638.
    [69] Grad S, Kupcsik L, Alini M, et al. The use of biodegradable polyurethane scaffolds for cartilage tissue engineering:potential and limitations[J]. Biomaterials, 2003, 24: 5163-5171.
    [70] Kavlock KD, Pechar TW, Goldstein AS,et al. Synthesis and characterization of segmented poly (esterurethane urea) elastomers for bone tissue engineering[J].Acta Biomaterialia,2007, 3: 475-484.
    [71] Guan JJ, Stankus JJ,.Wagner WR. Biodegradable elastomeric scaffolds with basic fibroblast growth factor release[J]. J Control Release, 2007, 120: 70-78.
    [72] Li B, Yoshii T, Guelcher SA. The effects of rhBMP-2released from biodegradable polyurethane /microsphere composite scaffolds on new bone formation in rat femora[J]. Biomaterials, 2009, 30: 6768-6779.
    [73] Li B, Yoshii T, Guelcher SA. The effect of the local delivery of platelet-derived growth factor from reactive two-component polyurethane scaffolds on the healing in rat skin excisional wounds [J]. Biomaterials, 2009, 30(20):3486-3494.
    [74] Wang D, Ji J, Sun Y, et al. In situ immobilization of proteins and RGD peptide on polyurethane surfaces via poly(ethylene oxide) coupling polymers for human endothelial cell growth [J].Biomacromolecules,2002,3:1286-1295.
    [75] Raju A, Pathiraja A, Gunatillake, Ian G, et al. Biodegradable injectable polyurethanes: Synthesis and evaluation for orthopaedic applications [J]. Biomaterials, 2008, 29: 3762-3770.
    [76] Sylwester G, Katarzyna G, Ewa Z, Anna C. Structure–property relations and cytotoxicity ofisosorbide-based biodegradable polyurethane scaffolds for tissue repair and regeneration [J]. J Biomed Mater Res A, 2008, 85(2):456-65.
    [77] Parth N. Shah, Rachel L. Manthe, Yang H, et al. Electrospinning of L-tyrosine polyurethanes for potential biomedical applications [J]. Polymer, 2009, 50: 2281-2289.
    [78] Laschke M.W, Strohe A, Scheuer C, et al. In vivo biocompatibility and vasularization of biodegradable porous polyurethane scaffold for tissue engineering [J].Acta Biomaterialia, 2009, 5: 1991-2001.
    [79] Monika B, Joanna R, Piotr W, Krzysztof J. Optimization of the structure of polyurethanes for bone tissue engineering applications [J]. Acta Biomaterialia, 2010, 6: 2501-2510.
    [80] Boissard CI, Bourban PE, Tami A.E, et al. Nanohydroxyapatite/poly(ester urethane) scaffold for bone tissue engineering [J]. Acta Biomaterialia, 2009, 5: 3316-3327.
    [81] Griffith LG, Naughton G. Tissue engineering-Current challenges and expanding opportunities [J]. Science, 295: 1009-1014.
    [82] Santerre JP, Woodhouse K, Laroche G, et al. Understanding the biodegradation of polyurethanes: From classical implants to tissue engineering materials [J]. Biomaterials, 2005, 26: 7457-7470.
    [83] Shahin B, Shahriar HE, Mohammad AS, et al. Preparation and characterization of polyvinyl alcohol hydrogels crosslinked by biodegradable polyurethane for tissue engineering of cartilage [J]. Mat Sci Eng C-Bio S , 2010, 30: 636-643.
    [84] Sibylle G, Sylwester G, Mauro A, et al. The use of biodegradable polyurethane scaffolds for cartilage tissue engineering: potential and limitations [J]. Biomaterials, 2003, 24: 5163-5171.
    [85] Sylwester G, Katarzyna G, Simon Turner A. Regeneration of bicortical defects in the iliac crest of estrogen-deficient sheep, using new biodegradable polyurethane bone graft substitutes [J]. J Biome Mater Res A, 2006, Jun 15; 77(4): 802-810.
    [86]李永刚.具有形状记忆功能的D,L-聚乳酸基输卵管避孕材料的制备与研究[D].重庆.重庆大学博士学位论文. 2009.
    [87]吕海珍,白建平,于肯明.哌嗪抗实验性心律失常作用的研究[J].中国药物与临床, 2006, 6(4): 291-293.
    [88]白建平,于肯明,吕海珍,等.哌嗪对中枢神经系统的药理作用[J].中国现代应用药学杂志, 2006,23(8): 740-741.
