猪TLR7和MyD88基因克隆,组织表达谱分析及MyD88酵母表达的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
天然免疫是机体防御微生物病原体入侵第一道防线,机体细胞通过表达不同的模式识别受体(Pattern recognition receptors,PRRs),来识别包括类脂,脂蛋白,蛋白和核酸在内的各种病原相关分子模式(Pathogen-associated molecular patterns,PAMPs),激活机体细胞内信号通路,诱导炎症细胞因子和趋化因子及干扰素的表达,上调细胞表面MHCⅡ类分子和共刺激分子从而参与适应性免疫应答。Toll样受体(Toll-like receptors,TLRs)是天然免疫系统中重要的病原模式识别受体之一,也是典型的Ⅰ类跨膜受体,至今为止,已经在小鼠上发现了13个TLRs家族成员,人上11个。TLRs可以识别包括细菌,病毒,原生动物和真菌在内的多种微生物体的病原体相关分子模式,在机体天然免疫中发挥着重要的作用。
     Toll样受体7(Toll-like receptor 7,TLR7)是TLRs家族的重要成员之一,可以通过识别病毒的单链RNA(ssRNA)诱导机体表达干扰素α(IFN-α)和白细胞介素12(IL-12)等细胞因子,对病毒做出相应的免疫应答。现已证实TLR7可介导多种病毒的免疫应答,包括HIV-1,流感病毒,VSV(泡状口腔炎病毒)和HCV(丙型肝炎病毒)等。髓样分化因子88(Myeloid differentiation primary response protein 88,MyD88)是TLRs和IL-1Rs信号传导途径中重要的接头蛋白。近来研究证实MyD88还参与了IFN-γ诱导细胞响应,并且对IFN-γ诱导的mRNA的稳定性有着重要的作用。
     本研究应用RT-PCR、简并PCR、RACE、巢式PCR技术从猪肠系膜淋巴结组织总RNA中克隆出猪TLR7的cDNA序列。分析结果表明,克隆到的序列全长3 834 bp(GenBank收录号:EF469730),其3 153bp的开放阅读框编码1 050个氨基酸残基的猪Toll样受体7蛋白。推导的氨基酸序列分析显示,在猪TLR7的胞外区,具有多LRR-RI结构域,胞内具有TIR结构域,表现出典型的TLRs家族结构特征,同源性分析结果显示,TLR7在进化过程中具有高度保守性,与牛、狗、马、人、猫和小鼠的氨基酸序列同源性分别为:90.8%、87.4%、87.2%、84.9%、86.7%和78.2%。采用Real time PCR技术对太湖猪TLR7基因在心、脑、肺、肝、脾、肾、骨骼肌、脂肪、肠系膜淋巴结、空肠和派伊氏结11个组织中的表达谱进行了检测分析。结果显示,猪TLR7主要表达于肠系膜淋巴结和派伊氏结等组织。在皮下脂肪、心和骨骼肌组织中表达量相对较少。
     应用RT-PCR技术从猪肠系膜淋巴结组织总RNA中克隆出猪MyD88的cDNA序列,我们从三个不同成年太湖母猪的肠系膜淋巴结组织克隆该序列来验证这个序列。序列分析显示克隆到的猪MyD88 cDNA序列长897bp,包含猪MyD88基因全CDS区。该核酸序列已提交到GenBank(GenBank收录号:EF198416)。猪MyD88基因开放式阅读框编码293个氨基酸残基的蛋白质序列。我们利用在线软件SMART程序对推导的氨基酸序列分析其功能结构域,结果表明,该蛋白具有典型的MyD88结构,N端具有死亡结构域,中间的连接结构域和C末端的TIR结构域。同源分析表明,猪MyD88蛋白氨基酸序列也具有高度的保守性,与人、牛、小鼠和大鼠的同源性分别为88.4%、85.7%、78.8%和78.2%。猪MyD88与牛和人的遗传距离较近,与小鼠相对较远,进化树表明猪先与人和牛聚为一类,然后再与小鼠和大鼠聚类,遗传距离分析也显示了相似的结果。利用Real time PCR技术对太湖猪11个组织的表达谱分析显示猪MyD88基因广泛表达于各组织中,在派伊氏结、肠系膜淋巴结组织中表达量较大,在心脏和骨骼肌组织中表达量相对较少。
     Pichia pastoris是目前应用最广泛的外源蛋白表达系统之一。该表达系统兼有原核表达系统和真核表达系统的优点:①与酿酒酵母相似,操作简单;②不论胞内表达还是分泌表达,表达量高;③能对外源真核基因进行正确翻译和翻译后加工与修饰,包括蛋白质的糖基化,二硫键的形成以及蛋白的水解;④表达试剂盒商业化。本实验我们选用pPIC9K作为表达载体,KM71为宿主菌,在猪MyD88序列两端分别加上EcoRⅠ和NotⅠ两个酶切位点,终止密码子前加上六个组氨酸标签,将序列克隆到T载体,提质粒双酶切后利用T4 DNA连接酶克隆到pPIC9K上,利用SacⅠ酶切成单链后电转化导入酵母KM71中,利用组氨酸缺陷型MD平板和含不同浓度G418的YPD平板进行筛选,得到了不同抗G418水平的阳性转化子,将不同抗性的阳性转化子用甲醇诱导表达,首次成功利用毕赤酵母表达体系表达出猪MyD88蛋白,并应用Bio-Rad蛋白质纯化仪,GE的HisTrap~(TM) HP对含有表达蛋白的上清液利用亲和层析进行纯化,SDS-PAGE电泳显示在分子量为34KDa附近有一条明显的电泳带,与生物信息学分析的猪MyD88表达蛋白分子量(包括His6标签)34..06KDa结果一致。
The innate immune system is the first line of the defensive mechanisms that protect hosts from invading microbial pathogens.Host cells express various pattern recognition receptors(PRRs) that sense diverse pathogen-associated molecular patterns(PAMPs),ranging from lipids, lipoproteins,proteins and nucleic acids.Recognition of PAMPs by PRRs activates intracellular signaling pathways that culminate in the induction of inflammatory cytokines,chemokines, interferons(IFNs) and upregulation of MHC-Ⅱand co-stimulatory molecules to influence the adaptive immune system.Toll-like receptors(TLRs) are one of the important PRRs families and are typeⅠmembrane proteins.To date,13 mouse TLRs and 11 human TLRs have been identified, and each TLR appears to recognize distinct PAMPs derived from various microorganisms, including bacteria,viruses,protozoa and fungi.
