力生长因子E肽在临界骨缺损修复中的作用及机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肿瘤、创伤、感染等因素所造成的大面积骨缺损修复一直是困扰骨科医生的难题。目前,骨缺损的治疗主要还是依赖传统的骨移植术,但传统方式一般会经历多次手术、存在诸多副作用及因手术失败引起的截肢或丧失骨负重等可能性,因此迫切需要新的替代方法以满足临床治疗需求。生长因子的应用为骨缺损治疗提供了一种可供选择的治疗方式。目前经FDA批准的用于临床骨修复的生长因子主要是BMPs家族蛋白,其中rhBMP-2的活性最强,但在临床运用中rhBMP-2却存在治疗费用较高,有效剂量难以控制易导致异位成骨、过量成骨、新生骨快速吸收等成骨异常现象出现。本文针对rhBMP-2在临床运用中出现的问题,试图寻找到一种替代因子或与rhBMP-2联用能解决其成骨异常问题的因子。力生长因子E肽(C-terminal24-amino acid peptide of mechano growth factor, MGF24E)是近年来引起广泛关注的一个功能活性多肽,是受损组织表达的一种IGF-I选择性剪接变体,实验已证明它能保护受损组织及细胞,促进损伤修复。基于本课题组对MGF24E的前期研究成果,本研究从影像学、组织学以及生物力学等多方面证实了力生长因子E肽(MGF24E)以及MGF24E+rhBMP-2联合用药在临界骨缺损修复中的积极作用,同时在细胞学水平、基因水平以及蛋白质水平探讨了损伤修复机制。研究的主要内容和所取得的结果如下:
     1.在制备了1mm左右间隙的SD大鼠桡骨开放性骨折模型的基础上,利用前期制备的MGF/MGF24E兔抗人多抗,采用Western blot技术检测和分析大鼠骨折修复组织中MGF蛋白的表达情况。结果显示截骨损伤组织中MGF蛋白表达在术后1天即上升到较高值,术后第3天达到最高值,随后表达量虽有下降但仍维持较高表达。
     2.从影像学和组织学的观察及分析角度,综合评价外源MGF24E注射修复兔桡骨节段性骨折的效果。
     ①高剂量MGF24E修复兔桡骨5mm节段性骨折的临床愈合时间,较MGF24E低剂量组和阴性对照组提早2周;MGF24E高剂量组重建骨组织为髓腔贯通的管状骨,其修复情况明显好于MGF24E低剂量组和阴性对照组;
     ②高剂量MGF24E能显著促进骨折重建组织的血管新生,组织学评分结果显示高剂量组样本新生血管数为阴性对照组的2倍以上。
     3.采用2%FBS血清饥饿细胞模型,以PBS为阴性对照、100ng/mL VEGF165为阳性对照,考察MGF24E对人静脉内皮EA.hy926细胞增殖、迁移和体外管腔形成的影响;以PBS为阴性对照,10%FBS正常培养条件为阳性对照,考察10ng/mLMGF24E对人静脉内皮EA.hy926细胞VEGF和Ang-I的mRNA及蛋白表达的影响;同时还研究了MAPK/ERK通路在MGF24E影响血管内皮细胞体外血管化细胞行为及其分子机制中的作用。
     ①10ng/mL MGF24E促细胞增殖能力等效于100ng/mLVEGF165,MGF24E促细胞增殖是通过增加S期细胞数目和促进细胞DNA合成的方式完成,并完全依赖MAPK/ERK信号通路;
     ②MGF24E促细胞迁移、管腔形成的能力明显强于PBS阴性对照,但弱于VEGF165,并发现MAPK/ERK通路部分参与了MGF24E促细胞迁移、管腔形成等事件;
     ③MGF24E能逆转血清饥饿引起的正常生长细胞VEGF和Ang-I表达下调的趋势,其上调量高于正常培养组的表达量,并发现MAPK/ERK通路部分参与了MGF24E上调VEGF和Ang-I表达的整个过程。
     4.采用7%FBS血清饥饿细胞模型,以PBS为阴性对照、100ng/mLVEGF165+50ng/mL rhBMP-2的联合用药为阳性对照,25ng/mL MGF24E、50ng/mLrhBMP-2单给药为联合用药组的增效参照,考察25ng/mL MGF24E+50ng/mLrhBMP-2联合用药对原代成骨细胞增殖、迁移、分化早期指标ALP活性以及矿化钙分泌量表达的影响,并研究其分子机制。
     ①MGF24E促细胞增殖能力强于rhBMP-2和PBS,相对于MGF24E或rhBMP-2单独给药,MGF24E+rhBMP-2联合用药对促进细胞DNA合成、迁移和分化矿化有协同增效作用;阳性对照除对促进细胞迁移有协同增效作用外,在其他成骨相关细胞生理行为上均表现为拮抗抑制作用;
     ②MGF24E+rhBMP-2联合用药在细胞分化矿化事件上的协同增效作用主要涉及调控成骨信号通路的转录因子Runx2基因和骨基质形成的OPN基因表达上调。
     5.以可吸收明胶海绵(Absorbable Gelatin Sponge, AGS)作为载体,采用低温负压物理吸附法制备4种不同给药方案的复合生长因子支架,并对复合支架的形貌结构、孔隙率、生长因子的体外释放以及支架细胞相容性等性能进行评价。
     ①扫描电镜结果显示,生长因子成球状分布于复合AGS支架内部,支架孔径和孔隙率能满足成骨细胞长入;
     ②体外释放结果显示,不同复合支架中生长因子的体外释放均发生突释现象,其中MGF24E释放最快,rhBMP-2释放最慢,生长因子的释放规律可满足机体对MGF24E需求以及临床上rhBMP-2的一次性高浓度给药方式;
     ③复合支架中成骨细胞活性实验结果显示,各组复合支架表现出细胞相容性差异,联合用药组和MGF24E组支架的细胞相容性优于rhBMP-2组和阴性对照支架。
     6.建立了兔桡骨15mm节段性临界骨缺损模型,以PBS为阴性对照、80μgrhBMP-2为阳性对照,从影像学、组织学和生物力学三方面考察200μg MGF24E和200μg MGF24E+80μg rhBMP-2联合用药对临界骨缺损修复的作用;依据成骨相关蛋白OPN和新生血管标记蛋白CD31的表达规律分析MGF24E和MGF24E+rhBMP-2联合用药的临界骨缺损修复机制。
     ①影像学结果显示,联合用药修复临界骨缺损的骨皮质桥接愈合时间为12周,骨痂桥接的临床愈合时间为4周,早于rhBMP-2组;rhBMP-2组样本愈合经历了过度成骨,新生骨快速吸收(尺桡骨融合现象)的过程,联合用药完全逆转了rhBMP-2骨修复异常的趋势;术后12周MGF24E组虽只有50%样本达到骨皮质愈合标准,但远多于阴性对照组;各组4-12周骨改建时期影像学修复情况符合时间的线性函数关系;
     ②组织学结果显示,术后初期联合用药组和MGF24E组支架的组织相容性优于rhBMP-2组和阴性对照支架;组织学分析显示联合用药组愈合情况最好,优于rhBMP-2组和MGF24E组,表现出联合用药的协同增效作用;各组组织学愈合情况满足时间的对数函数关系;
     ③生物力学试验结果显示,虽然各用药组缺损区重建组织骨质连续,但其力学性能仍低于正常桡骨组织;各用药组样本刚度依次为:联合用药组> rhBMP-2组> MGF24E组,样本弯曲强度刚度依次为:联合用药组>MGF24E组> rhBMP-2,组联合用药组在力学性能上表现出协同增效作用;
     ④修复机制研究结果显示,用药组骨缺损愈合方式为软骨内成骨;MGF24E组能提早启动骨基质合成和血运恢复,因此含有MGF24E的联合用药组样本新骨形成量多于rhBMP-2组,但MGF24E的这种促进作用主要体现在术后初期,随着rhBMP-2组样本血运的逐渐恢复,联合用药组和rhBMP-2组间新骨形成差异逐渐减小。
     综上所述,MGF24E既能显著地促血管新生,又能在一定程度上促进体内成骨,因此MGF24E+rhBMP-2联合用药能使临界骨缺损提早愈合,其修复质量也优于rhBMP-2或MGF24E单给药,表现出协同增效作用,并且联合用药能解决rhBMP-2成骨异常问题,为后续骨缺损修复的研究奠定了基础。
Large resections around bone tumors, complications after bone fracture, orinflammatory bone diseases often result in major bone loss or bone defect. Bone defecthealing is one of the challenges of orthopaedic surgery, for which bone grafts are widelyused. However, bone grafts have several drawbacks and are far from ideal, including thehigh donor-site morbidity and a high complication rate. So the new alternatives areneeded to satisfy clinical treatment. In search of alternative therapies, growth factorsgain a significant importance. At present, the growth factors approvalled by FDA for theclinical bone repair treatments are mainly BMPs family protein, in which rhBMP-2isthe mosr active one. But there are some drawbacks for rhBMP-2treatment: high cost,ectopic bone, excessive bone, and stimulate broken bone cell differentiation leading tofast absorption after the new bone formation. We aims at the problems of rhBMP-2treatment in the clinical application, and try to search an alternative factor for rhBMP-2,or one factor can have synergistic effect with rhBMP-2on bone repair. In recent year,C-terminal24-a.a. peptide of mechano growth factor, MGF24E gained an increasingattention because of its regenerative effects and the tissue-protective actions. MGF is theinitial splice-variant of IGF-1when tissue or cells suffer from damage.According to theprevious research results of our team on MGF24E, the studies are undertaken toinvestigate the roles and mechanism of mechano growth factor on bone injury repair, inorder to solve the problem of rhBMP-2on the clinical treatment. The main works andconclusions are included as follows:
