多年冻土地区块碎石路基适用性评价研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多年冻土区道路成败的关键在于维护多年冻土路基的稳定性,影响多年冻土路基稳定性的最为突出的因素是路基下伏多年冻土的融化沉降变形。块碎石路基作为保护冻土稳定,防止病害的一种措施,主要通过调控对流来冷却地基,消除融沉。块碎石路基由于其降温效果明显、施工难度相对较小、便于取材、环境友好等特点,在青藏铁路、青藏公路、青康公路等工程中得到了广泛的应用,并且,在将来的道路工程中将得到进一步推广使用。因此,对其适用性评价的研究,对多年冻土区的道路工程就具有重大的意义。本文以多年冻土区的块碎石路基适用性为研究目标,在系统了解国内外关于块碎石路基降温机理、降温特征、降温效果的研究基础上,分析了影响块碎石路基适用性的影响因素,并结合评价指标体系理论,建立了多年冻土区块碎石路基适用性评价指标体系。最后,利用突变级数法及BP神经网络法建立了评价数学模型,并通过工程验证。通过研究,得出如下结论:
     1、通过分析国内外关于块碎石路基的室内外实验研究、数值模拟计算等方面的研究文献成果,总结和提炼了多年冻土区块碎石路基方面的研究成果,为定量评价多年冻土区块碎石路基适用性的研究奠定了基础。
     2、按外部气候条件、冻土内在因素、路基工程特点三大类分析了多年冻土区块碎石路基适用性影响因素。外部气候条件是影响块碎石路基适用状况的诱因与动力;冻土内在因素是直接地影响着路基温度场和水分场在路基体系中的传递的根本机制;路基工程特性是唯一可人工调节的影响因素。
     3、在影响因素分析基础上,结合评价指标体系理论,总结归纳了对块碎石路基适用性影响较大且作用机理明确的12个评价指标,依据一定的层次关系,建立了由目标层(多年冻土区块碎石路基适用性)、准则层(外部气候条件、冻土内在因素和路基工程特点)和指标层(12个具体指标)三个层次结构体系组成的多年冻土区块碎石路基适用性评价指标体系。
     4、根据评价指标的相互作用关系,建立了基于突变级数法的综合评价模型,并选用28个工程实例进行验证分析,论证了该综合模型的合理性和实用性。
     5、选取BP神经网络法作为验证模型,对块碎石路基适用性进行了验证评价,结果表明,经过训练学习,BP神经网络法也能够较为准确的对块碎石路基适用性进行评价预测。
As far as roadway in permafrost regions is concerned, the stability is determined by subgrade, the stability of subgrade is determined by permafrost, and the key problem to permafrost is thaw settlement. As an effective solution to protect the underlying permafrost and prevent the roadway damages, Block-rock-embankment (BRE) achieves the cooling effect of the foundation and eliminates the thaw settlement by adjusting the convective heat transfer. Due to the advantages of obvious cooling effects, relatively small construction difficulties, easy sampling, and environmentally friendly, the Block-rock-embankment has been widely used in Qinghai-Tibet railway, Qinghai-Tibet highway, Ching-Hong road, and will be further promoted to other roadways in the future. Therefore, it would be very important and meaningful to study on the application evaluation of BRE in permafrost regions. The adaptability of Block-rock-embankment in permafrost regions has been selected as the object of this study. On the basis of systematically understanding the study on cooling mechanisms, cooling characteristics, cooling effects of BRE at home and abroad, we analyze the factors affecting the adaptability of BRE; build the integrated indicator system of the adaptability of BRE in permafrost regions based on the theory of evaluation index system. Finally, the mathematical model of evaluation is established by catastrophe progression method and BP neural network method, and verified by practical engineering projects. The main achievements include the following parts:
     1﹑By analyzing the research literature results about the BRE in the field of indoor and outdoor experiment, numerical simulation calculation,etc at home and abroad, The study achievements of BRE in permafrost has been summarized and refined to lay foundation for the quantitative evaluation study of adaptability of BRE in permafrost regions.
