溶液法合成微/纳米材料
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米材料由于其卓越的光学、电学、磁学和催化等性能而受到了人们广泛的关注,它的应用领域遍及材料学的各个领域,目前已成为材料领域中最活跃和重要的一部分。研究发现纳米材料的尺寸、形貌对纳米材料的性能有着很大的影响,所以纳米材料的形貌及尺寸可控合成是一项很重要也很有实际意义的工作。通过合成来探究纳米材料的形态形成机理与生长动力学,进而揭示纳米材料的微观结构、尺寸大小和生长形貌的规律,对进一步指导我们的实验研究是非常关键的。
     纳米材料的合成方法有很多,其中溶液法反应过程较简单、温和,得到的产物纯度高、分散性好,便于实现工业化和产业化。因此本文中采用溶液法合成了几种重要的纳/微米材料并对其性质进行了初步的研究。主要的内容如下:
     普鲁士蓝微米材料的合成及性能研究利用超声辅助的常温溶液法合成了不同形貌的M3[Co(CN)6]2(M=Zn, Co, Ni, Mn)微米材料,主要对Zn3[Co(CN)6]2进行了细致的探讨。我们合成了尺寸均匀的Zn3[Co(CN)6]2微米球和多面体,通过TEM,SEM研究了Zn3[Co(CN)6]2的形貌,并且讨论了浓度等参数对产物形貌的影响。其中多面体在铜网上有明显的自组装现象。进一步的研究发现球和多面体都是由小的纳米粒子聚集而成的。此外,N2的吸附-脱附性能测定证实Zn3[Co(CN)6]2微米球和多面体都是微孔结构,微米球和多面体的BET表面积分别为428.20、441.36 m2g-1,总的孔体积分别为0.2157、0.2395 cm3g-1。
     α-Fe2O3空心纳米球的合成及性能研究通过络合剂辅助的水热法合成了空心和实心的纳米球,分别用XRD,TEM,SEM表征了其成分和形貌,从透射和扫描电镜可以清晰的看到空心和实心的纳米球都是由更小的纳米粒子组成的,并且通过一系列的实验讨论了各种实验参数对产物形貌的影响,进而探讨出了空心球的形成机理;此外,我们测试了空心球的磁性和气体吸附性能。5K和300K的磁滞回线说明α-Fe2O3空心纳米球在温度低时表现为反铁磁性,而温度高时为弱铁磁性,这与体相材料是相同的,但空心纳米球的转变温度为181K,远远低于体相的263K。ZFC和FC曲线在整个温度范围内是分裂的,与体相(整个范围内是重合的)不同。N2吸附测试证实空心的α-Fe2O3为微孔结构, BET表面积为30.68 m2/g,较亚微米粒子大很多。
     不同形貌微米硫化铅的合成及性能研究通过表面活性剂(PVP)辅助的水热法合成了硫化铅的星形和类一维微米材料,分别用XRD,TEM,SEM表征了其成分和形貌。通过一系列的实验研究了各个实验条件对产物形貌的影响;此外,我们初步研究了不同形貌的硫化铅微米结构的紫外-可见光谱。
Nanomaterials has been paid universal attentions for their prominent optical, electrical, magnetic and catalyze properties. Its application relates to every domain of material and has become one of its most important and attractive part. It is reported that the size and morphology of nanomaterial have obvious influences on properties, so the controllable synthesis is very important and significant. During which the exploration of microstructure, formation mechanism and growth kinetic all are key to the future experiments.
     Various methods have been developed for synthesizing nanomaterials, among of which the solution synthesis has many merits, For example, the reacting condition is relatively simple and mild, and the obtained product is much more pure and monodisperse. So we adopted solution synthesis herein and have obtained several important nano-functional materials, in addition we studied their elementary applied properties. The primary content of this paper is as following.
     Synthesis and characterization of Prussian blue microstructures morphology controllable M3[Co(CN)6]2(M=Zn, Co, Ni) microstructures were synthesized in solution under ultrasonic condition. herein we mainly studied Zn3[Co(CN)6]2. Uniform Zn3[Co(CN)6]2 microspheres and polyhedrons were synthesized, and TEM, SEM were carried out to characterize the morphologies. Experimental parameter influences were also carried out in detail. What’s interested us here is that self-assembly were observed obviously when the microparticles dispersed in alcohol were dropped on a copper grid or a glass substrate without any further treatment. Further investigation suggested that both spheres and polyhedrons are aggregated by small nanoparticles. N2 adsorption measurements verified the existence of micro-pores in both Zn3[Co(CN)6]2 microspheres and micropolyhedrons. The BET surface area of spheres and polyhedrons are 428.20, 441.36 m2g-1 respectively. The total pore volume are 0.2157, 0.2395 cm3g-1 respectively.
     Synthesis and characterization ofα-Fe2O3 urchin-like hollow nanostructures hollow and solid urchins were obtained in hydrothermal condition under the assistance of ligand. XRD, TEM, SEM were carried out to characterize the composition and morphology of the urchins. It is obviously seen that both hollow and solid urchins are composed of small nanoflakes. Series of experiments were also carried out to discuss the influences of experimental parameters. the two-step formation mechanism was speculated firstly and then verified by experiments. Magnetic and N2 adsorption properties were also carried out. The hysteresis loops at 5K and 300K clearly confirm the fact that hematite behaves antiferromagnetic at low temperature and weak ferromagnetism above morin transition temperature (TM). zero-field-cooled (ZFC) and field-cooled (FC) curves split during the whole temperature region. Normally, bulk hematite has a Morin transition from the low-temperature antiferromagnetic phase to a weakly ferromagnetic phase at 263 K. But here it should be noted that the TM value in differential ZFC curve (inset in Figure 5c) is found to be 181 K, which is much lower than the bulk transition temperature. N2 adsorption measurements illuminated the micro-pore structure ofα-Fe2O3 hollow urchins. The BET surface are is 30.68m2g-1, which is much larger than that of the submicron particles.