     1. The1mm or so bone fractures in radius of SD rats were prepared, and MGFprotein expression in jury was analised by Western blot with rabbit anti-MGF/MGF24Epolyclonal antibody. Results showed that MGF protein expression one daypostoperatively, rise to higher value, to peak3days postoperatively, and then slightlyfall down but still maintain a high expression in a relatively long period.
     2.5mm segmental fracture in the radius of rabbit was treated by exogenousMGF24E injection, and the repair effects were assessed as radiographical andhistological observation and quantitative analysis.
     ①The clinical-healing time in high-dose treatment group was shorter2weeksthan that in the control group and low-dose treatment group. The regenerating bones inhigh-dose treatment group are tube-shape bone with reopening of the medullary cavity and the repairment was significantly better than the control group and low-dosetreatment group.
     ②The high-dose treatment significantly improves angiogenesis of regeneratingbone around defective areas, new blood vessels of high-dose group are more2foldsthan that of the control group.
     3. The roles of MGF24E on angiogenesis and the underlying mechanisms wereinvestigated. The cell proliferation, migration, and tubulogenesis of the human vascularendothelial EA.hy926cells co-treated with2%serum and MGF24E were determined toassess angiogenesis in comparison with100ng/ml of VEGF165-positive control orvehicle control (phosphate-buffered saline).
     ①The pro-proliferation capacity of10ng/mL MGF24E was same to that of100ng/mL VEGF165. MGF24E promoted cell proliferation by inducing the cell cycleS-phase entry and transition to DNA replication and via an MAPK/ERK-dependentsignaling pathway.
     ②The capacities of MGF24E on promoting migration and tubulogenesis wasstronger than those of the control, but weaker than VEGF165.MGF24E-induced highermigratory activity and tubulogenesis partially involved ERK-signaling pathway.
     ③The suppression of vascular endothelial growth factor and angiopoietin-Iexpressions by2%serum starvation was reversed by the addition of10ng/ml ofMGF24E in2%serum medium, and the MGF24E-upregulated VEGF and Ang-I werehigher than those of the cells without serum starvation, which partially involvedERK-signaling pathway.
     4. The effects of MGF24E on the osteogentic behaviors of primary osteoblastsand the underlying mechanisms were investigated. The cell proliferation, migration,ALP activity, mineralization and calcium secretion expression of primary osteoblastsco-treated with7%serum and dual growth factors (containing25ng/mL MGF24E+50ng/mL rhBMP-2) were determined to assess physiological behaviors of primaryosteoblasts in comparison with100ng/mL VEGF165+50ng/mL rhBMP-2-positive controlor vehicle control (phosphate-buffered saline) or25ng/mL MGF24E or50ng/mLrhBMP-2, and meanwhile the molecular mechanism of osteogenesis in vitro wereinvestigated.
     ①The pro-proliferation capacity of MGF24E was stronger than that of rhBMP-2or vehicle control. The activities of dual treatment (MGF24E+rhBMP-2) on osteoblastsproliferation, migration, osteodifferentiation and mineralization were higher than those of MGF24E treatment or rhBMP-2treatment. Although pro-migration activity ofpositive control (VEGF165+rhBMP-2) was higher than that of rhBMP-2treatment, theactivities of positive control on proliferation, osteodifferentiation and mineralizationwere lower than those of rhBMP-2treatment.
     ②The synergistic effect of dual treatment mainly involved the upregulations ofRunx2and OPN mRNA expressions
     5. The composite scaffold containing different growth factors was constructedwith the carrier of absorbable gelatin sponge by the manner of negative pressurephysical adsorption at4℃,and the morphology structure, porosity of scaffold, releasecharacteristics of growth factors in vitro and cells compatibility of scaffold wereevaluated.
     ①The results of scanning electron microscopy (SEM) showed that growth factordistributed in scaffold appearing as a ball-shape, pore size and porosity can satisfy thegrowth of osteoblast and new capillary;
     ②The results of release characteristics in vitro showes that sudden release ofdifferent growth factores was observed in the initial period; MGF24E release was fastestand rhBMP-2release was the slowest. the release characteristics of MGF24E can meetthe demand of injury repair, and the release characteristics of rhBMP-2can meet theway of high concentration at one-time in clinical treatment;
     ③The results of cell activity of different scaffolds showed, different growthfactors led to different cytocompatibilities, and cytocompatibilities of dual treatmentgroup and MGF24E treatment group were better than those of rhBMP-2group andvehicle control.
     6. The15mm segmental critical bone defect models in radius of rabbits wereestablished. The radiographical investigation, histological investigation andbiomechanics measurement were taken to evaluate the bone-defect repair capability ofdual treatment (containing200μg/mL MGF24E+80μg/mL rhBMP-2), in comparisonwith80μg/mL rhBMP-2-positive control or vehicle control (phosphate-buffered saline)or200μg/mL MGF24E, and meanwhile the repair mechanism of bone-defect in vitrowere investigated according to the expressions of OPN and CD31.