    [89]陈冬梅,张雁芳,杨日芳,等.吗啉环和哌嗪环类新衍生物对血管舒张功能的影响[J].中国药理学通报, 2003, 19(7): 754~758.
    [90]陈冬梅,陈凯,汪海.吗啉环和哌嗪环类衍生物的抗血栓作用及其分子机制[J].药学学报, 2003, 38(9): 641- 645.
    [91] Hale SL, Kloner RA, Ranolazine. An inhibitor of the late sodium channel current, reduces postischemic myocardial dysfunction in the rabbit [J]. J Cardiovasc Pharm T, 2006, 11: 249-255.
    [92] Astier B, Senas LL, Souliere F, et al. In vivo comparison of two 5-HT1A receptors agonists alnespirone (S-20499) and buspirone on locus coeruleus neuronal activity [J]. Eur J Pharmacol, 2003, 459: 17-26.
    [93] Zhang X, MacDonald D, Goosen M. Mechanism of lactide polymerization in the presence of stannous octoate: the effect of hydroxy and carboxylic acid substances [J]. J Polym Sci Pol Chem, 1994, 32: 2965-2970.
    [94] Korhonen H, Helminen A, Seppala J.V. Synthesis of polylactides in the presence of co- initiators with different numbers of hydroxyl groups [J]. Polymer, 2001, 42: 7541-7549.
    [95] Kricheldorf H, Kreiser SI, Stricker A. Polylactones 48. Sn(Oct)2-initiated polymer rizations of lactide: a mechanistic study [J]. Macromolecules, 2000, 33: 702-709.
    [96] Kowalski A, Duda A, Penczek S. Kinetics and mechanism of cyclic esters polymerization initiated with tin (II) octoate, 1. polymerization ofε-caprolactone[J]. Macromol Rapid Comm, 1998, 19: 567-572.
    [97] Kowalski A, Duda A, Penczek S. Mechanism of cyclic ester polymerization initiated with Tin (II) octoate. 2. Macromolecules fitted with Tin (II) alkoxide species observed directly in MALDI-TOF spectra [J]. Macromolecules, 2000, 33: 689-695.
    [98] Baimark Y, Molloy R. Synthesis and characterization of poly (l-lactide-co-ε-caprolactone) copolymers: effects of stannous octoate initiator and diethylene glycol coinitiator concentrations [J]. Sci Asia, 2004, 30: 327-334.
    [99] Adam K, Jan L, Andrzej D, et al. Kinetics and Mechanism of cyclic esters polymerization initiated with Tin (II) Octoate. polymerization ofε-caprolactone and L,L-lactide co-initiated with primary amines [J]. Macromolecules, 2005, 38: 8170-8176.
    [100] Dubois P, Deghe P, JBrbme R, et al. Macromolecular engineering of polylactones and polylactides. ring-opening polymerization ofε-caprolactone initiated by primary amines and trialkylaluminum [J]. Macromolecules, 1992, 25: 2614-2618.
    [101]牛旭锋.聚(D,L-乳酸)基仿生细胞外基质的骨组织工程基质材料研究[D].重庆.重庆大学博士学位论文. 2006.
    [102] Wang WS, Ping P, Chen XS, et al. Polylactide-based polyurethane and its shape-memorybehavior [J]. Eur Polym J, 2006, 142: 1240-1249.
    [103]董炎明.高分子分析手册[M].北京:中国石化出版社, 2004: 94-97.
    [104]陈泉水,罗太安,刘晓东著.高分子材料实验技术[M].北京:化学工业出版社, 2006: 219-221.
    [105]王家琴,姜林.三羟复酯及聚醚中羟基的测定[J].合成润滑材料, 1995, 4: 11-15.
    [106]叶成果,龚素华.准确测定聚醚多元醇中间品的羟值应注意的问题[J].福建分析测试, 2005, 14: 2178-2180.
    [107]罗彦凤.聚(DL-乳酸)的改性及体外降解和细胞相容性研究[D].重庆.重庆大学博士学位论文. 2003.
    [108] Gupta AP, Kumar V. New emerging trends in synthetic biodegradable polymers-Polylactide: A critique [J]. Eur. Polym. J. 43 (2007) 4053-4074.
    [109]于翠萍,李希,沈之荃.丙交酯开环均聚合.化学进展[J]. 2007.第19卷第1期.136-144.