     Synthesis and characterization of PbS microstructures star-shaped dendrites and strips were synthesized in hydrothermal system at the assistance of surfactant(PVP), XRD, TEM, SEM were carried out to characterize the composition and morphologies. In addition, we studied the IR-VIS spectrum of both dendrites and strips.
引文
[1] Gleiter H. Nanocrystalline materials[J]. Progress in materials science, 1989, 33: 223-315.
    [2] 王中林. 纳米材料表征[M]. 曹茂盛, 李金刚. 北京: 化学工业出版社, 2005.
    [3] Schmid G. Clusters and colloids from theory to applications[M]. VC Weinheim, 1994: 578-682.
    [4] Iijima S. Helical microtubules of graphitic carbon[J].Nature, 1991, 354: 56-58.
    [5] Okada A, et al. Polymer Prep, 1987, 28: 447.
    [6] 张立德, 牟季美. 开拓原子和物质的中间领域—纳米微粒与纳米固体[J]. 物理, 1992, 21: 167-172.
    [7] 袁伟. 超微粒子的特性、制备和应用[J]. 陕西化工, 1997, 12: 8-12.
    [8] 马振叶, 李凤生, 崔平, 白华萍. 纳米 Fe2O3 的制备及其对高氯酸铵热分解的催化性能[J]. 催化学报, 2003, 24: 795-798.
    [9] Li P, Miser D E, Rabiei S, Yadav R T, Hajaligol M R. The removal of carbon monoxide by iron oxide nanoparticles[J]. Applied Catalysis B: Environmental, 2003, 43: 151-162.
    [10] 李泉, 曾广赋, 席时全. 纳米粒子[J]. 化学通报, 1995, 6: 29-34.
    [11] 余润兰. Ag-TiO2 纳米催化剂的制备、表征及环氧化催化性能[J]. 化学研究与应用, 2002, 14: 587-588.
    [12] Lewis L N. Chemical catalysis by colloids and clusters[J]. Chem Rev, 1993, 93: 2693-2730.
    [13] Awschalom D D, DiVincenzo D P, Smyth J F. Macroscopic Quantum Effects in Nanometer-Scale Magnets[J]. Science, 1992, 258: 414-421.
    [14] 刘厚凡, 高长华, 邹海平等.固相法合成纳米氧化镧[J]. 无机盐工业, 2007, 6: 33-35.
    [15] 黄庆利, 王淼, 仲皓想等. 室温固相法制备EuF3和SmF3纳米微粒[J].无机化学学报, 2007, 23: 1767-1770.
    [16] 李亚东, 王鹏飞. 室温固相法制备纳米 γ-Fe2O3 过程中形貌影响研究[J]. 信息记录材料, 2007, 8: 10-13.
    [17] 孙明, 余林, 余坚等. 微波固相法合成纳米氧化镁[J]. 功能材料,2006,12: 1978-1984.
    [18] 李生英, 许世红, 徐飞等. Co3O4 纳米粒子的固相合成及磁性研究[J]. 合成化学, 2006, 14: 571-573.
    [19] Xie Y, Qian Y T, Wang W Z, et al. A Benzene-Thermal synthesis Route to nanocrystalline GaN[J]. Science, 1996, 272: 1926-1927.
    [20] 杜仕国. 超微粉制备技术及其应用[J]. 功能材料, 1997, 28: 237-240.
    [21] 严新. 固相法制备氧化铁纳米粒子[J]. 盐城工学院学报(自然科学), 2002, 15: 24-26.
    [22] 邱春喜, 姜继森, 赵振杰等. 固相法制备 α-Fe2O3 纳米粒子[J]. 无机材料学报, 2001, 16: 957-960.
    [23] 胡迎花,罗志聪,陈克正. 纳米 Fe3O4 粒子的制备及表面包覆[J]. 青岛科技大学学报(自然科学版), 2007,28: 477-480.
    [24] 叶琳, 段月琴, 袁志好. 共沉淀法制备的铁酸锌纳米材料的晶化与晶粒生长行为[J].天津理工大学学报, 2007,23: 36-38.
    [25] 管志花,杨新华. 纳米 NiZn 铁氧体纳米晶的制备及表征[J]. 纳米科技, 2007, 4: 39-41.
    [26] Dong W T, Wu S X, Chen D P, et al. Preparation of α-Fe2O3 nanoparticles by sol-gel process with inorganic iron salt[J]. Chem Lett, 2000, 5: 491-496.
    [27] Sugimoto T, Wang Y D, Itoh H, et al. Systematic control of size, shape and internal structure of monodisperse α-Fe2O3 particles[J]. Colloids and Surface A: Physicochemical and Engineering Aspects, 1998, 134: 265-279.
    [28] 喻德忠, 彩汝秀, 潘祖亭. 纳米级氧化铁的合成及其对六价铬的吸附性能研究[J]. 武汉大学学报(理学版), 2002, 48: 136-138.