     ①The radiographical results showed, that healing time of cortex-bridging in dualtreatment groups was12weeks, and clinical-healing time of callus-bridging in dualtreatment groups was4weeks,which was earlier than that of rhBMP-2treatment groups;after samples of rhBMP-2treatment group appeared excessive bone, regenerating bone appeared fast absorption (radius-ulna fusion phenomenon), but dual treatmentcompletely reversed the abnormal bone-healing phenomena induced by rhBMP-2,suggesting a synergistic effect; Although during12weeks of repair period, only halfsamples of MGF24E treatment group appeared cortex-bridging, but were still far morethan that of the negative control group; the radiographical scores of different treatmentsmeted the linear function;
     ②The histological results showed, the differences of histocompatibilities ofdifferent growth factors treatment scaffolds were observed in the initial periodpostoperatively, and histocompatibilities of dual treatment scaffold and MGF24Etreatment scaffold were better than that of rhBMP-2treatment scaffold and the vehiclescaffold; regenerating bone mass and histological scores showed that bone-healingcapability of dual treatment group was the best, better than rhBMP-2treatment groupand MGF24E treatment group, suggesting the synergistic effect; The histological scoresmeted the logarithm function, according with the S curve law of biological communitiesgrowth.
     ③The biomechanical test results showed that, even if the regenerating bone ofdifferent treatment groups appeared bone mass bridging, mechanical properties ofregenerating bone were still lower than native radius; the stiffness and bending intensityof regenerating bone samples in MGF24E treatment group were about a third of thoseof native radius; the stiffness of rhBMP-2treatment group was nearly the half of that ofnative radius, and the bending intensity of rhBMP-2treatment group is about1/5of thatof native radius, the stiffness and bending intensity of dual treatment group were64%and54%of those of native radius respectively, suggesting the synergistic effect;
     ④The results of osteogenesis mechanism showed that, bone-defect repair modeof different growth treatments was endochondral ossification; the treatments containingMGF24E can induce early bone matrix synthesis and blood supply recovery, thus thenew bone formation of samples in dual treatment group was better than that of samplesin rhBMP-2treatment group, but the capability of MGF24E on promoting bone matrixsynthesis and blood supply recovery displayed in the initial period postoperatively, asthe gradual blood supply recovery of samples in rhBMP-2treatment group,thedifferences of dual treatment group and rhBMP-2treatment group in new boneformation was smaller.
     To sum up, MGF24E not only can significantly promote angiogenesis, but also canpromote bone formation in vivo, so dual treatment of MGF24E and rhBMP-2can promote critical bone-defect healing in advance, and its repair quality was better thanregenerating bone in rhBMP-2or MGF24E treatment groups, suggesting the synergisticeffect; The key was that but dual treatment completely reversed the abnormalbone-healing phenomena induced by rhBMP-2, contributing to some further studies asan therapy of critical bone defect healing and showing an significance for clinicaltreatment.
引文
[1]郑玉峰,奚廷斐,魏世成.骨科器械国内外产业状况[J].新材料产业.2007,10(11):20-23.
    [2] Cheung C. The future of bone healing [J]. Clin.Podiatr.Med.Surg.2005(22):631-641.
    [3] Ogden JA, Alvarez R, Levitt R, et al. Shock wave therapy (Orthotripsy(R)) inMusculoskeletal Disorders [J].Clin orthop,2001,(387):22-40.
    [4] Carano R.A., E.H. Filvaroff. Angiogenesis and bone repair[J]. Drug Discov Today,2003,8(21):980-989.
    [5] Arladani AH, Granhed H, Edshage B, et al. Displaced tibial shaft fractures: a prospectiverandomized study of closed intramedullary nailing versus cast treatment in53patients[J].Acta Orthop Scand,2000,71:160-167.
    [6] PM Sokolsky, K Agashi, A Olaye, et al. Polymer catriers for drug delivery in tissueengineering[J]. Adv Drug Deliv Rev,2007,59:187-206.
    [7] JS Careon, MR Bostrom. Synthetic bone scaffolds and fracture repair[J]. Injury,2007,38S:533-537.
    [8] Bostrom MP, Saleh KJ, Einhorn TA. Osteoinductive growth factors in preclinical fracture andlong bone defects models[J]. Orthop Clin North Am,1999,30:647-58.
    [9] N. Ramisetty, A. Nargol. Results of use of bone morphogenic protein-2(BMP-2) in thetreatment of long bone fracture non-union-A series of25cases [J]. Injury Extra.2009(40):183-235.
    [10] Linkhart TA, Mohan S, Baylink DJ. Growth factors for bone growth and repair: IGF, TGFbeta and BMP [J]. Bone,1996,19(1S):1-12.
    [11] Swiontkowski MF, Aro HT, Donell S, et al. Recombinant human bone morphogeneticprotein-2in open tibial fractures. A subgroup analysis of data combined from two prospectiverandomized studies [J]. J. Bone Joint Surg. Am.2006,88:1258-1265.
    [12] S. Govender, C. Csimma, H. K. Genant. Recombinant Human Bone Morphogenetic Protein-2for Treatment of Open Tibial Fractures [J]. J. Bone Joint Surg. Am.2002.84(12):2123-2134.
    [13] Volker Alt, Christof Meyer, Horst Detlef Litzlbauer, et al. Treatment of a Double Nonunion ofthe Femur by rhBMP-2[J]. J Orthop Trauma,2007,21:734-737.
    [14] G. Zimmermann, C. Wagner, K. Schmeckenbecher, et al. Treatment of tibial shaft non-unions:bone morphogenetic proteins versus autologous bone graft[J]. Injury, Int. J. Care Injured,2009,40(S3):50-53
    [15] Yuan Q, Kubo T, Doi K, et al. Effect of combined application of bFGF and in organicpolyphosphate on bioactivities of osteoblasts and initial bone regeneration [J]. ActaBiomaterial,2009:1716-1724.
    [16] Kempen Diederik H. R., Lu Lichun, Heijink Andras, et al. Effect of local sequential VEGFand BMP-2delivery on ectopic and orthotopic bone regeneration [J]. Biomaterials,2009,30(14):2816-2825.
    [17] Fang TD, Salim A, Xia W, et al. Angiogenesis is required for sueeessful bone induction duringdistraction osteogenesis[J]. J Bone Miner Res,2005,20(7):1114-1124.
    [18] Jennifer Patterson, Ruth Siew, Susan W., et al. Hyaluronic acid hydrogels with controlleddegradation properties for oriented bone regeneration[J]. Biomaterials,2010(31)6772-6781
    [19] Peng H, Usas A, Olshanski A, et al. VEGF improves, whereas sflt1inhibits, BMP2-inducedbone formation and bone healing through modulation of angiogenesis[J]. J Bone Miner Res,2005,20(11):2017-2027.
    [20] Nakagawa M, Kaneda T, Arakawa T, et al. Vascular endothelial growth factor (VEGF)directly enhances osteoclastic bone resorption and survival of mature osteoclasts[J].FEBS.2000,473(2):161-164.
    [21] Zarana S. Patel, Simon Young, Yasuhiko Tabata, et al. Dual delivery of an angiogenic and anosteogenic growth factor for bone regeneration in a critical size defect model[J]. Bone.2008,43(5):931-940.
    [22] Goldspink G, Goldspink P. Use of the insulin-like-growth factor I splice variant MGF for theprevention of myocardial damage [P]. US patent,20050048028A1.2002.6.27.
    [23] Goldspink G, Terenghi G. Repair of nerve damage [P]. US patent, US2002083477,2002.6.27.
    [24] Goldspink G. Method of treating muscular disorders [P]. US patent, US6221842,2001.4.24.