     As a member of Toll-like receptor(TLR) family,Toll-like receptor 7(TLR7) can identify the single strand RNA of virus and help the host to take corresponding control of immune response by inducing to some cytokines expression in animal body such as interferon(IFN)-αand interleukin(IL)-12.It was demonstrated that some viruses(Including vesicular stomatitis virus, influenza virus,Human immunodeficiency virus-Ⅰand Hepatitis C Virus etc) stimulate immune responses through TLR7.Myeloid differentiation primary response protein 88(MyD88) is an important adapter protein in the signal transduction pathway mediated by interleukin-1(IL-1) and Toll-like receptors.New evidence shows that MyD88 also participates in interferon-γ-induced cellular responses and has a role to prolong the half-time of some mRNA induced by interferon-γ.
     Here we cloned cDNA of TLR7 gene from total RNA of mesenteric lymph nodes(MLN) in Neijiang pig by RT-PCR,and RACE(rapid amplification of cDNA ends).Sequence analysis indicated that the porcine TLR7 cDNA cloned was 3834 nt in length(GenBank accession number EF469730) and the open reading frame encodes a deduced protein with 1050 amino acids residues. The analysis of deduced amino acids sequence indicated that TLR7 is a typical typeⅠtransmembrane protein with multi-LRR-RI ectodomains and a TIR cytoplasmic domains,the common structural features of TLRs.The comparison of the deduced amino acids sequence of porcine TLR7 with those of cattle,dog,human,cat and mouse showed that the amino acids homology were 90.8%,87.4%,84.9%,86.7%and 78.2%respectively and the TLR7 is highly conserved among the different mammal species.Using real-time quantitative PCR,we detected TLR7 mRNA expression in a panel of porcine tissues(heart,lung,spleen,liver,kidney,skeletal muscle,brain,jejunum,Peyer's patches and mesenteric lymph nodes) with the greatest levels of expression observed in mesenterie lymph nodes(MLN),and Peyer's patches.
     Pocine MyD88 cDNA was cloned using mRNA isolated from adult swine mesenteric lymph nodes(MLN).The sequences were confirmed in three mesenteric lymph nodes from various adult.Nucleotide sequencing of pocine MyD88 revealed a 897bp cDNA sequence.Including the pocine MyD88 structural gene.The nucleotide sequence of pocine MyD88 has been submitted to the GenBank nucleotide databases(GenBank accession number EF198416).A predicted open reading flame(ORF) lay between bp 45 and 926 and encoded a 293aa protein.To determine the structural domains in pocine MyD88.the amino acid sequence was analyzed using