    [29] 曹维良, 张敬畅, 石锦华等. 超微粒子氧化铁的制备研究[J]. 应用科学学报, 2000, 18: 171-174.
    [30] Wei Y, Liu H. Preparation of nano-needle hematite particles in solution[J]. Materials Research Bulletn, 1999, 34: 1227-1231.
    [31] Chen D R, Xu R. Hydrothermal synthesis and characterization of Nanocrystalline γ-Fe2O3 particles[J]. J Solid State Chem, 1998, 137: 185-190.
    [32] 景志红, 王燕, 吴世华. 不同形态的 α-Fe2O3 纳米粉体的水热合成、表征及其磁性研究[J]. 无机化学学报, 2005, 21: 145-148.
    [33] Jing Z H, Wu S H. Synthesis and characterization of monodisperse hematite nanoparticles modified by surfactants via hydrothermal approach[J]. Material Letters, 2004, 58: 3637-3640.
    [34] Giri S, Samanta S, Maji S, Ganguli S, Bhaumik A. Magnetic properties of α-Fe2O3 nanoparticles synthesized by a new hydrothermal method[J]. Journal of Magnetism and Magnetic Materials, 2005, 285: 296-302.
    [35] Li G S, Smith R L, Inomata H, Arai K. Preparation and magnetization of hematite nanocrystals with amorphous iron oxide by hydrothermal conditions[J]. Materials Research Bulletin, 2002, 35: 949-955.
    [36] 韩晓斌, 黄丽, 回峥. 微波水解法制备针形 α-Fe2O3 纳米粒子[J]. 无机材料学报, 1999, 14: 669-672.
    [37] 张文敏, 刘强, 汤永铮. 添加剂对微波法制备均分散 α-Fe2O3 纳米离子的影响[J]. 材料科学工程, 1999, 17: 29-32.
    [38] Liao X H, Zhu J J, Zhong W, et al. Synthesis of amorphous α-Fe2O3 nanoparticles bymicrowave irradiation[J]. Material Letters, 2001 , 50: 341-346.
    [39] Li Q, Wei Y. Study on preparing monodispersed hematite nanoparticles by microwave induced hydrolysis of ferric salt solution[J]. Materials Research Bulletin, 1998, 33: 779-782.
    [40] Yuan J K, Li W N, Gomez S, et al. Shape-Controlled Synthesis of Manganese Oxide Octahedral Molecular Sieve Three-Dimensional Nanostructures[J]. J Am Chem Soc, 2005, 127: 14184-14185.
    [41] Chhabra V, Ayyub P, Chattopadhyay S, et al. Preparation of acicular γ-Fe2O3 particles from microemulsion mediated reaction[J]. Mater Lett, 1996, 26: 21-26.
    [42] Sun H L, Shi H T, Zhao F, et al. Shape-dependent magnetic properties of low-dimensional nanoscale Prussian blue(PB) analogue SmFe(CN)6·4H2O[J]. Chem Commun, 2005: 4339-4341.
    [43] Cao M H, Wu X L, He X Y, et al. Shape-controlled synthesis of Prussian blue analogue Co3[Co(CN)6]2 nanocrystals[J]. Chem Commun, 2005: 2241-2243.
    [44] Cao M H, Wu X L, He X Y, et al. Microemulsion-Mediated Solvothermal Synthesis of SrCO3 Nanostructures[J]. Langmuir, 2005, 21: 6093-6096.
    [45] Zheng J, Song X B, Chen N, et al. Highly Symmetrical CdS Tetrahedral Nanocrystals Prepared by Low-Temperature Chemical Vapor Deposition Using Polysulfide as the Sulfur Source[J]. 2008, Cryst Growth Des, 8: 1760–1765.
    [46] Matthew J B, Lau Y K A, Song J. Hyperbranched PbS and PbSe Nanowires and the Effect of Hydrogen Gas on Their Synthesis[J]. Nano Lett, 2007, 7: 2907-2912.
    [47] Bhaviripudi S, Ervin M, Steiner S A, et al. CVD Synthesis of Single-Walled Carbon Nanotubes from Gold Nanoparticle Catalysts[J]. J Am Chem Soc, 2007, 129: 1516 -1517.
    [48] Mozetic M, Cvelbar U, Sunkara M K, et al. A method for the rapid synthesis of large quantities of metal oxide nanowires at low temperature[J]. Adv Mater, 2005, 17: 2138-2142.
    [49] 刘吉平, 郝向阳. 纳米科学与技术[M]. 北京: 科学出版社, 2002. 5-7.
    [50] 李树棠.晶体 X 射线衍射学基础[M].北京:冶金出版社, 1990.
    [51] 王中林. 纳米材料表征[M]. 曹茂盛, 李金刚. 北京: 化学工业出版社, 2005. 31-48.
    [52] 刘吉平, 郝向阳. 纳米科学与技术[M]. 北京: 科学出版社, 2002. 8-9.
    [53] 韩薇.普鲁士蓝类分子磁体的磁性及穆斯堡尔谱学研究[D]:[硕士学位论文]. 南京: 南京航空航天大学材料科学与技术学院, 2007.
    [54] Herren F, Fischer P, Ludi A, et al. Neutron diffraction study of Prussian Blue, Fe[Fe(CN)6]3·H20. Location of water molecules and long range magnetic order[J]. Inorg Chem, 1980, 19: 956-959.