    [25] Quesada A, Micevych P, Handforth A. C-terminal mechano growth factor protects dopamineneurons: A novel peptide that induces heme oxygenase-1. Exp Neurol.2009,220:255-266.
    [26] Moyuan Deng, Bingbing Zhang, Ke Wang et al. Mechano growth factor E peptide promotesosteoblasts proliferation and bone-defect healing in rabbits[J]. Int Orthop.2011,7(35):1099-1106.
    [27] Li ling Tang, Chengyu Xian, Yuanliang Wang. The MGF expression of osteoblasts in responseto mechanical overload [J]. Archives of Oral Biology.2006,15(12):1080-1085.
    [28]张兵兵,鲜成玉,罗彦凤,等.拉伸刺激下MGF在成骨细胞中的表达及亚细胞定位分析[J].中国科学:C辑.2009,(5):518-524
    [29]张兵兵,江鹏,鲜成玉,等.力生长因子在大肠杆菌中的表达及活性分析[J].生物工程学报.2008,24(7):347-349.
    [30]胥少汀,葛宝丰,徐印坎.实用骨科学[M].北京:人民军医出版社,2003.
    [31]张毅奕,陶祖莱.载荷诱导骨生长的力学细胞生物学机制[J].力学进展.2000,30(3):433-445.
    [32]金合.可注射骨修复材料结合骨碎补总黄酮修复鼠骨缺损[D].北京.北京中医药大学博士学位论文.2010.
    [33] Cook SD, Baffes GC, Wolfe MW, et al. Recombinant human bone morphogenetic protein-7induces healing in a canine long-bone segmental defect model[J]. Clin Orthop.1994,301:302–312.
    [34] Macewen.The role of the various elements in the development and regeneration of bone[J].British medical journal.1907:1479-1479.
    [35] H. Willestaedt,G. Levander, L. Hult. Studies in osteogenesis[J]. Acta orthopaedicaScandinavica.1950,19(4):419-32.
    [36] Urist MR, Strates BS. Bone morphogenetic protein[J]. Journal of dental research.1971(50):1392-1405.
    [37] Tatsuyana K, Maezawa Y, Baba H, et al. Expression of various growth factors for cell proliferation and cyto-differentiation during fracture repair of bone[J]. Eur J Histo Chem,2000,44(3):269-278.
    [38]陈凌,高建民,张彦定.骨形态发生蛋白成骨机理及应用研究现状[J].福建医药杂志.2004,26(l):119-121.
    [39] Yamaguchi A. Application of BMP to bone repair[J]. Clin Calcium,2007,17(2):263-269.
    [40] Wozney JM, Rosen V, Celeste AJ, et al. Novel regulators of bone formation: molecular clonesand activities [J].Science.1988,16,242(4885):1528-34.
    [41] MR Urist, A Lietze, H Mizutnai, et al. A bovine low molecular weight bone morphogeneticprotein (BMP) fraction [J]. Clin Orhtop Relat Res.1982,162:219-232.
    [42] Guicheux J, Lemonnier J, Ghayor C, et al. Activation of P38mitogen-activated protein kinaseand c-Jun-NH2-terminal kinase by BMP-2and their implication in the stimulation ofosteoblastic cell differentiation[J]. J Bone Miner.Res.2003,18:2060-2068.
    [43] Osyezka AM, Leboy PS. Bone morphogenetic protein regulation of early osteoblast genes inhuman marrow stromal cells is mediated by extracellular signal-regulated kinase andphosphatidylinositol3-kinase signaling[J].Endoerinology,2005,146:3428-3437.
    [44]孙立. rhBMP2基因活化纳米骨浆的构建和成骨能力观察[D].武汉.华中科技大学博士学位论文.2007.
    [45] Bessa PC, Casal M, Reis RL. Bone morphogenetic proteins in tissue engineering:the roadfrom laboratory to clinic, part II(BMP delivery)[J]. J Tissue Eng Regen Med,2008(2):81-96.
    [46] Boden SD,Kang J, Sandhu H, et al. Use of recombinant human bone morphogenetic protein-2to achieve posterolateral lumbars pine fusion in humans: a prospective, randomized clinicalpilot trial:2002volvo award in clinical studies[J]. Spine.2002,23:2662-2673.
    [47] Govender S, Csimma C, Genant HK, et al. Recombinant human bone morphogeneticprotein-2for treatment of open tibial fractures:a prospective, controlled,randomized study offour hundred and fifty patients[J]. JBone Joint Surg Am.,2002,12:2123-2134.
    [48] Zlotolow DA,VaccaroAR SalamonML, Albert TJ. The role of human bone morphogeneticproteins in spinal fusion[J]. J Am Acad Orthop Surg.2000, l:3-9.
    [49] H Kaneko, T Arakawa, H Mano, et al.Direct stimulation of osteoclastic bone resorption bybone morphogenetic protein (BMP)-2and expression of BMP receptors in matureosteoclasts[J].Bone,2000,27(4):479-486.
    [50]王松,张晛,陈国庆,等.骨质疏松骨折愈合中软骨细胞凋亡与血管内皮生长因子的表达[J].解剖学杂志,2004,27(2):162-165.
    [51] Omana A,Trentz MD,Alexander E,Influence of brain injury on early post traumatic bonemetabolismCrit[J].Care Med,2005,33(3):399.
    [52] Ferrara N, Davis-Smyth T. The biology of vascular endothelial growth factor[J]. Endocr Rev,1997,18(1):4-25.
    [53] Orlandini M, Spreafico A, Bardelli M, et al. Vascular endothelial growth factor-D activatesVEGFR-3expressed in osteoblasts inducing their differentiation [J]. Journal of biologicalchemistry,2006,281(26):17961-17967.
    [54] Mayr-Wohlfart U, Waltenberger J, Hausser H, et al. Vascular endothelial growth factorstimulates chemotactic migration of primary human osteoblasts[J]. Bone,2002,30(3):472-477.
    [55] Kempen DH, Lu L, Heijink A, et al. Effect of local sequential VEGF and BMP-2delivery onectopic and orthotopic bone regeneration[J]. Somaterials,2009,30(14):2816-2825.
    [56] Mayurach S, Shohei K, Hisatomo K, et al. Bone morphogenetic protein-2(BMP-2) andvascular endothelial growth factor(VEGF) transfection to human periosteal cells enhancesosteoblast differentiation and bone formation [J].J Pharmacol Sci,2008,108:18-31.
    [57] Bouletreau PJ, Warren SM, Spector JA, et al. Hypoxia and VEGF up-regulate BMP-2mRNAand protein expression in microvascular endothelial cells: implicat-ions for fracturehealing[J]. Plast Reconstr Surg,2002,109(7):2384-2397.
    [58] Miquerel L,Langille BL,Nagy A. Embryonic development is disrupted by modest increases invascular endothelial growth factor gene expression[J]. Development,2000,127:3941-3946.
    [59]邹平洲,张先龙,曾炳芳.血管内皮细胞生长因子在骨折愈合中的作用研究进展[J].国外医学骨科学分册,2003,24(1):32-34.
    [60]卢卫忠,唐康来,朱庆和,等. TGF-β和BMP对胎兔颅骨成骨样细胞增殖和分化相互作用的实验研究[J].中华创伤骨科杂志,2004,6(4):450-452.
    [61]柯希煌,练克俭,翟文亮.骨生长因子对骨形成的协同作用研究进展[J].中国矫形外科杂志,2005,13:1582-1583.