the SMART program.The deduced amino acid sequence of pocine MyD88 possesses a typical MyD88 domain including an N-terminal death domain.as well as interm ediate and C-terminal TIR domains.Two other regions were intrinsically disordered.The alignment of amino acid sequences for MyD88 showed that the pocine MyD88 sequence is highly conserved among sequences from other species.The amino acid sequence of the pocine MyD88 is 88.4%、85.7%、78.8%and 78.2% identical to that of human,cattle rat and of mouse MyD88,respectively.These results indicated that pocine MyD88 is more similar to cattle and human than to mouse MyD88 at aminoacid levels.Phylogenetic analysis showed that pocine MyD88 belonged to the group containing cattle MyD88 and human MyD88.In addition,pocine MyD88 was more closely related to human MyD88 and cattle MyD88 than to mouse MyD88 in terms of identity.Real-time PCR analysis shows that the MyD88 gene is expressed in various tissues,but at different levels.The expression levels of this gene are higher in Peyer's patches and mesenteric lymph nodes(MLN).The expression levels in musle and heart are very lower and aren't almost be detected.
     Pichia pastoris is one of the most used expression systems for the high level expression of heterologous proteins.This expression system has the advantages of Prokaryotic systems expression and Eukaryotic expression systems.①the simplicity of techniques needed for the molecular genetic manipulation of P.pastoris and their similarity to those of Saccharomyces cerevisiae,one of the most well-characterized experimental systems in modern biology;②the ability of P.pastoris to produce foreign proteins at high levels,either intracellularly or extracellularly;③the capability of performing many eukaryotic posttranslational modifications, such as glycosylation,disulfide bond formation and proteolytic processing;and④the availability of the expression system as a commercially available kit.In our studies,we used pPIC9K as expression vector and KM71 as host strains to express porcine MyD88 protein.After the porcine MyD88 gene with EcoRⅠand NotⅠrestriction Sites and His tag was cloned to pMD18-T vector, pMD18-T-MyD88 and pPIC9K were cutted by EcoRⅠand NotⅠand the cutted fragments were ligated by T4 DNA ligase.The porcine MyD88 gene expression vector,pPIC9K-MyD88,was constructed successfully after sequencing.The expression vector pPIC9K-MyD88 used for transformation,was linearized by SacⅠ.Pichia pastoris KM71 strains were made competent and transformed with SalⅠ-linearized pP9K-MyD88 by electroporation.After selection by MD plates, YPD plates containing G418,some positive colonies which exhibited different anti-G418-levels were obtained.We selected different anti-G418-levels positive clones and induced them to expression porcine MyD88 protein by methanol.The culture supernatant contained the target protein was purifed by affinity chromatagraphy used HisTrap~(TM) HP and BioLogic DuoFlow. Purified MyD88 expression products were analyzed by SDS-PAGE and found a major protein band at a molecular weight of 34 kDa,which is consistent with the molecular weight of pig MyD88.The porcine MyD88 was expressed successfully.