    [110] Sung CS, Hu CB. Wu CS. Properties of segmented poly (urethane ureas) based on 2, 4-toluene diisocyanate I. Thermal transitions, X-ray studies and comparison with segmented poly(urethanes) [J]. Macromolecules, 1980, 13:111-116.
    [111]赵菲,孙学红.聚氨酯弹性体的力学性能影响因素研究[J].聚氨酯工业, 2001, 16(1): 9-12.
    [112] Wilkes GL, Abouzahr S. SAXS studies of segmented polyether poly (urethaneurea) elastomers [J]. Macromolecules, 1981, 14: 456-458.
    [113] Lee HS, Wang YK, Hsu SL. Behavior of model polyurethanes [J]. Macromolecules, 1987, 20:2089-2095.
    [114] Yilgor E, Yilgor I. Hydrogen bonding: a critical parameter in designing silicone copolymers [J]. Polymer, 2001, 42: 7953-7959.
    [115] Ping P, Wang WS, Chen XS, et al. The influence of hard-segments on two-phase structure and shape memory properties of PCL-based segmented polyurethanes [J]. Polym Sci Part B: Polym Phys, 2007, 45(5): 557-570.
    [116] Lendlein A, Langer R. Biodegradable, elastic shape-memory polymers for potential biomedical applications [J]. Science, 2002, 296: 1673-1676.
    [117] Agrawal CM, Athanasiou KA. Technique to control pH in vicinity of biodegrading PLA-PGA implants [J]. J Biomed Mat Res.1997, 38: 105-114.
    [118] HG/T2409-92.中华人民共和国化工行业标准[S].
    [119]顾善汶,张虹路.交联聚乙烯的溶胀和交联度的测定[J].塑料科技. 1984年04期47-48.
    [120]王铭钧,杜聪,董良秘等.分子量对聚合物辐射交联的影响[J].辐射研究与辐射土艺学报. 1986 4:15-23.
    [121]杨学恒,陈红兵,费德国等.一种高精度原子力显微镜的设计及应用[J].中国机械工程, 2004, 15(21): 1909-1911.
    [122]彭光含,杨学恒,辛洪政等.高精度STM.IPC-205BJ型原子力显微镜的设计[J].机械工程学报,2007, 43(2):127-131.
    [123] Yang XH, Zhong HJ, Tang TG, et al. Study on space morphology of molecular structure by AFM. Proceedings of the 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems, 2006: 577-580.
    [124]白海会,杨学恒.三氧化钨晶化薄膜的制备及微观结构研究[J].天津师范大学学报(自然科学版). 2009, 26(2):35-37.
    [125]王庚超,马敏生.聚醚型聚氨酯的氢键,微相分离及性能[J].合成橡胶工业, 1991, 14(6): 409-412.
    [126] Harthcock MA. Probing the complex hydrogen bonding structure of urethane block copolymers and various acid containing copolymers using infrared spectroscopy [J]. Polymer, 1989, 30: 1234-1242.
    [127] Wang CB, Cooper S.L. Properties of segmented polyether polyurethaneureas [J]. Macromolecules, 1983, 16:775-786.
    [128] Chen SJ, Hu JL, Yuen CW, et al, Supramolecular polyurethane networks containing pyridine moieties for shape memory materials [J]. Mater Lett, 2009, 63: 1462-1464.
    [129] Piotr Krol. Synthesis methods, chemical structures and phase structures of linear polyurethanes. Properties and applications of linear polyurethanes in polyurethane elastomers, copolymers and ionomers [J]. Prog Mater Sci, 2007, 52: 915-1015.
    [130] ASTM D638-10. 2010. Standard test method for tensile properties of plastics [s]. USA.
    [131] Lee BS, Chun BC, Chung YC, et al, Structure and Thermomechanical Properties of Polyurethane Block Copolymers with Shape Memory Effect [J]. Macromolecules, 2001, 34: 6431-6437.
    [132] Niu XF, Feng QL, Wang MB, et al. Porous nano-HA/collagen/PLLA scaffold containing chitosan microspheres for controlled delivery of synthetic peptide derived from BMP-2 [J]. J Control Release, 2009, 134(2): 111-117.
    [133]谌福特,王源身.聚合物材料的动态力学分析[M].北京:轻工业出版社, 1988.
    [134] Byoung CC, Cho TK, Chung YC. Enhanced mechanical and shape memory properties of polyurethane block copolymers chain-extended by ethylene diamine [J]. Eur Polym J, 2006, 42:3367-3373.