    [62] Maire M, Chaubet F, Mary P, et al. Bovine BMP osteoinductive potential enhanced byfunctionalized dextran-derived hydrogels[J]. Biomaterials,2005,26(24):5085-5092.
    [63] Lei Wei, Cui Geng, HU Yunyu, et al.Experimental inestigations of the injectableosteoinductive material with fibrin seavlant as a carrier in inducing ectopic bone formation ofmice[J]. The Orthopedic Journal of China,2004,12(10):765-767.
    [64] Weiss S,Henle P, Bidling,et al.Systemic response of the GH/IGF-I axis in timely versusdelayed fracture healing[J]. Growth Horm IGF Res,2008(18):205-212.
    [65] Raiche AT, Puleo DA. Cell responses to BMP-2and IGF-I released with differenttime-dependent profiles [J]. Biomed Mater Res A,2004,69(2):342-350.
    [66]朱良亮,管华鹏,郑瑞,等.骨生长因子协同或诱导作用促进骨折愈合研究进展[J].临床医药实践,2009,2:1637-1639.
    [67] Tchetina EV,Antonion J,Tanzer M,et al.Transforming growth factor-β2suppresses collagenclearage incultured human osteoarthritic cartilage,reduce expression of genes associated withchondrocyte hypertrophy and degradation,and increases prostaglandin E2Production[J]. Am JPathol,2006,168:131-140.
    [68]曹之强,丁奕健,刘建华,等.b-FGF, IGF-II,TGF-β影响兔成骨细胞体外增殖的实验研究[J].浙江医学,2003,25(3):127-132
    [69] Stefani CM, MachadoMA, Sallum EA, et al. Platelet-derived growth factor/insulin-likegrowth factor-I combination and bone regeneration around implants placed into extractionsocket: a histometric study in dogs [J]. Imp lant Dent,2000,9(2):26-131.
    [70] Ogino Y, Ayukawa Y, Kukita T., et al. The contribution of platelet-derived growth factor,transforming growth factor-beta1, and insulin-like growth factor-I in platelet-rich plasma tothe proliferation of osteoblast-like cells [J]. Oral surgery oral medicine oral pathology oralradiology oral and endodontics,2006,101(6):724-729.
    [71] Goad DL, Rubin J,WangH, et al. Enhanced expression of vascular endothelia growth factor inhuman SaOS-2osteoblast like cells andmurine osteoblasts induced by insulin-like growthfactor[J].Endocrinology,1996,137(6):262-267.
    [72] Celiker R, Arslan S.Comparison of serum insulin-like growth factor-I and growth hormonelevels in osteoporotic and non-osteoporotic postmenopausal wonmen[J].Rheumatol Int,2000,19(6):205-208.
    [73]石长贵,蔡筑韵,鲍哲明,等.骨生长因子促进骨折愈合研究进展[J].国际骨科学杂志,2010,3:184-186.
    [74]郑浩,黄婷婷,孔抗美,等.胰岛素样生长因子-I基因转染成肌细胞促小鼠胫骨骨折愈合的作用[J].中国组织工程研究与临床康复,2009,13(24):4637-4640.
    [75] Yang S, Alnaqeeb M, Simpson H, et al. Cloning and characterization of an IGF-I isoformexpressed in skeletal muscle subjected to stretch [J]. J Muscle Res Cell Motil,1996,17(4):487-495.
    [76] Owino V, Yang SY, Goldsp ink G. Age-related loss of skeletal muscle function and theinability to express the autocrine form of insulin like growth factor (MGF) in response tomechanical overload[J].FEBS Lett,2001,505(2):259-263.
    [77] McKoy G, A shleyW, Mander J, et al. Exp ression of insulin growth factor splice variants andstructural genes in rabbit skeletal muscle induced by stretch and stimulation [J]. J Physiol,1999,516(2):583-592.
    [78] Imanaka, Mari, Iida, Keij, Murawaki, Ayumi, et al. Growth Hormone Stimulates MechanoGrowth Factor Expression and Activates Myoblast Transformation in C2C12cells [J]. Kobe J.Med. Sci.,2008,54(1):46-54.
    [79] Kravchenko IV, Furalyov VA, Popov VO. Hyperthermia and acidification stimulatemechano-growth factor synthesis in murine myoblasts and myotubes [J]. Biochem BiophysRes Commun.2008,17,375(2):271-274.
    [80] Dluzniewska J, Sarnowska A, Beresewicz M, et al. A strong neuroprotective effect of theautonomous C-terminal peptide of IGF-I Ec (MGF) in brain ischemia [J]. FASEB J,2005,19(13):1896-1898.
    [81] Aperghis M, Johnson IP, Cannon J, et al. Different levels of neuroprotection by twoinsulin-like growth factor-I splice variants [J]. Brain Res,2004,1009:213-218.
    [82] M, Wernig A, Goldspink G. Muscle satellite (stem) cell activation during local tissue injuryand repair [J]. J Anat,2003,203(1):89-99.
    [83] Yang SY, Goldspink G. Different roles of the IGF-I Ec peptide (MGF) and mature IGF-I inmyoblast proliferation and differentiation [J]. FEB S Lett,2002,522(123):156-160.
    [84] Stavropoulou A, Halapas A, Sourla A.IGF-1expression in infarcted myocardium and MGFE peptide actions in rat cardiomyocytes in vitro[J]. Mol Med,2009,15:127-135.
    [85] Dimitrios M, Haralampos K, Protopapas MS, et al. Insulin-like growth factor-1isoformmRNA expression in women with endometriosis: eutopic endometrium versus endometrioticcyst [J]. Ann NY Acad Sci,2006,1092:434-439.
    [86] Mills P, Lafrenière JF, Benabdallah BF, et al. A new pro-migratory activity on humanmyogenic precursor cells for a synthetic peptide within the E domain of the mechano growthfactor [J]. Exp Cell Res.2007,313(3):527-537.
    [87] Mills P, Dominique JC, Lafrenière JF. A Synthetic Mechano Growth Factor E PeptideEnhances Myogenic Precursor Cell Transplantation Success [J]. Am J Transplant.2007,7(10):2247-2259.
    [88] Skarli M, Yang SY, Bouloux P, et al. Upregulation and alternative splicing of the IGF-I genein the rabbit heart following a brief pressure/volume overload[J].J Physiol,1998,509:192-193.
    [89] Carpenter V, Matthews K, Yang SY, et al. Mechano-growth factor reduces loss of cardiacfunction in acute myocardial infarction[J]. Heart Lung Circ,2008,17:33-39.
    [90] Tang L L, Wang Y L,Sun C X.The stress reaction and its molecular events: splicing variants[J].Biochem Bioph Res Co,2004,320(2):287-291.
    [91]张兵兵,王远亮,杨力,等.力生长因子及其E肽对成骨细胞分化的影响[J].生物化学与生物物理进展,2010,37(3):304-312.
    [92]袁本祥,董英海.骨形态发生蛋白的临床应用方法研究进展[J].中华创伤骨科,2006(8):268-271.
    [93] Hill M, Goldspink G. Expression and splicing of the insulin-like growth factor gene in rodentmuscle is associated with muscle satellite (stem) cell activation following local tissue damage[J]. J Physiol.,2003,549(Pt2):409-518.
    [94] Olesen JL, Heinemeier KM, Haddad F, et al. Expression of insulin-like growth factor I,insulin-like growth factor binding proteins, and collagen mRNA in mechanically loadedplantaris tendon [J]. J Appl Physiol.2006,101(1):183-188.