    [55] Ito A, Suenaga M, Ono K. Mossbauer study of soluble Prussian Blue, Insoluble Prussian blue and Turnbull's blue[J]. J Chem Phys, 1968, 48: 3597-3599.
    [56] Koncki R. Chemical Sensors and Biosensors Based on Prussian Blues[J]. CriticalReviews in Analytical Chemistry, 2002, 32: 79-96.
    [57] Norma R T, Rajeshwar K. Metal Hexacyanoferrates: Electrosynthesis, in Situ Characterization, and Application[J]. Chem Mater, 2003, 15: 3046-3062.
    [58] Ksenofontov V, Georgiy L, Sergey R, et al. Pressure-induced electron transfer in ferromagnetic Prussian blue analogs[J]. Phys Rev B, 2003, 68: 024415.1-024415.5.
    [59] 司书峰,廖代正. 普鲁士蓝类分子磁体研究的新进展[J]. 结构化学,2001,20:233-240.
    [60] Orellana M, Arriola P, Río R D, et al. Chronocoulometric Study of the Electrochemistry of Prussian Blue[J]. J Phys Chem B, 2005, 109: 15483 -15488.
    [61] Baioni A P, Vidotti M, Fiorito P A, et al. Synthesis and Characterization of Copper Hexacyanoferrate Nanoparticles for Building Up Long-Term Stability Electrochromic Electrodes[J]. Langmuir, 2007, 23: 6796 -6800.
    [62] Karyakin A A, Puganova E A, Budashov I A, et al. Prussian Blue Based Nanoelectrode Arrays for H2O2 Detection[J]. Anal. Chem, 2004, 76: 474 -478.
    [63] Karyakin A A, Karyakina E E, Gorton Lo. Amperometric Biosensor for Glutamate Using Prussian Blue-Based "Artificial Peroxidase" as a Transducer for Hydrogen Peroxide[J]. Anal Chem, 2000, 72: 1720 -1723.
    [64] Zhang D, Zhang K, Yao Y L, et al. Multilayer Assembly of Prussian Blue Nanoclusters and Enzyme-Immobilized Poly(toluidine blue) Films and Its Application in Glucose Biosensor Construction[J]. Langmuir, 2004, 20: 7303 -7307.
    [65] Chen L C, Ho K C. Multimode optoelectrochemical detection of cysteine based on an electrochromic Prussian blue electrode[J]. Sens Actuators B: Chem, 130: 418-424.
    [66] Suwansa-ard S, Xiang Y, Bash R, et al. Prussian Blue Dispersed Sphere Catalytic Labels for Amplified Electronic Detection of DNA[J]. Electroanalysis, 2008, 20: 308-312.
    [67] Ohkoshi S I, Einaga Y, Fujishima A, et al. Magnetic properties and optical control of electrochemically prepared iron-chromium polycyanides[J]. J Electroanalytical Chem, 1999, 473: 245-249.
    [68] Chiarelli R., Novak M A, Rassat A, et al. A ferromagnetic transition at 1.48 K in an organic mitroxide[J], Nature, 1993, 363: 147-148.
    [69] Shirakawa N, Tamura M. Low temperature static magnetization of an organic ferromagnet, β-p-NPNN[J]. Polyhedron, 2005, 24: 2405-2408.
    [70] Kajiyoshi K, Kambet T, Oshima K, et al. Antiferromagnetic resonance in quasi-one-dimensional ferromagnet γ-p-NPNN[J]. Polyhedron, 2005, 24: 2464-2467.
    [71] Yao K L, Luo S J, Liu Z L. First-principles study on the electronic structure and theferromagnetic properties of the organic radical DTDA[J]. Physica B: Condensed Matter, 2003, 325: 380-384.
    [72] Zhou P, Long S M, Miller J S, et al. Static magnetic properties and critical behavior of V(TCNE)X·y(C4H8O), a high Tc molecular-based disordered magnet[J]. Phys Lett A, 1993, 181: 71-79.
    [73] Canesch A I, Gatteschi D, Renard J P, et al. Structure and magnetic properties offerrimagnetic chains formed by manganese(II) and nitronyl nitroxides[J]. Inorg Chem, 1998, 27: 1756-1761.
    [74] Mathonière C, Nuttall C J, Carling S G., et al. Ferrimagnetic Mixed-Valency and Mixed-Metal Tris(oxalato)iron(III) Compounds: Synthesis, Structure, and Magnetism[J]. Inorg Chem, 1995, 35: 1201-1206.
    [75] Stephen M H, Gregory S G. Sol-gel synthesis of KVⅡ[CrⅢ(CN)6]·2H2O: a Crystalline molecule-based magnet with a magnetic ordering temperature above 100℃[J]. J Am Chem Soc, 1999, 121: 5593-5594.
    [76] Hatlevik, Buschmann W E, Zhang J, et al. Enhancement of the magnetic ordering temperature and air stability of a mixed valent vanadium hexacyanochrom ate (Ⅲ) magnet to 99℃ (372 K)[J]. Adv Mater, 1999, 11: 914-918.
    [77] Ferlay S, Mallah T, Ouahes R, et al. A room-temperature organometallic magnet based on Prussian blue[J]. Nature, 1995, 378: 701-703.
    [78] Djuardin E, Ferlay S, Phan X, et al. Synthesis and magnetization of new room-temperature molecule based magnet: effect of stoichimetry on local magnetic structure by X-ray magnetic circular dichroism[J]. J Am Chem Soc, 1998, 120: 11347-11352.