    [135] Lisa T, Moore TG, Raju A, et al. Thermoplastic biodegradable polyurethanes: The effect ofchain extender structure on properties and in-vitro degradation [J]. Biomaterials, 2007, 28: 5407-5417.
    [136] Tobushi H, Hara H, Yanmada E, et al. Thermomechanical properties in a thin film of shape memory polymer of polyurethane series [J]. Smart Mater Struct, 1996, 5: 483-491.
    [137] Tobushi H, Hayashi S, Hoshio K, et al. Influence of strain-holding conditions on shape recovery and secondary-shape forming in polyurethane-shape memory polymer [J], Smart Mater Struct, 2006, 15: 1033-1038.
    [138] Liu Y, Gall K, Dunn ML, et al. Thermomechanics of shape memory polymer: uniaxial experiments and constitutive modeling [J]. Int J Plasticity, 2006,22 (2): 279-313.
    [139] Khonakdar HA, Jafari SH, Rasouli S, et al. Investigation and modeling of temperature dependence recovery behavior of shape-memory crosslinked polyethylene [J], Macromol Theory Simul, 2007, 16: 43-52.
    [140] Gall K, Dunn ML, Liu Y. Internal stress storage in shape memory polymer nanocomposites [J]. Appl Phys Lett, 2004, 85(1): 1-3.
    [141] Qi HJ, Nguyen TD, Castro F, et al. Finite deformation thermo-mechanical behavior of thermally induced shape memory polymers [J]. J Mech Phys Solids, 2008, 56: 1730-1751.
    [142] Westbrook KK, Castro F, Long KN, et al. Improved testing system for thermomechanical experiments on polymers using uniaxial compression equipment [J]. Polym Test, 2010, 29: 5013-5512.
    [143] Behl M, Lendlein A. Shape memory polymers [J]. Mater Today, 2007, 10(4): 20-28.
    [144] Lin JR, Chen LW. Shape-memorized crosslinked ester type poly-urethane and its mechanical viscoelastic model [J]. J Appl Polym Sci, 1999, 73: 1305-1319.
    [145] Gall K, Dunn ML, Liu YD, et al. Shape memory polymer nanocomposites [J]. Acta Mater, 2002, 50: 5115-5126.
    [146] Xie T, Xiao X, Cheng YT. Revealing triple-shape memory effect by polymer bilayers [J]. Macromol Rapid Comm, 2009, 30: 1823-1827.
    [147] Lendlein A, Schmidt AM, Langer R. AB-polymer networks based on oligo(3-caprolactone) segments showing shape-memory properties [J]. P Natlacad Sci USA, 2001, 98(3): 842-847.
    [148] Julie D, Carole F, Pierre G, et al. A torsion test for the study of the large deformation recovery of shape memory polymers [J]. Polym Test, 2011, 30: 335-341.
    [149] Chun BC, Cho TK, Chung YC. Blocking of soft segments with different chain lengths and its impact on the shape memory property of polyurethane copolymer [J]. J Appl Polym Sci, 2007, 103: 1435-1441.
    [150] Borja FA, Umar K, Lorena R, et al. Influence of hard segment content and nature onpolyurethane/multiwalled carbon nanotube composites [J]. Compos Sci Techonl, 2011, 71:1030-1038.
    [151] Chen SJ, Hu JL, Liu YQ, et al. Effect of molecular weight on shape memory behavior in polyurethane films [J]. Polym Int, 2007, 56: 1128-1134.
    [152] Abraham B, Podczeck F, Newton JM. Application of Dynamic Mechanical Analysis (DMA) to the determination of the mechanical properties of coated pellets [J]. Int J Pharm, 2004, 274:53-63.
    [153] Lua H, Obeng Y, Richardson KA. Applicability of dynamic mechanical analysis for CMP polyurethane pad studies [J]. Mater Charact, 2003, 49: 177-186.
    [154] Cristina P, Elena S, Bogdan A. Synthesis and characterization of dibenzyl based polyurethane blends obtained via the one shot synthesis route [J]. Procedia Engineering, 2011, 10: 984-989.
    [155] Rita F, John CD, Richard GB. Dynamic mechanical analysis and chemometrics for polymer identification [J]. Polym Test, 2007, 26: 402-412.
    [156] Jens R. The glass transition temperature Tg of polymers-comparison of the values from differential thermal analysis (DTA, DSC) and dynamic mechanical measurements (torsionpendulum) [J]. Polym Test, 2001, 20: 199-204.