    [95] McKay BR, O'Reilly CE, Phillips SM, et al. Co-expression of IGF-1family members withmyogenic regulatory factors following acute damaging muscle-lengthening contractions inhumans [J]. J Physiol.,2008,586(Pt22):5549-5560.
    [96] Ates K, Yang SY, Orrell RW, et al. The IGF-I splice variant MGF increases progenitor cells inALS, dystrophic, and normal muscle [J]. FEBS Lett.2007,581(14):2727-2732.
    [97] Maricic N, Stieler E, Gedrange T, et al. MGF-and myostatin-mRNA regulation in massetermuscle after orthognathic surgery [J]. Oral Surg Oral Med.,2008,106(4):487-492.
    [98] Yang S, Alnaqeeb M, Simpson H, et al. Cloning and characterization of an IGF-1isoformexpressed in skeletal muscle subjected to stretch[J]. J Muscle Res Cell Motil.,1996,17(4):487-495.
    [99] Milingos DS, Philippou A, Armakolas A, et al. Insulinlike growth factor-1Ec (MGF)expression in eutopic and ectopic endometrium: characterization of the MGF E-peptideactions in vitro [J]. Mol Med.,2011,17(1-2):21-28.
    [100] Conrad EU, Gretch DR, Obermeyer KR, et al. Transmission of the hepatitis-C virus by tissuetransplantation [J]. J Bone Joint Surg Am.1995,77(2):214-224.
    [101] Whang Peter G; Wang Jeffrey C. Bone graft substitutes for spinal fusion [J]. The spine journal,2003,3(2):155-165.
    [102] Eckardt H, Christensen KS, Lind M. Recombinant human bone morphogenetic protein2enhances bone healing in an experimental model of fractures at risk of non-union [J]. Injury,2005,36:489-494.
    [103] Meinel L, Zoidis E, Schneider R, et al. Localized insulin-like growth factor I delivery toenhance new bone formation [J]. Bone,2003,33:660-672.
    [104] Forriola F, Longob UG, Denaro V. Platelet-rich plasma, rhOP-1(rhBMP-7) and frozen riballograft for the reconstruction of bony mandibular defects in sheep. A pilot experimentalstudy [J]. Injury Int J Care Injured,2009,40(S3):44-49.
    [105] Yao W, Jun Yu, Bozic T, et al. IGF-I improved bone mineral density and body composition ofweaver mutant mice [J]. Growth Horm IGF Res,2008,18:517-525.
    [106] Morshed S, Corrales L, Miclau T.Outcome assessment in clinical trials of fracture-healing [J].J Bone Joint Surg,2008,90:62-67.
    [107]孙保勇,陈文直,贾小林,等.低强度脉冲超声促进骨折愈合的动物实验研究[J].中国矫形外科杂志,2005,13(6):443-446.
    [108] Circi E, Akpinar S, Tuncay IC.Biomechanical and histological comparison of the influence ofoestrogen deficient state on tendon healing potential in rats [J]. Int Orthop,2009,33:1461-1466.
    [109]马龙,刘洪臣,王东胜,等. Oatp1和Oct1在大鼠下颌骨来源成骨细胞中的表达[J].口腔颌面修复学杂志,2009,10(3):136-139.
    [110] Nenad Maricic, Elke Stieler, Tomasz Gedrange, et al.MGF-and myostatin-mRNA regulationin masseter muscle after orthognathic surgery [J]. Oral Surg Oral Med Oral Pathol OralRadiol Endod,2008,106:487-492.
    [111] Sehinitz JP, Hollinger JO. The critical sized defect as an experimental model forcraniomandibulofacial nonunions [J]. Clin Orthop Relat Res,1986,(205):299-308.
    [112] Gugala Z, Lindsey RW, Gogolewski S. New Approaches in the treatment of critical-sizesegmental defects in long bones [J]. Macromol Symp,2007;253:147-161.
    [113]汪喆,彭昊,李章华,等.鹿瓜多肽注射液对骨折愈合的作用及对血管内皮生长因子表达的影响[J].武汉大学学报(医学版),2007,28(2):):196-199.
    [114]李章华,崔西龙,王志林,等.松梅乐注射液促进骨折愈合的机理研究[J].武汉大学学报(医学版),2009,1:22-27.
    [115]吴雪晖.血管内皮祖细胞促血管化组织工程骨修复大段骨缺损的实验研究[D].重庆.第三军医大学博士学位论文.2007.
    [116] Khali-Marzouk J F. Allograft replacement of the trachea.Experimental synchronousrevascularization of composite thyrotracheal transplant [J]. J Thorae Cardiovasc Surg,1993,105:242-246.
    [117] GD Yancopoulos, S Davis, NW Gale, et al. Vaseular-specific growth factors and blood vesselformation[J]. Nature,2000,407:242-248.
    [118] H Lee, RA Cusick, F Browne, et al. Local delivery of basic fibroblast growth factor increasesboth angiogenesis and engraftment of hepatoeytes in tissue-engineered polymer devices [J].Transplantation,2002,73:1589-1593
    [119] Eichhom M E, Kleespies A, Angele MK, et al. Angiogenesis in cancer: molecularmechanisms, clinical impact [J]. Langenbecks Arch Surg,2007,392:371
    [120] Wang J, Yuan Z, Zhao H, et al. Ferulic acid promotes endothelial cells proliferation throughup-regulating cyclin D1and VEGF [J]. J Ethnopharmacol,2011137(2):992-7.
    [121] Padua M. B, Hansen P. J. Regulation of DNA synthesis and the cell cycle in human prostatecancer cells and lymphocytes by ovine uterine serpin[J]. BMC Cell Biology,2008,9:1471-2121.
    [122]郑惠珍,秋辉,范爱辉.法舒地尔促进大鼠骨髓间充质干细胞分化生成的内皮细胞迁移及血管新生[J].生理学报,2009,4:127-131.
    [123] Collins JM, Goldspink PH, Russell B. Migration and proliferation of human mesenchymalstem cells is stimulated by different regions of the mechano-growth factor prohormone.Journal of Molecular and Cellular Cardiology[J],2010,49:1042-1045.
    [124] Piqueras L, Reynolds AR, Hodivala-Dilke KM, et al. Activation of PPAR/induces endothelialcell proliferation and angiogenesis[J]. Arterioscler Thromb Vasc Biol2007,27:63-69.
    [125] J.莎姆布鲁克著,黄培堂译.分子克隆实验指南[M].北京:科学出版社,2005.
    [126] Livak KJ, Schmittgen TD.Analysis of relative gene expression data using real-timequantitative PCR and the2(-Delta Delta C (T)) Method[J]. Method,2001.25(4):402-408.
    [127] Tirziu D, Simons M. Angiogenesis in the human heart: Gene and cell therapy[J].Angiogenesis,2005;8(3):241-251.
    [128] Han KY, Kim CW, Lee TH, et al. CCL23up-regulates expression of KDR/Flk-1andpotentiates VEGF-induced proliferation and migration of human endothelial cells[J]. BiochemBiophy Res Commun,2009,382:124-128.
    [129] Das A, Lauffenburger D, Asada H, et al. Determining Cell Fate Transition Probabilities toVEGF/Ang1Levels: Relating Computational Modeling to Microfluidic AngiogenesisStudies[J]. Cell Mol Bioeng,2010,3:345-360.
    [130] Weiss S, Zimmermann G, Pufe T, et al. The systemic angiogenic response during bonehealing[J]. Arch Orthop Trauma Surg,2009,129:989-997.