    [79] Mallah T, Thiebaut S, Verdaguer M, et al. High-Tc Molecular-Based Magnets: Ferrimagnetic Mixed-Valence Chromium(Ⅲ)-Chromium(Ⅱ) Cyanides with Tc at 240 and 190 Kelvin[J]. Science, 1993, 262: 1554-1557.
    [80] 陈友存. 分子基磁性材料研究[M]. 合肥: 合肥工业大学出版社, 2006. 22-28.
    [81] Ohkoshi S I, Abe Y, Fujishima A, et al. Design and preparation of a novel magnet exhibiting two compensation temperature based on molecular field theory[J]. Phys Rev Lett, 1999, 82: 1285 -1288.
    [82] Ohkoshi S I, Hozumi T, Utsunomiya M, et al. The observation of two compensation temperature in cobalt-magganese hexacyanochromate[J]. Physica B, 2003, 329-333: 691-692.
    [83] Wojde J C, Bromley S T. Band gap variation in Prussian blue via cation-induced structural distortion[J]. J Phys Chem B, 2006, 110: 24294-24298.
    [84] Nelson K J, Giles I D, Troff S A, et al. Solvent-Enhanced Magnetic Ordering Temperature for Mixed-Valent Chromium Hexacyanovanadate(II), CrII0.5CrIII[VII(CN)6]·zMeCN, Magnetic Materials[J]. Inorg Chem, 2006, 45: 8922 -8929.
    [85] Poganiuch P, Decurtins S, Gutlich P. Thermal- and light-induced spin transition in [Fe(mtz)6](BF4)2: first successful formation of a metastable low-spin state by irradiation with light at low temperatures[J]. J Am Chem Soc, 1990, 112: 3270-3278.
    [86] Li D F, Clerac R, Roubeau O, et al. Magnetic and optical bistability driven by thermally and photoinduced intramolecular electron transfer in a molecular cobalt-iron Prussian blue analogue[J]. J Am Chem Soc, 2008, 130: 252-258.
    [87] Kosaka W, Nomura K, Hashimoto K, et al. Observation of an Fe(II) Spin-Crossover in a Cesium Iron Hexacyanochromate[J]. J Am Chem Soc, 2005, 127: 8590-8591.
    [88] Sato o, Lyoda T, Fujishima A, et al. Photoinduced magnetization of a cobalt-iron cyanide[J]. 1996, 272: 704-705.
    [89] Escax V, Bleuzen A, Moulin C C, et al. Photoinduced Ferrimagnetic Systems in Prussian Blue Analogues CIxCo4[Fe(CN)6]y (CI = Alkali Cation). 3. Control of the Photo- and Thermally Induced Electron Transfer by the [Fe(CN)6] Vacancies in Cesium Derivatives[J]. J Am Chem Soc, 2001, 123: 12536-12543.
    [90] Papanikolaou D, Margadonna S, Kosaka W, et al. X-ray illumination induced Fe(Ⅱ) spin crossover in the Prussian blue analogue cesium iron hexacyanochromate[J]. J Am Chem Soc, 2006, 128: 8358-8362.
    [91] Taguchi M, Yagi I, Nakagawa M, et al. Photocontrolled Magnetization of CdS-Modified Prussian Blue Nanoparticles[J]. J Am Chem Soc, 2006, 128: 10978 -10982.
    [92] Moscone D, D'Ottavi D, Compagnone D, et al. Construction and Analytical Characterization of Prussian Blue-Based Carbon Paste Electrodes and Their Assembly as Oxidase Enzyme Sensors[J]. Anal Chem, 2001, 73: 2529 -2535.
    [93] Garjonyte R, Yigzaw Y, Meskys R, et al. Prussian Blue- and lactate oxidase-based amperometric biosensor for lactic acid[J]. Sens Actuators B, 2001, 79: 33-38.
    [94] Castro S S L, Balbo V R, Barbeira P J S, et al. Flow injection amperometric detection of ascorbic acid using a Prussian Blue film-modified electrode[J]. Talanta, 2001, 55: 249-254.
    [95] García T, Casero E, Lorenzo E, et al. Electrochemical sensor for sulfite determination based on iron hexacyanoferrate film modified electrodes[J]. Sens Actuators B, 2005, 106: 803-809.
    [96] Haghighi B, Varma S, Alizadeh S F M, et al. Prussian blue modified glassy carbon electrode-study on operational stability and its application as a sucrose biosensor[J]. Talanta, 2004, 64:3-12.
    [97] Vittal R, Kim K J, Gomathi H, et al. CTAB-promoted Prussian blue-modified electrode and its cation transport characteristics for K+, Na+, and NH4+ ions[J]. J Phys Chem B, 2008, 112: 1149-1156.
    [98] Ohnuki H, Saiki T, Kusakari A, et al. Incorporation of Glucose Oxidase into Langmuir-Blodgett Films Based on Prussian Blue Applied to Amperometric Glucose Biosensor[J]. Langmuir, 2007, 23: 4675 -4681.
    [99] Qiu J D, Peng H Z, Liang R P, et al. Synthesis, characterization, and immobilization of Prussian blue-modified Au nanoparticles: application to electrocatalytic reduction of H2O2[J]. Langmuir, 2007, 23: 2133-2137.