     2﹑The factors affecting the adaptability of BRE are summarized and analyzed by the classification of external climate conditions, frozen soils internal factors and subgrade characteristics. External climate conditions are incentives and motivations to influence the applicable condition of BRE; frozen soils internal factors are fundamental mechanisms directly affecting the transmission of temperature and moisture fields in roadbeds; subgrade characteristics is the only manual adjustment factors.
     3﹑Based on the theory of evaluation index system, evaluation indexes of12which impact significantly on the adaptability of BRE and function clearly are extracted from the factors affecting the adaptability of BRE. Then, the integrated indicator system of the adaptability of BRE in permafrost regions is set up according to definite hierarchical relationships between factors, which consists of three levels:object hierarchy, rule hierarchy and index hierarchy.
     4﹑According to the correlations among indicators, The mathematical model of evaluation is established by catastrophe progression method. Practical engineering projects of28are selected to verify the rationality and practicability of the model.
     5、The integrated assessment model set up by BP neural network method is selected to validate the evaluation results. It is concluded that, after training and learning, the adaptability of BRE can be evaluated and predicted more accurately.
引文
[1]周幼吾,郭东信,邱国庆,等.中国冻土[M].北京:科学出版社,2000.37-41.
    [2]程国栋,孙志忠,牛富俊.“冷却路基”方法在青藏铁路上的应用[J].冰川冻土2006,28(6):797-808
    [3]Cheng G D,Li X.Constructing the Qinghai-Tibetan railway:new challenges to Chinese permafrost scientists[C].Proceeding of the Eighth International Conference on Permafrost (vol.1), Zurich, Switzerland, Lisse, the Netherlands:A.A.Balkma Publishers,2003.131-134.
    [4]苗秋菊,张婉佩编译.2005年气候变化回顾[J].气候变化研究进展,2006,2(1):43-44.
    [5]秦大河,丁一汇,王绍武,等.中国西部环境演变及其影响研究[J].地前学缘,2002,9(2):321-328.
    [6]王绍令,赵林,李述训,等.青藏公路多年冻土段沥青路面热量平衡及路基稳定性研究[J].冰川冻土,2001,23(2):111-118
    [7]盛煜,张建明,刘永智,等.青藏公路多年冻土路基内的热状况[J].自然科学进展,2002,12(8):839-844.
    [8]雍国武才,李东庆,张坤,等.214国道多年冻土区路段路面病害特征分析[J].公路交通科技·应用技术版,2010,62(2):34-38.
    [9]马巍,程国栋,吴青柏.解决青藏铁路建设中冻土工程问题的思路与思考[J].科技导报,2005,(1):23-28.
    [10]程国栋.用冷却地基的方法修建青藏铁路[J].中国铁道科学,2003,24(3):1-4
    [11]马巍,程国栋,吴青柏.多年冻土地区主动冷却地基方法研究[J].冰川冻土,2002,24(5):579-587
    [12]刘新龙,王霞,符敏.冻土区碎石路基对流降温的研究[J].西安工业大学学报,2006,(06):587-590.
    [13]俞祁浩,谷伟,钱进,等.多年冻土区高等级公路建设面临问题分析[J].公路,2010,(11):74-81.
    [14]Delaloye R,Reynard E,Lambiel C,et al.Thermal anomaly in a cold scree slope(Creux du Van,Switzerland)[C]//Phillips M,Springman S M,Arenson L.Proceeding of the 8th International Permafrost Conference.Balkema:Lisse,2003:175-180.
    [15]Iijima,Y.and Fukui,K..The effect of surface nocturnal cooling on maintaining the mountain permafrost in central Japan [A].Proceedings of the eighth international conference on permafrost,Zurich,Switzerland,A.A.Balkema Publishers,2003:449-454.
    [16]Herz,T.,King,L.and Gubler,H..Microclimate within coarse debris of talus slopes in the alpine periglacial belt and its effect on permafrost.Proceedings of the eighth international conference on permafrost,Zurich,Switzerland,A.A.Balkema Publishers,2003:383-387.