    [131] Huang YC, Chen XH, Wang J, et al. Effects of hypoxia on human placental deciduabasalis-mesenchymal stem cells proliferation, apoptosis and VEGF expression[J]. ActaPhysiologica Sinica,2008,60:783-789.
    [132] Weiss S, Zimmermann G, Baumgart R, et al. Systemic regulation of angiogenesis and matrixdegradation in bone regeneration-distraction osteogenesis compared to rigid fracturehealing[J]. Bone2005,37:781-790.
    [133] Yang SY, Goldspink G. Different roles of the IGF-I Ec peptide (MGF) and mature IGF-I inmyoblast proliferation and differentiation[J]. FEBS Lett2002,522:156-160.
    [134] Rousseau S, Houle F, Landry J, et al. p38MAP kinase activation by vascular endothelialgrowth factor mediates actin reorganization and cell migration in human endothelial cells[J].Oncogene1997,15:2169-2177.
    [135]徐俊昌.瘦素在异位骨化形成中的作用及机制研究[D].广州.南方医科大学博士学位论文.2009.
    [136]张明磊. BMP-2、VEGF基因修饰组织工程骨的实验研究[D].长春.吉林大学博士学位论文.2009.
    [137] Alt V, Heissel A. Economic considerations for the use of recombinant human bonemorphogenetic protein-2in open tibial fractures in Europe: the German mode [J].Curr MedRes Opin,2006,22(Sl l):519-522.
    [138] Hu ZM, Peel SA, Sandor GK, et al. The osteoinductive activity of bonemorphogenetic protein (BMP) purified by repeated extracts of bovine bone [J].GrowthFactors,2004,22(1):29-33.
    [139]李宇琳周恒刘广鹏,等.茜素红半定量测定细胞基质钙含量的实验研究[J].组织工程与重建外科,2008,(4):61-64.
    [140] Stanford CM, Jacobson PA, Eanes ED, et al. Rapidly forming apatitic mineral in anosteoblastic cell line (UMR106-01BSP)[J]. J Biol Chem.1995,270(16):9420-9428.
    [141]张燕,文巍,罗进勇.骨形态发生蛋白9定向诱导多潜能干细胞成骨分化[J].生物化学与生物物理进展,2009,36(10):1-3.
    [142] M Phimphilai, Z. Zhao, H. Boules, et al. BMP signaling is required for Runx2-dependentinduction of the osteoblast phenotype [J]. J Bone Miner Res.2006,21(4):637-646.
    [143] Tan D, Cheng S.,Shi Q, et al. Osthol stimulates pre-osteoblast proliferation and differentiationvia BMP-2/Runx2/Smad1pathway [J]. J. Bone and mineral research,2007,22(s1):S259-S259.
    [144] S. Yang, D. Wei, D. Wang, et al. In vitro and in vivo synergistic interactions between theRunx2/Cbfa1transcription factor and bone morphogenetic protein-2in stimulating osteoblastdifferentiation [J]. J Bone Miner Res.,2003,18(4):705-715.
    [145]俞猛.骨组织工程支架材料修复骨缺损的特性[J].中国组织工程研究与临床康复,2010(14):8869-8872.
    [146]袁本祥,董英海.骨形态发生蛋白的临床应用方法研究进展[J].中华创伤骨科杂志.2006(8):268-270.
    [147] Bucholz RW, Henry S, Henley MB. Fixation with bioabsorbable screws for the treatment offractures of the ankle[J]. J Bone Joint Surg (Am),1994,76(3):319-324.
    [148] Galstian T V, Drasselet E, Dumont D. Resonant optical torque in dichroic azo dye dopednematic liquid crystals [J]. Liquid Crystals,2002,1(375):593.
    [149]邹霓.骨组织工程人工合成支架材料的研究现状[J].中国组织工程研究与临床康复,2008(12):4481-4486.
    [150]丁兆红,刘志军,桂秋媛.超临界CO2诱导相分离制备聚己内酯三维多孔支架的实验研究[J].功能材料.2011,(09):842-847.
    [151]王琳婷,杨明英,朱良均.丝胶蛋白/羟基磷灰石复合支架材料的制备及性能研究[J].蚕业科学,2010,36(4):639-644.
    [152]董志红,李玉宝,张利,等.软骨修复用HA/PU多孔支架材料的制备与表征[J].无机材料学报,2007,22(6):406-411.
    [153] Yash M. Kolambkar, Kenneth M. Dupont, Joel D. Boerckel, et al. An alginate-based hybridsystem for growth factor delivery in the functional repair of large bone defects [J].Biomaterials,2011,32:65-74.
    [154] Yue Liu, Yun Lu, Xuezhong Tian, et al. Segmental bone regeneration using anrhBMP-2-loaded gelatin/nanohydroxyapatite/fibrin scaffold in a rabbit model[J].Biomaterials,2009,30:6276–6285.
    [155] Hutmacher DW. Scaffolds in tissue engineering bone and cartilage [J]. Biomaterials,2000,21(24):2529-2543.
    [156] Sherwood JK, Riley SL, Palazzolo R, et al. A three-dimensional osteochondral compositescaffold for articular cartilage repair[J]. Biomaterials,2002,23(24):4739-4751.
    [157] Jones JR, Ahir S, Hench LL. Large-scale production of3-D bioactire glass macmpomusscaffolds for tissue engineering[J]. J Sol Gel Sci and Tech,2004,29:179-188.
    [158] Hofmann AA, Bloebaum RD, Bachus KN. Progression of human bone ingrowth intoporous-coated implants. Rate of bone ingrowth in humans[J]. Acta Orthop Scand,1997,68(2):161-166.
    [159]孙玉山,姜保国,朱庆松,等.生体功能性医用材料在动物体内的实验研究-(I)体内可吸收性实验研究[J].纺织科学研究,2002:7-14.
    [160]王建业,翟饶生.明胶海绵对兔肌腱粘连及愈合的影响[J].中国组织工程研究与临床康复,2008,12:5300-5304.
    [161]施新猷.医用实验动物学[M].陕西:陕西科学技术出版社,1989.
    [162] Issa JP, do Nascimento C, Iyomasa MM, et al. Bone healing process in critical-sized defectsby rhBMP-2using poloxamer gel and collagen sponge as carriers [J]. J Biomater Sci: PolymE,2001,12(1):107-124.
    [163] Bouxsein ML, Turek TJ, Blake CA, et al. Recombinant human bone morphogenetic protein-2accelerates healing in a rabbit ulnar osteotomy model[J]. J Bone Joint Surg Am.,2001,83(8):1219-1230.
    [164] DD Deligianni, ND Katsala, PG Koutsoukos, et al. Effect of surface roughness ofhydroxyapatite on human bone marrow cell adhesion, proliferation, differentiation anddetachment strength [J]. Biomaterials,2001,22(1):87-96.
    [165] Cantiello Horacio F., Montalbetti Nicolas, Li Qiang, et al. The cytoskeletal connection to ionchannels as a potential mechanosensory mechanism: Lessons from polycystin-2(TRPP2)[J].Mechanosensitive ion channels, ptB,2007,59:233-296.
    [166] Yaylaoglu MB, Yildiz C, Korkusuz F, et al. A novel osteochondral implant[J]. Biomaterials,1999,20(16):1513-1520.
    [167] Eckardt H, Christensen KS, Lind M.Recombinant human bone morphogenetic protein-2enhances bone healing in an experimental model of fractures at risk of non-union [J]. Injury36:489-494.