    [100] Zhao G, Feng J J, Zhang Q L, et al. Synthesis and Characterization of Prussian Blue Modified Magnetite Nanoparticles and Its Application to the Electrocatalytic Reduction of H2O2[J]. Chem Mater, 2005, 17: 3154 -3159.
    [101] Kaye S S, Long J F. Hydrogen storage in the dehydrated Prussian blue analogues M3[Co(CN)6]2 (M= Mn, Fe, Co, Ni, Cu, Zn)[J]. J Am Chem Soc, 2005, 127: 6506-6507。
    [102] Natesakhawat S, Culp J T, Matranga C, et al. Adsorption Properties of Hydrogen and Carbon Dioxide in Prussian Blue Analogues M3[Co(CN)6]2, M=Co, Zn[J]. J Phys Chem C, 2007, 111: 1055-1060.
    [103] 牛新书,徐荭. α-Fe2O3 气敏材料制备及掺杂效应近期发展[J]. 化学研究与应用, 2000, 12: 575-579.
    [104] Kotsikau D, Ivanovskaya M, Orlik D, et al. Gas-sensitive properties of thin and thick film sensors based on Fe2O3–SnO2 nanocomposites[J]. Sensors and Actuators B: Chemical, 2004, 101: 199-206.
    [105] Tan O K, Cao W, Zhu W, et al. Ethanol sensors based on nano-sized α-Fe2O3 with SnO2, ZrO2, TiO2 solid solutions[J]. Sensors and Actuators B: Chemical, 2003, 93: 396-401.
    [106] Ivanovskaya M, Kotsikau D, Faglia G, et al. Gas-sensitive properties of thin film heterojunction structures based on Fe2O3–In2O3 nanocomposites[J]. Sensors and Actuators B: Chemical, 2003, 93: 422-430.
    [107] Mornet S, Vekris A, Bonnet J, et al. DNA-magnetite nanocomposite materials[J]. Mater Lett, 2000, 42: 183-188.
    [108] Hai Y, Pai V, Chen C J. Development of magnetic device for cell separation[J]. J Magn Magn Mater, 1999, 194: 254-261.
    [109] Chen D, Liao M. Preparation and Characterization of YADH-bound magnetic nanoparticles[J]. J Molec Cat B: Enzymatic, 2002, 16: 283-291.
    [110] Ruuge E K, Rusetski A N. Magnetic fluids as drug carrier: Targeted transport of drugs by a magnetic field[J]. J Magn Magn Mater, 1993, 122: 335-339.
    [111] Torchilin V P. Drug targeting[J]. Europ J Pharma Centical Sci, 2000, 11: 81-91.
    [112] Chan D C F, Kirpotin D, Bunn P A. Synthesis and evolution of colloidal magnetic iron-oxides for the site-specific radiofrequency induced hyperthermia of Cancer[J]. J Magn Magn Mater. 1993, 122: 374-379.
    [113] Jordan A, Wust P, Scholz R, et al. Scientific and Clinical application of magnetic carries[M]. New York: Plenum Press, 1997: 569-575.
    [114] Wu C Z, Yin P, Zhu X, et al. Synthesis of hematite (α-Fe2O3) nanorods: diameter-size and shape effects on their applications in magnetism, lithioum ion battery, and gas sensors[J]. J Phys Chem B, 2006, 110: 17806-17812.
    [115] Zeng S Y, Tang K B, Li T W, et al. Hematite hollow spindles and microspheres: selective synthesis, growth mechanism, and application in lithium ion battery and water treatment[J]. J Phys Chem C, 2007, 111: 10217-10225.
    [116] Cao S W, Zhu Y J. Hierachically nanostructuredα-Fe2O3 hollow spheres: preparation, growth mechanism, photocatalytic property, and application in water treatment[J]. J Phys Chem C, 2008, 112: 6253-6257.
    [117] Cao M H, Liu T F, Gao S, et al. Single-crystal dendritic micro-pines of magneticα-Fe2O3: large-scale synthesis, formation mechanism, and properties[J]. Angew Chem Int Ed, 2005, 44: 4197-4201.
    [118] Mao B D, Kang Z H, Wang E B, et al. Template free fabrication of hollow hematitespheres via a one-pot polyoxometalate-assisted hydrolysis process[J]. Journal of Solid State Chemistry, 2007, 180: 489-495.
    [119] Li L L, Chu Y, Liu Y, et al. Template-free synthesis and photocatalytic properties of novel Fe2O3 hollow spheres[J]. J Phys Chem C, 2007, 111: 2123-2127.
    [120] Bang J H, Suslick K S. Sonochemical Synthesis of Nanosized Hollow Hematite[J]. J Am Chem Soc, 2007, 129: 2242-2243.
    [121] Sugimoto T, Wang Y D, Itoh H, et al. Systematic control of size, shape and internal structure of monodisperse α-Fe2O3 particles[J]. Colloids and Surface A: Physicochemical and Engineering Aspects, 1998, 134: 265-279.
    [122] 喻德忠, 彩汝秀, 潘祖亭. 纳米级氧化铁的合成及其对六价铬的吸附性能研究[J]. 武汉大学学报(理学版), 2002, 48: 136-138.
    [123] 曹维良, 张敬畅, 石锦华等. 超微粒子氧化铁的制备研究[J]. 应用科学学报, 2000, 18: 171-174.
    [124] Wei Y, Liu H. Preparation of nano-needle hematite particles in solution[J]. Materials Research Bulletn, 1999, 34: 1227-1231.