    [17]Harris, S.A., 1996.Lower mean annual ground temperature beneath a block stream in the Kunlun Pass,Qinghai Province,China.In proceedings 5th Chinese permafrost conference, Lanzhou.pp.227-237.
    [18]Harris, S.A. and Pedersen, D.E., 1998. Thermal regimes beneath coarse blocky materials. Permafrost and periglacial processes,9,107-120.
    [19]Gude,M.,Dietrich,S.,Hauck,C.,et al.,2003. Probable occurrence of sporadic permafrost in non-alpine scree slopes in central Europe. Proceedings of the eighth international conference on permafrost,Zurich,Switzerland,A.A. Balkema Publishers,331-336.
    [20]Goering,D.J., Kumar, P. Permeability effects on winter-time natural convection in gravel embankments.Cold Regions Science and Technology. 1996,24:57-74.
    [21]He Guisheng,Ding Jingkang,Li Yongqiang, 2000. Heat transmission properties and application of the dump filling crushed stone layer.Journal of glaciology and geocryology,22(Suppl.).34-37.
    [22]王国尚,林清,金会军.寒区道路块片石通风路堤试验研究[A].第五届全国冰川冻土人会论文集(上).兰州:甘肃文艺出版社,1996.337-382.
    [23]杨海蓉.多年冻土区防治路基融化下沉及提高其稳定性的措施[J].冰川冻土,1985.79(1):83-88.
    [24]程国栋.用冷却路基的方法修建青藏铁路[J].中国铁道科学,2003.24(3):1-4.
    [25]马巍,程国栋,吴青柏.多年冻土地区主动冷却地基方法研究[J].冰川冻土,2002.24(5):579-587.
    [26]徐学祖,孙斌祥,赖远明,等.青藏铁路块碎石路基长期使用效果分析[J].冰川冻土,2004.26(1):101-105.
    [27]赖远明,张明义,喻文兵,等.封闭条件下抛石路堤降温效果及机理的试验研究[J].冰川冻土,2004.26(5):576-581.
    [28]张明义,赖远明,喻文兵,等.封闭与开放抛石路堤降温效果及机理对比试验研究[J].岩石力学与工程学报,2005,24(15):2671-2677.
    [29]葛建军.青藏高原多年冻土区片石通风路基新结构[J].路基工程,2002.3:22-23.
    [30]马天明.青藏铁路多年冻土区片石通风路基施工[J].铁道建筑技术,2003,(01):46-47.
    [31]李宁,魏庆朝,魏静.青藏铁路片块石气冷路基工程试验研究[J].冰川冻土,2005.27(5):686-693.
    [32]赖远明,张鲁新,张淑娟,等.气候变暖条件下青藏铁路抛石路基的降温效果[J].科学通报,2003.48(3),292-297.
    [33]米隆,赖远明,吴紫汪,等.高原冻土铁路路基温度特性的有限元分析[J].铁道学报,2003.25(2):62-67
    [34]姜凡,刘石,王海刚,等.冻土块碎石路基的保冷效果数值计算研究[J].铁道学报,2004.26(4):109-115.
    [35]王爱国,马巍,吴志坚.块碎石路堤上覆砂砾石厚度对冻土路基冷却效果的研究[J].岩石力学与工程学报,2005.24(13):2333-2341.
    [36]吴青柏,赵世运,马巍,等.青藏铁路块碎石路基结构的冷却效果监测分析[J].岩土工程学报,2007(12):1386-1390.
    [37]Harris,C.Comparison of the climate and geomorphic method of predicting permafrost distribution in west Yukon Territory[C].Proceeding of the 4th International Conference on Permafrost. Washington D C:National Academy Press,1983:450-455.
    [38]Dunayeva,Y.N,Gavrilov,A.V.Principles of compiling maps for the geological environment in the permafrost regions[C].Proceedings of 4th International Conference on Permafrost,Vo1.1. Washington D C:National Academy Press,1983:261-265.
    [39]朱林楠,多年冻土路堤的临界高度.中国地理学会冰川冻土学术会议论文选集(冻土学).北京:科学出版社,1982:170-172.