引文
[1]吴宏梅,王立贤.NRAMP1基因研究进展及其在抗病育种中的应用[J].中国畜牧兽医.2005,32(4):26-28.
    [2]周光炎等.免疫学原理,上海科学技术文献出版社.2000,8.
    [3]刘靖华,赵克森.TLR与天然免疫反应[J].免疫学杂志.2001,17(3):17-19.
    [4]Medzhitov R,Preston-Hurlburt P,Janeway CA Jr.A human homologue of the Drosophila Toll protein signals activation of adaptive immunity[J].Nature.1997,388(6640):394-397.
    [5]郝轶群.病原体相关分子模式-种倍受关注的天然免疫活化剂.国外医学免疫学分册.2003,26(5):243-246。
    [6]Hashimoto C,Hudson KL,Anderson KV.The Toll gene of Drosophila,required for dorsal-ventral embryonic polarity,appears to encode a transmembrane protein[J].Cell.1988,52(2):269-279.
    [7]Sandor F,Buc M.Toll-like receptors.I.Structure,function and their ligands.[J].Folia Biol (Praha).2005,51(5):148-157.
    [8]Matsumoto M,Kikkawa S,Kohase M,et al.Establishment of a monoclonal antibody against human Toll-like receptor 3 that blocks double-stranded RNA-mediated signaling[J].Biochem Biophys Res Commun.2002,293(5):1364-1369.
    [9]Heumann D,Roger T.Initial responses to endotoxins and Gram-negative bacteria[J].Clin Chim Acta,2002,323(1-2):59-72.
    [10]Hemmi H,Kaisho T,Takeuchi O.Small anti-viral compounds activate immune cells via TLR7-MyD88-dependent signaling pathway[J].Nat Immunol.2002,3(2):196-200.
    [11]Heil F,Hemmi H,Hochrein H,et al.Species-Specific Recognition of Single-Stranded RNA via Toll-like Receptor 7 and 8[J].Science.2004,303(5663):1526-1529.
    [12]Hemmi H,Takeuchi O,Kawai T,et al.A Toll-like receptor recognizes bacterial DNA[J].Nature.2000.408(6813):740-745.
    [13]金伯泉.固有免疫中模式识别受体及信号传导-当代免疫学中最伟大的发现之一[J].细胞与分子免疫学杂志,2006,22(2):1-3.
    [14]Muzio M,Bosisio D,Polentarutti N,et al.Differential expression and regulation of toll-like receptors(TLR)in human leukocytes:selective expression of TLR3 in dendritic cells[J].J Immunol.2000,164(11):5998-6004.
    [15]Chen ZJ.Ubiquitin signalling in the NF-kappaB pathway[J].Nat Cell Biol.2005,7(8):758-765.
    [16]Terzic J,Marinovic-Terzic I,et al.Ubiquitin signals in the NF-kappaB pathway[J].Biochem Soc Trans.2007,35(Pt 5):942-945.
    [17]Sharma S,tenOever BR,Grandvaux N,et al.Triggering the interferon antiviral response through an IKK-related pathway[J].Science.2003,300(5622):1148-1151.
    [18]Fitzgerald KA,McWhirter SM,Faia KL,et al.IKKepsilon and TBK1 are essential components of the IRF3 signaling pathway[J].Nat Immunol.2003,4(5):491-496.
    [19]McWhirter SM,Fitzgerald KA,Rosains J,et al.IFN-regulatory factor 3-dependent gene expression is defective in Tbkl-deficient mouse embryonic fibroblasts[J].Proc Natl Acad Sci USA.2004,101(1):233-238.