    [168] Z. Dahabreh, R. Dimitriou, P.V. Giannoudis. Health economics: The cost of treatment ofpersistent fracture non-unions using bone morphogenetic protein-7(BMP-7)[J]. Injury,2007,38(3):371-377.
    [169] Mussano F, Ciccone G, Ceccarelli M, et al. Bone morphogenetic proteins and bone defects: asystematic review [J]. Spine,2007,32(7):824-830.
    [170] G. White, C.M. Blundell. Case study: Use of osteogenic protein-1(BMP-7) in non-union of acalcaneus fracture following ORIF[J]. Foot and Ankle Surgery,2007,13:203-206.
    [171] Johnson EE, Urist MR, Schmalzried TP, et al. Autogeneic cancellous bone grafts in extensivesegmental ulnar defects in dogs. Effects of xenogeneic bovine bone morphogenetic proteinwithout and with interposition of soft tissues and interruption of blood supply[J]. Clin OrthopRelat Res.1989,(243):254-265.
    [172]赵明东,潘志宏,朱梁豫,等.建立桡骨缺损模型:骨缺损标准尺寸的确立[J].中国组织工程研究与临床康复,2011,15(2):213-218.
    [173] Kasten P, Vogel J, Geiger F, et al. The effect of platelet-rich plasma on healing in critical-sizelong-bone defects [J]. Biomaterials,2008,29(29):3983-3992.
    [174] Salkeld SL, Patron LP, Barrack RL, et al. The effect of osteogenic protein-1on the healing ofsegmental bone defects treated with auto graft or allograft bone [J]. Journal of bone and jointsurgery,2001,83:803-816.
    [175] Lane JM, Sandhu HS. Current approach to experimental bone grafting [J]. Orthop Clin NorthAm,1987,18:213-225.
    [176] Yang CY, Simmons DJ, Lozano R. The healing of grafts combining freeze-dried anddemineralized allogeneic bone in rabbits[J]. Clin Orthop Relat Res,1994,298:286-295
    [177]张锦生.现代组织化学原理与应用(第二版)[M].上海:上海科学技术文献出版社,2003.
    [178] Jeon O, Song SJ, Kang SW, et al. Enhancement of ectopic bone formation by bonemorphogenetic protein-2released from a heparin-conjugated poly (L-lactic-co-glycolic acid)scaffold [J]. Biomaterials,2007,28:2763-2771.
    [179] Wang L, Fan H, Zhang ZY. Osteogenesis and angiogenesis of tissue-engineered boneconstructed by prevascularized b-tricalcium phosphate scaffold and mesenchymal stemcells[J]. Biomaterials.2010,31(36):9452-9461.
    [180] Athanasiou VT, Papachristou DJ, Panagopoulos A, et al. Histological comparison of autograft,allograft-DBM, xenograft, and synthetic grafts in a trabecular bone defect: An experimentalstudy in rabbits[J]. Med Sci Monit,2010,16(1):24-31.
    [181] Heiple KG, Goldberg VM, Powell AE, et al. Biology of cancellous bone grafts[J]. Orthop ClinNorth Am,1987,18:179-185.
    [182] Cynthia G. Trejo, Daniel Lozano, Miguel Manzano, et al. The osteoinductive properties ofmesoporous silicate coated with osteostatin in a rabbit femur cavity defect model[J].Biomaterials,2010,(31):8564-8573.
    [183] M. Thorwarth, S. Rupprecht, S. Falk, E. et al. Expression of bone matrix proteins during denovo bone formation using a bovine collagen and platelet-rich plasma (prp)-animmunohistochemical analysis [J]. Schlegel Biomaterials,2005,(26):2575-2584.
    [184] Allan Fernando Giovanini, Tatiana Miranda Deliberador, Carla Castiglia Gonzaga, et al.Platelet-rich plasma diminishes calvarial bone repair associated with alterations in collagenmatrix composition and elevated CD34+cell prevalence [J]. Bone,2010(46):1597-1603
    [185]赵玉峰,李起鸿,顾祖超.新型点式接触动力加压接骨板固定对板下骨质及力学性能影响的实验研究[J].创伤外科杂志,2004,6(2):111-114.
    [186] Gao T J, Lindholm T S, Kommonen B, et al. Enhanced healing of segmental tibial defects insheep by a composite bone substitute composed of tricalcium phosphate cylinder, bonemorphogenetic protein, and type IV collagen[J]. J Biomed Mater Res,1996,32:505-512.
    [187] Tarmo Pekkarinen, Timo J ms, Mikko M tt et al. Reindeer BMP extract in the healing ofcritical-size bone defects in the radius of the rabbit [J]. Acta Orthopaedica,2006,77(6):952-959.
    [188] Yener N. Yeni, Richard R. Shaffer, Kevin C. Baker, et al. The effect of yield damage on theviscoelastic properties of cortical bone tissue as measured by dynamic mechanical analysis[J].Journal of Biomedical Materials Research Part A,2007,(82A):530-537.
    [189] GBT10700-2006(精细陶瓷弹性模量试验方法).中华人民共和国化工行业标准[S].
    [190] Weimin Zhu, Jiande Xiao, Daping Wang, et al. Experimental study of nano-HA artificial bonewith different pore sizes for repairing the radial defect[J]. International Orthopaedics (SICOT),2009,33:567–571.
    [191] Whelan DB, Bhandari M, McKee MD, et al.Interobserver and intraobserver variation in theassessment of the healing of tibial fractures after intramedullary fixation[J]. J Bone Joint SurgBr.,2002,84:15-18.
    [192] Bhandari M, Tornetta P, Sprague S, et al.Predictors of reoperation following operativemanagement of fractures of the tibial shaft[J]. J Orthop Trauma.,2003,17:353-361.
    [193] Weiss L. Histology-cell and tissue biology (15th edition)[M]. NewYork: Elsevier Sciencepubishing co.inc,1983.
    [194]郭建刚,赵然,侯桂英,等.骨组织成分与Masson三色染色反应的关系分析[J].中医正骨,2001,(13):5-7.
    [195]郑玲,王晓毓,张鸿彬,等.肺癌患者血小板粘附分子CD31和CD62的检测[J].中国肿瘤临床,2003,30(8):596-597.
    [196]熊亮,谭金海,方芙蓉,等.多孔碳酸钙陶瓷修复骨缺损的生物力学评价[J].武汉大学学报(医学版),2008(29):13-16.
    [197]郭涛,天府,肖杰,等.新型生物复合材料聚乙烯醇/纳米羟基磷灰石+聚己二酰己二胺修复关节软骨及软骨下骨缺损的生物力学研究[J].中国组织工程研究与临床康复,2008(12):1051-1054.
    [198]陈建海,姜保国,张殿英,等.沿骨干轴线不同长度皮质骨缺损对骨干生物力学性能的影响[J].中国组织工程研究与临床康复,2008,12:2011-2014.
    [199]扬志明,黄富锅,秦廷武,等.生物衍生组织工程骨植骨的初步临床应用[J].中国修复重建外科杂志,2002,16(5):311-314.
    [200] Bruder SP, Fox BS. Tissue engineering of bone. Cell based strategies [J]. Clin Orthop RelatRes.,1999,(367S):68-83.
    [201] Stephen DC, Michael WW, Samantha LS, et al. Effect of recombinant hman osteogenicprotein-1on healing of segmental defects in non-human primate [J]. J bone Jiont Surg (Am),1995,77:734-742.
    [202]马信龙,谢军,王沛,等.VEGF,TGF-β在骨缺损不愈合中表达的实验研究[J].中华骨科杂志,2002,(22):561-567.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700