    [157] Gill PS, Lear JD, Leckenby JN. Recent developments in polymer characterisation by dynamic mechanical analysis [J]. Polym Test, 1984, 4: 131-138.
    [158] Tao X. Recent advances in polymer shape memory [J]. Polymer, 2011, 52: 1-16.
    [159] Hutmacher DW. Scaffold design and fabrication technologies for engineering tissues-state of the art and future perspectives [J]. J Biomater Sci: Polym E, 2001, 12(1): 107-124.
    [160] Suganuma J, Alexander H. Biological response of intramedullary bone to poly-L-lactic acid [J]. J Appl Biomater, 1993, 4: 13-27.
    [161] Wang PS, Chiu WY, Chen LW, et al. Thermal degradation behavior and flammability of polyurethanes blended with poly (bispropoxyphosphazene) [J]. Polym Degrad Stab, 1999, 66: 307-315.
    [162] Chuang FS. Analysis of thermal degradation of diacetylene-containing polyurethane copolymers [J]. Polym Degrad Stab, 2007, 92: 1393-1407.
    [163] Chuang FS, Tsen WC, Shu YC. The effect of different siloxane chain-extenders on the thermal degradation and stability of segmented polyurethanes [J]. Polym Degrad Stab, 2004, 84: 69-77.
    [164] Rozema FR, Bergsma JE. Late degradation simulation of poly (L-lactide) [J]. J Mater Sci: Mater M, 1994, 5: 575-581.
    [165] Nagata M, Okano F, Sakai W, et al. Separation and enzymatic degradation of blend films ofpoly (l-lactic acid) and cellulose [J]. J Polym Sci Pol Chem, 1998, 36: 1861-1864.
    [166] Gazzetti P, Laaaerini G. Degradation products of poly (ester-ether-ester) block copolymers do not alter endothelial metabolism in vitro [J]. J Mater Sci: Mater Med, 1995, 6: 824-828.
    [167] Ozawa T. New method of analyzing thermogravimetric data [J]. Bull Chem Soc Jpn, 1965, 38(11): 1881-1886.
    [168] Rychly J, Lattuati-Derieux A, Lavédrine B, et al. Assessing the progress of degradation in polyurethanes by chemiluminescence and thermal analysis. II. Flexible polyether-and polyester-type polyurethane foams [J]. Polym Degrad Stab, 2011, 96: 462-469.
    [169] Cannizzaro SM, Padera RF, Langer R. A novel biotinylated degradable polymer for cell-interactive applications [J]. Biotechnol Bioeng, 1998, 58: 529-535.
    [170] Luo YF, Wang YH, Niu XF. Evaluation of the cytocompatibility of butanediamine- and RGDS-grafted poly (DL-lactic acid) [J]. Eur Polym J, 2008, 44(5): 1390-1402.
    [171] Niu XF, Luo YF, Li YG, et al. Design of bioinspired polymeric materials based on poly(D,L-lactic acid) modifications towards improving its cytocompatibility [J]. J Biomed Mater Res A, 2008, 84A (4): 908-916.
    [172] Gorna K, Gogolewski S. Biodegradable polyurethanes for implants.II. in vitro degradation and calcification of materials from poly(ε- caprolactone)-poly(ethylene oxide) diols and various chain extenders[J]. J Biomed Mat Res,2002,60(4):592-606.
    [173]王远亮.生物材料——生物学与材料科学的交叉[M].北京:科学出版社, 2009.
    [174] Petrovic ZS. Thermal degradation of segmented polyurethanes [J]. J Appl Polym Sci, 1994, 51:1087 -1095.
    [175]刘瑾,李真,罗筱烈.聚氨酯弹性体的热降解行为研究[J].高分子材料科学与工程, 1998,14(1): 128-129.
    [176] Gajewski V. Chemical degradation of polyurethane [J]. Rubber World, 1990, 202(6): 15-18.
    [177]秦秀敏.聚醚型聚氨酯(脲)弹性体的改性、形态结构及性能研究[D].上海.上海交通大学博士学位论文. 2006.
    [178] Williams DF. The Williams Dictionary of biomaterials [M]. Liverpool: Liverpool University Press, 1999.
    [179] Ratner BD, Hoffman AS, Schoen FJ, et al.“Biomaterials Science: A Multidisciplinary Endeavor,”in Biomaterials Science: An Introduction to Materials in Medicine, 2nd ed [M]. San Diego: Elservier Academic Press, 2004.