    [20]Hemmi H,Takeuchi O,Sato S,et al.The roles of two IkappaB kinase-related kinases in lipopolysaccharide and double stranded RNA signaling and viral infection[J].J Exp Med.2004,199(12):1641 -1650.
    [21]Perry AK,Chow EK,Goodnough JB,et al.Differential requirement for TANK-binding kinase-1 in type I interferon responses to Toll-like receptor activation and viral infection[J].J Exp Med.2004,199(12):1651 - 1658.
    [22]Sato S,Sugiyama M,Yamamoto M,et al.Toll/IL-1 receptor domain-containing adaptor inducing IFN-beta(TRIF) associates with TNF receptor-associated factor 6 and TANK-binding kinase 1,and activates two distinct transcription factors,NF-kappa B and IFN-regulatory factor-3,in the Toll-like receptor signaling[J].J Immunol.2003,171(8):4304-4310.
    [23]Meylan E,Burns K,Hofmann K,et al.RIP1 is an essential mediator of Toll-like receptor 3-induced NF-kappa B activation[J].Nat Immunol.2004,5(5):503-507.
    [24]Bums K,Janssens S,Brissoni B,et al.Inhibition of interleukin 1 receptor/Toll-like receptor signaling through the alternatively spliced,short form of MyD88 is due to its failure to recruit IRAK-4[J].J Exp Med.2003,197(2):263-268.
    [25]Rao N,Nguyen S,Ngo K,et al.A novel splice variant of interleukin-1 receptor (IL-1R)-associated kinase 1 plays a negative regulatory role in Toll/IL-1R-induced inflammatory signaling[J].Mol Cell Biol.2005,25(15):6521-6532.
    [26]Takeda K,Akira S.TLR signaling pathways[J].Semin Immumol.2004,16(1):3-9.
    [27]Takeshita F,Ishii KJ,Kobiyama K,et al.TRAF4 acts as a silencer in TLR-mediated signaling through the association with TRAF6 and TRIF[J].Eur.J.Immunol.2005,35(8):2477-2485.
    [28]Arbour NC,Lorenz E,Sehutte BC,et al.TLR4 mutations are associated with endotoxin hyporesponsiveness in humans[J].Nat Genet.2000,25(2):187-191.
    [29]Hertz CJ,Kiertscher SM,Godowski PJ,et al.Microbial lipopeptides stimulate dendritic cell maturation via Toll-like receptor 2[J].J Immunol.2001,166(4):2444-2450.
    [30]Visintin A,Mazzoni A,Spitzer JH,et al.Regulation of Toll-ike receptors in human monocytes and dendritic cells[J].J Immunol.2001,166(1):249-255.
    [31]Partida-Sánchez S,Randall TD,Lund FE.Innate immunity is regulated by CD38,an ecto-enzyme with ADP-ribosyl cyelase activity[J].Microbes Infect.2003,5(1):49-58.
    [32]Kurt-Jones EA,Popova L,Kwinn L,et al.Pattern recognition receptors TLR4 and CD14mediate response to respiratory syneytial virus[J].Nat Immunol.2000,1(5):398-401.
    [33]Bowie A,Kiss-Toth E,Symons JA,et al.A46R and A52R from vaccinia virus are antagonists of host IL- 1 and toll-like receptor signaling[J].Proc Natl Acad Sci U S A.2000,97(18):10162-10167.
    [34] Means TK, Wang S, Lien E, et al. Human toll-like receptors mediate cellular activation by Mycobacterium tuberculosis[J]. J Imnlunol. 1999, 163 (7): 3920-3927.
    