    [125] 景志红, 王燕, 吴世华. 不同形态的 α-Fe2O3 纳米粉体的水热合成、表征及其磁性研究[J]. 无机化学学报, 2005, 21: 145-148.
    [126] Jing Z H, Wu S H. Synthesis and characterization of monodisperse hematite nanoparticles modified by surfactants via hydrothermal approach[J]. Material Letters, 2004, 58: 3637-3640.
    [127] Li G S, Smith R L, Inomata H, Arai K. Preparation and magnetization of hematite nanocrystals with amorphous iron oxide by hydrothermal conditions[J]. Materials Research Bulletin, 2002, 35: 949-955.
    [128] Zhang X L, Sui C H, Gong J, et al. Preparation and formation mechanism of different α-Fe2O3 morphologies from snowflake to paired microplates, dumbbell, and spindle microstructures[J]. J Phys Chem C, 2007, 111: 9049-9054.
    [129] Hu X H, Yu J C, Gong J M. Fast production of self-assembly hierachical α-Fe2O3 nanoarchitectures[J]. J Phys Chem C, 2007, 111: 11180-11185.
    [130] Cao S W, Zhu Y J, Ma J M, et al. Hierachically nanostructured magnetic hollow spheres of Fe3O4 and γ-Fe2O3: preparation and potential application in drug delivery[J]. J Phys Chem C, 2008, 112: 1851-1856.
    [131] Morin F J. Magnetic susceptibility ofα-Fe2O3 and α-Fe2O3 with added titanium[J]. Phys Rev, 1950, 78: 819-820.
    [132] Suber L, Santiago A G, Fiorani D, et al. Structural and magnetic properties of α-Fe2O3 nanoparticles[J]. Appl Org Metallic Chem, 1998, 12: 347-351.
    [133] Wu J J, Lee Y L, Chiang H H, et al. Growth and magnetic properties of oriented α-Fe2O3 nanorods[J]. J Phys Chem B, 2006, 110: 18108-18111.
    [134] Jiao F, Harrison A, Jumas J C, et al. Ordered mesoporous Fe2O3 with crystalline walls[J]. J Am Chem Soc, 2006, 128: 5468-5474.
    [135] Machol J L, Wise F W, Patel R C, et al. Vibronic quantum beats in PbS microcrystallites[J].Phys Rev B, 1993, 48: 2819-2822.
    [136] Sheldrick W S, Wachhold M. Solventothermal Synthesis of Solid-State Chalcogenidometalates[J]. Angew Chem Int Ed Engl, 1997, 36: 206-224.
    [137] Henshaw G, Parkin I P, Shaw G. Chem Commun, 1996, 109: 5.
    [138] Fendler, J. H. Membrane-Mimetic Approach to Advanced Materials; Advances in Polymer Science Series. Springer- Verlag: Berlin, 1994, Vol. 113.
    [139] Mukherjee, M.; Dcotta, A.; Chakravorty, D. Electrical resistivity of nanocrystalline PbS grown in a polymer matrix[J]. Appl Phys Lett, 1994, 64: 1159-1161.
    [140] Murray C B, Norris D J, Bawendi M G. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites[J]. J Am Chem Soc, 1993, 115: 8706-8715.
    [141] Zhou Y, Itoh H, Uemura T, et al. Preparation, Optical Spectroscopy, and Electrochemical Studies of Novel -Conjugated Polymer-Protected Stable PbS Colloidal Nanoparticles in a Nonaqueous Solution[J]. Langmuir, 2002, 18: 5287-5292.
    [142] Bakueva L, Konstantatos G, Levina L, et al. Luminescence from processible quantum dot-polymer light emitters 1100–1600 nm: Tailoring spectral width and shape[J]. Appl Phys Lett, 2004, 84: 3459.
    [143] Kane R S, Cohen R E, Silbey R. Theoretical Study of the Electronic Structure of PbS Nanoclusters[J]. J Phys Chem, 1996, 100: 7928-7932.
    [144] Olshavasky M A, Goldstein A N, Alivisators A P. Organometallic synthesis of gallium-arsenide crystallites, exhibiting quantum confinement[J]. J Am Chem Soc, 1990, 112: 9438-9439.
    [145] Bakueva L, Musikhin S, Hines M A, et al. Size-tunable infrared (1000-1600 nm) electroluminescence from PbS quantum-dot nanocrystals in a semiconducting polymer[J]. Appl Phys Lett, 2003, 82: 2895-2897.
    [146] Zhao N N, Qi L M. Low-temperature synthesis of star-shaped PbS nanocrystals in aquenous solution of mixed cationic/anionic surfactants[J]. Adv Mater, 2006, 18: 359-362.
    [147] Zhang C, Kang Z H, Shen E H, et al. Synthesis and evolution of PbS nanocrystals through a surfactant-assisted solvothermal route[J]. J Phys Chem B, 2006, 110: 184-189.
    [148] Zhou G J, Lu M K, Xiu Z L, et al. Controlled Synthesis of High-Quality PbS Star-Shaped Dendrites, Multipods, Truncated Nanocubes, and Nanocubes and Their Shape Evolution Process[J]. J Phys Chem B, 2006, 110: 6543-6548.
    [149] Wang S F, Gu F, Lv M K. Sonochemical synthesis of hollow PbS nanospheres[J]. Langmuir, 2006, 22: 398-401.
    [150] Babu K S, Vijayan C, Haridoss P. Properties of size-tuned PbS nanocrystals stabilized in a polymer template[J]. Mater Res Bull, 42, 6: 996-1003.