    [40]吴青柏,朱元林,刘永智.工程活动下多年冻土热稳定性评价研究[J].冰川冻土,2002,24(2):129-134.
    [41]牛富俊,张建明,张钊.青藏铁路北麓河试验段冻土工程地质特征及评价[J].冰川冻土,2002,24(3):1-6.
    [42]金会军,王绍令,俞祁浩,等.青藏工程走廊冻土环境工程地质区划及评价[J].水文地质工程地质,2006,6(6):66-71+137.
    [43]曹伟,盛煜,陈继.青海木里煤田冻土环境评价研究[J].冰川冻土,2008,30(1):157-164.
    [44]吉延峻,金会军,王国尚,等.中俄原油管道(漠河—大庆段)地基土融沉稳定性评价研究[J].工程地质学报,2010,(02):241-251.
    [45]张波,盛煜,陈继,等.祁连山柴木铁路沿线多年冻土区工程地质特征及评价[J].冰川冻土,2011,(02):381-387.
    [46]施烨辉.列车荷载和冻融循环作用下冻土路基稳定性研究[D].导师:何平.:北京交通大学,2011
    [47]温智,盛煜,马巍,等.保温法在青藏铁路路基工程中应用的适用性评价[J].冰川冻土,2005,(05):694-700.
    [48]马立峰,刘建坤,牛富俊.基于可靠度的多年冻土区路基稳定性评价及应用分析[J].工程地质学报,2009,(04):522-527.
    [49]张书迎.块碎石在冻土道路工程中的应用与研究[J].甘肃科技纵横,2009,(02):132-133.
    [50]刘道军.片石通风路基施工技术介绍[J].路基工程,2003,(S1):63-65.
    [51]程国栋,赖远明,孙志忠,等.碎石层的“热半导体”作用[J].冰川冻土,2007,(01):1-7.
    [52]朱东鹏,贾志裕,赵永国.青藏公路多年冻土区片、块石路基试验工程及应用研究[J].公路,2008,(09):332-337.
    [53]张坤.青藏高等级公路冷却地基的长期冷却效果研究[D].导师:李东庆.:中国科学院寒区旱区环境与工程研究所,2011
    [54]叶学民.多年冻土块石通风路基温度场数值模拟与分析[D].导师:窦明建.长安大学,2005
    [55]胡长顺,窦明健.青藏公路纵向裂缝成因及处治对策研究总报告[R].长安人学,2003.6
    [56]孙斌祥,徐学祖,赖远明,等.碎石粒径对寒区路堤自然对流降温效应的影响[J].岩土工程学报,2004,(06):809-814.
    [57]喻文兵,赖远明,张学富,等.块石层与碎石层降温效果室内试验研究[J].冰川冻土,2003,(06):638-643.
    [58]赖远明,张明义,喻文兵,等.封闭块碎石层最佳降温粒径的室内试验研究[J].冰川冻土,2006,(05):755-759.
    [59]王爱国,马巍,王大雁.不同厚度块石路堤对冻土路基冷却效果对比研究[J].岩石力学与工程学报,2006,(S1):3283-3288.
    [60]孙斌祥,徐学祖,赖远明,等.多年冻土区公路路堤碎石层厚度的计算[J].岩土工程学报,2006,
    (04):451-459.
    [61]孙斌祥,徐学机,赖远明,等.青藏高原铁路多年冻土路堤的碎石层高度[J].工程力学,2006,(06):127-134.
    [62]鲍维猛,刘建坤.多年冻土区片石通风路基温度场数值模拟[J].岩土工程界,2004,(03):52-55.
    [63]赖远明,张明义,喻文兵,等.边界条件对碎石层降温效果及机理的影响[J].冰川冻土,2005,(02):163-168.
    [64]吴青柏,董献付,蒋观利.开放和封闭条件下块石结构路基下部土体降温效果差异[J].岩石力学与工程学报,2006,(12):2565-2571.