    [180] Mosmann T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays [J]. J Immunol Meth, 1983, 65(1-2): 55-63.
    [181]愈耀庭,张兴栋.生物医用材料[M].天津:天津大学出版社, 2000, 12-24.
    [182]李玉宝.生物医学材料[M].北京:化学工业出版社, 2003, 265-269.
    [183] Collignon H, Davicco MJ, Barlet JP. Isolation of cells from ovine fetal long bone and characterization of their osteoblastic activities during in vitro mineralization [J]. Arch Physiol Biochem, 1997, 105(2): 158-166.
    [184] Huang WB, Carlsen B, Rudkin G, et al. Osteopontin is a negative regulator of proliferation and differentiation in MC3T3-E1 pre-osteoblastic cells [J]. Bone, 2004, 34: 799- 808.
    [185] Komori T, Yagi H, Nomura S, et al. Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts [J]. Cell, 1997, 89(5): 755-764.
    [186] Franceschi RT, Xiao G. Regulation of the osteoblast-specific transcription factor, Runx2: responsiveness to multiple signal transduction pathways [J]. J Cell Biochem, 2003, 88(3): 446-454.
    [187] Ducy P, Zhang R, Geoffroy V, et al. Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation [J]. Cell, 1997, 89(5): 747-754.
    [188] Hallab NJ, Bundy KJ, O’Connor K, et al. Evaluation of metallic and polymeric biomaterial surface energy and surface roughness characteristics for directed cell adhesion [J]. Tissue Eng. 2001, 7(1): 55-71.
    [189] Critchley DR, Holt MR, Barry ST, et al. Integrin-mediated cell adhesion: The cytoskeletal connection [J]. Biochem Soc Symp, 1999, 65: 7-12.
    [190]牛旭锋,王远亮,潘君.成骨细胞在生物活性材料中黏附性能研究进展[J].生物医学工程杂志, 2005, 22(4): 848-852.
    [191] Deligianni DD, Katsala ND, Koutsoukos PG, et al. Effect of surface roughness of hydroxyapatite on human bone marrow cell adhesion, proliferation, differentiation and detachment strength [J]. Biomaterials, 2001, 22(1): 87-96.
    [192] Davis KA, Burke KA, Mather PT, et al. Dynamic cell behavior on shape memory polymer substrates [J]. Biomaterials, 2011, 32(9):2285-2293
    [193] Curtis A, Wilkinson C. Topographical control of cells [J]. Biomaterials, 1997, 18(24): 1573-1583.
    [194] Atarashiya. Aluminum nitride/metal composites using ultra-fine aluminum particles and their application for joining [J]. J Mater Proc Technol, 1995, 54 (1-4): 54-59.
    [195] Anselme K, Bigerelle M, Noel B, et al. Qualitative and quantitative study of human osteoblast adhesion on materials with various surface roughnesses [J]. J Biomed Mater Res, 2000, 49: 155-166.
    [196] Ren YJ, Zhang H, Huang H, et al. In vitro behavior of neural stem cells in response to different chemical functional groups [J]. Biomaterials, 2009, 30: 1036-1044.
    [197] Pesskova V, Kubies D, Hulejova H, et al. The influence of implant surface properties on cell adhesion and proliferation [J]. J Mater Sci Mater Med, 2007, 18(3): 465-473.
    [198] Thevenot P, Hu W, Tang L. Surface chemistry influences implant biocompatibility [J]. Curr Top Med Chem, 2008, 8(4): 270-280.
    [199] Wang YX, Robertson TJ, Spillman WB, et al. Effects of the chemical structure and the surface properties of polymeric biomaterials on their biocompatibility [J]. Pharm Res, 2004, 21: 1362-1373.
    [200] Kou PM, Schwartz Z, Boyan BD, et al. Dendritic cell responses to surface properties of clinical titanium surfaces [J]. Acta Biomater, 2011, 7(3): 1354-1363.
    [201] Zweig K. Smith, Malthus, Ricardo, and Mill: The forerunners of limits to growth [J]. Futures, 1979, 6(11): 510-523.
    [202] Scorer RS. Scientific method and the environmental scene: the need for an experimenting, evolving society [J]. Omega, 1975, 4(3): 411-422.
    [203]周赛花.逻辑斯谛方程中参数的估计[J].数理统计与管理. 1992, 5(11): 132-135.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700