    [151] Malik M A, Brien P O, Revaprasadu N. A simple route to the synthesis of core/shell nanoparticles of chalcogenides[J]. Chem Mater, 2002, 14: 2004-2010.
    [152] Babu K S, Vijayan C, Haridoss P. Effect of PbS nanocrystal concentration on the physical properties of a polymer–nanocrystal composite[J]. Mater Sci Engineering: C, 2007, 27: 922-927.
    [153] Malyarevich A M., Gaponenko M S, Savitski V G, et al. Nonlinear optical properties of PbS quantum dots in boro-silicate glass[J]. J Non-Cryst Sol, 353: 1195-1200.
    [154] Dantas N O, Qu F, Monte A F G, Optical properties of IV–VI quantum dots embedded in glass: Size-effects[J]. J Non-Cryst Sol, 2006, 352: 3525-3529.
    [155] Hartman M R, Peterson V K, Liu Y. Netron diffraction and neutron vibration spectroscopy studies of hydrogen adsorption in the Prussian blue analogue Cu3[Co(CN)6]2[J]. Chem Mater, 2006, 18, 3221-3224.
    [156] Lima E, Balmaseda J, Reguera E. 129Xe NMR spectroscopy study of porous cyanometallates[J]. Langmuir, 2007, 23: 5752-5756.
    [157] Uemura T, Ohba M, Kitagawa S. Size and surface effect of Prussian blue nanoparticles protected by organic polymers[J]. Inorg Chem, 2004, 43: 7339-7345.
    [158] Wu X L, Cao M H, Hu C W, et al. Sonochemical Synthesis of Prussian Blue Nanocubes from a Single-Source Precursor[J]. Cryst Growth Des, 2006, 6: 26 -28.
    [159] Wang Z L. Transmission Electron Microscopy of Shape-Controlled Nanocrystals and Their Assemblies[J]. J Phys Chem B, 2000, 104: 1153-1175.
    [160] Bennett M V, Beauvais L G, Shores M P, et al. Expanded Prussian Blue Analogues Incorporating [Re6Se8(CN)6]3-/4- Clusters: Adjusting Porosity via Charge Balance[J]. J Am Chem Soc, 2001, 123: 8022-8032.
    [161] Yang J H, Sasaki T. Synthesis of CoOOH Hierarchically Hollow Spheres by Nanorod Self-Assembly through Bubble Templating[J]. Chem Mater, 2008, 20: 2049–2056.
    [162] Jia B P, Gao L. Morphological Transformation of Fe3O4 Spherical Aggregates from Solid to Hollow and Their Self-Assembly under an External Magnetic Field[J]. J Phys Chem C, 2008, 112: 666 -671.
    [163] Xu M W, Kong L B, Zhou W J, et al. Hydrothermal Synthesis and Pseudocapacitance Properties of -MnO2 Hollow Spheres and Hollow Urchins[J]. J Phys Chem C, 2007, 111: 19141 -19147.
    [164] Li B X, Rong G X, Xie Y, et al. Low-Temperature Synthesis of -MnO2 Hollow Urchins and Their Application in Rechargeable Li+ Batteries[J]. Inorg Chem, 2006, 45: 6404 -6410.
    [165] Sun Z, Yuan H, Liu Z, et al. A Highly Efficient Chemical Sensor Material for H2S: -Fe2O3 Nanotubes Fabricated Using Carbon Nanotube Templates[J]. Adv Mater, 2005, 17: 2993-2997.
    [166] Bodkera F, Hansen M F, Koch C B, et al. Magnetic properties of hematite nanoparticles[J]. Phys Rev B, 2000, 61: 6826-6838.
    [167] Zysler R D, Fiorani D, Testa A M, et al. Size dependence of the spin-flop transition in hematite nanoparticles[J]. Phys Rev B, 2003, 68: 212408-212411.
    [168] Ni Y H, Liu H J, Wang F, et al. Shape controlled preparation of PbS crystals by a simple aquenous phase route[J]. Cryst Growth Des, 2004, 4: 759-76
    [169] Wang Y, Herron N. Optical properties of cadmium sulfide and lead(Ⅱ) sulfide clusters encapsulated in zeolites[J]. J Phys Chem, 1987, 91: 257-260.
    [170] Moller K, Bein T, Herron N, et al. Encapsulation of lead sulfide molecular clusters into solid matrixes, structural analysis with X-ray absorption spectropy[J]. Inorg Chem, 1989, 28: 2914-2919.
    [171] Ogawa S, Hu K, Fan F R F, et al. Photoelectrochemistry of films of quantum size lead sulfide particles incorporated in self-assembled monolayer on gold[J]. J Phys Chem B, 1997, 101: 5707-5711.
    [172] Wang Y, Suna A, Mahler W, et al. PbS in polymers. From molecules to bulk solids[J]. J Chem Phys, 1987, 87: 7315-7322.
    [173] Milekhin A G, Sveshnikova L L, Repinsky S M, et al. Optical vibrational modes in (Cd, Pb, Zn)S quantum dots embedded in Langmuir-Blodgett matrices[J]. Thin Solid Films, 2002, 422: 200-204.
    [174] Correa N M, Zhang H G, Schelly Z A. Preparation of AgBr Quantum Dots via Electroporation of Vesicles[J]. J Am Chem Soc, 2000, 122: 6432-6434.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700