    [65]曹玉新.青藏铁路五道梁地区片石气冷路基工程效果研究[D].导师:张鲁新.:北京交通大学,2007
    [66]徐学祖,王家澄.中国冻土分布及其地带性规律的初步探讨[C].第二届全国冻土学术会议论 文选集.兰州:甘肃人民出版社,1983,3-12.
    [67]刘建坤,童长江,房建宏.寒区岩土工程引论[M].北京:中国铁道出版社,2005.14-127.
    [68]赵成刚,白冰,等.土力学原理[M].北京:清华人学出版社;北京交通人学出版社,2009.59-67.
    [69]飞思科技产品研发中心.神经网络理论与MATLAB7实现[M].北京:电子工业出版社,2005
    [70]周绍江.突变理论在环境影响评价中的应用[J].人民长江,2003,34(2):52-54.
    [71]凌复华.突变理论及其应用[M].上海:上海交通大学出版社,1987
    [72]史志富,张安,刘海燕,等.基于突变理论与模糊集的复杂系统多准则决策[J].系统工程与电子技术.2006,28(7):1010-1013.
    [73]罗成才.高速公路软基路堤大稳风险分析方法研究[D].导师:李军.:中南人学,2011
    [74]杜栋,庞庆华,吴炎.现代综合评价方法与案例精选[M].北京:清华人学出版社,2008
    [75]肖先波.基于BP神经网络的公路建设项目风险分析[D].上海:浙江大学,2006
    [76]李硕,陈祥.浅谈公路建设项目经济评价分析[J].交通与运输,2005(7):55-58.
    [77]李雅楠.人城市(中心城)—卫星城交通模式的适用性评价研究[D].导师:周伟;王元庆.长安人学,2008.
    [78]沙志伟,普布,毛雪松.青藏公路多年冻土区碎石路基试验工程的降温分析[J].路基工程,2011,(01):140-143.
    [79]张尧禹.青藏铁路多年冻土区片石路基稳定性监测试验与温度场模拟研究[D].导师:王钢城.:吉林人学,2005.
    [80]孙志忠,马巍,李东庆.青藏铁路北麓河试验段块石路基与普通路基的地温特征[J].岩土工程学报,2008,(02):303-308.
    [81]许国光.青藏铁路安多段片石通风路基形态与温度场研究[D].导师:王连俊.:北京交通人学,2008
    [82]吴青柏,程红彬,蒋观利,等.青藏铁路块石夹层路基结构的冷却作用机理[J].中国科学(E辑:技术科学),2007,(05):613-620.
    [83]吴青柏,赵世运,马巍,等.青藏铁路块石路基结构的冷却效果监测分析[J].岩土工程学报,2005,(12):1386-1390.
    [84]马巍,余邵水,吴青柏,等.青藏高原多年冻土区冷却路基技术现场实效监测研究[J].岩石力学与工程学报,2006,(03):563-571.
    [85]马巍,刘端,吴青柏.青藏铁路冻土路基变形监测与分析[J].岩土力学,2008,(03):571-579.
    [86]刘争平.青藏铁路楚玛尔河地区片石通风路基沉降与地温研究[D].导师:王连俊.:北京交通大学,2006
    [87]李宁.青藏铁路多年冻土区片石气冷路堤温度特性研究[D].导师:魏庆朝.:北京交通人学,2006
    [88]徐志英,牛富俊.青藏铁路楚玛尔河地区冻土路基地温状况分析[J].路基工程,2011,(03):5-8.
    [89]陈继,宋瑞芳,盛煜,等.柴木铁路片石通风措施的工程效果分析[J].铁道工程学报,2011,(05):40-44+55.
    [90]薛强,王连俊.青藏铁路安多段抛片石路基温度与变形规律分析[J].铁道标准设计,2006,(09):4-6.
    [91]张波.柴达尔-木里铁路多年冻土路基热稳定性评价研究[D].导师:盛煜.:中国科学院.2011
    [92]王爱国.块石路基在青藏铁路建设中的应用技术研究[D].导师:马巍.:中国科学院.2008

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700