    [35] Jarrossay D, Napolitani G, Colonna M, et al. Specialization and complementarity in microbial molecule recognition by human myeloid and plasmacytoid dendritic cells[J]. Eur J Immunol. 2001, 31(11): 3388-3393.
    
    [36] Kadowaki N , Antonenko S , Liu YJ. Distinct CpG DNA and polyinosinic-polycytidylic acid double-stranded RNA, respectively, stimulate CD11c- type 2 dendritic cell precursors and CD11c+ dendritic cells to produce type I IFN[J]. J Immunol. 2001,166 (4): 2291-2995.
    
    [37] Krug A, Rothenfusser S , Hornung V, et al. Identification of CpG oligonucleotide sequences with high induction of IFN-alpha/beta in plasmacytoid dendritic cells[J]. Eur J Immunol. 2001, 31(1): 2154-2163.
    
    [38] Bauer M, Redecke V, Ellwart JW, et al. Bacterial CpG-DNA triggers activation and maturation of human CD11c-, CD123+ dendritic cells[J]. J Immunol. 2001,166(8): 5000-5009.
    
    [39] Asehnoune K, Strassheim D, Mitra S, et al. Involvement of PKCalpha/beta in TLR4 and TLR2 dependent activation of NF-kappaB[J]. Cell Signal. 2005,17(3): 385-394.
    
    [40] Jankovic D, Kullberg MC, Hieny S, et al. In the absence of IL-12, CD4(+) T cell responses to intracellular pathogens fail to default to a Th2 pattern and are host protective in an IL-10(-/-) setting[J]. Immunity. 2002, 16(3): 429-439.
    
    [41] Takeuchi O, Sato S, Horiuchi T, et al. Cutting edge role of Toll like receptor 1 in mediating immune response to microbial lipoproteins[J]. J Immunol. 2002,169(1): 10-14.
    
    [42] Spitzer JH, Visintin A, Mazzoni A, et al. Toll-like receptor 1 inhibits Toll-like receptor 4 signaling in endothelial cells[J]. Eur J Immunol. 2002, 32(4): 1182-1187.
    
    [43] Wyllie DH, Kiss-Toth E, Visintin A, et al. Evidence for an accessory protein function for Toll-like receptor 1 in anti-bacterial responses[J]. J Immunol. 2000, 165(12): 7125-7132.
    
    [44] Du X, Poltorak A, Wei Y, et al. Three novel mammalian toll-like receptors: gene structure, expression, and evolution[J]. Eur Cytokine Netw. 2000, 11(3): 362-371.
    
    [45] Crozat K, Beutler B. TLR7: A new sensor of viral infection[J]. Proc Natl Acad Sci USA. 2004, 101(18): 6835-6836.
    [46] Heil F, Ahmad-Nejad P, Hemmi H, et al. The Toll-like receptor 7 (TLR7)-specific stimulus loxoribine uncovers a strong relationship within the TLR7, 8 and 9 subfamily[J]. Eur. J. Immunol. 2003, 33(11): 2987-2997.
    [47] Jurk M, Heil F, Vollmer J, et al. Human TLR7 or TLR8 independently confer responsiveness to the antiviral compound R-848[J]. Nat Immunol. 2002,3(6): 499.
    [48] Hemmi H, Kaisho T, Takeuchi O, et al.Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway[J]. Nat.Immunol. 2002, 3(2): 196-200.
    [49] Edwards AD, Diebold SS, Slack EM, et al. Toll-like receptor expression in murine DC subsets: lack of TLR7 expression by CD8 alpha+ DC correlates with unresponsiveness to imidazoquinolines[J]. Eur J Immunol. 2003, 33(4): 827-833.
    [50] Hornung V, Rothenfusser S, Britsch S, et al. Quantitative expression of toll-like receptor 1-10 mRNA in cellular subsets of human peripheral blood mononuclear cells and sensitivity to CpG oligodeoxynucleotides[J].The Journal of Immunology.2002,168(9):4531-4537.
    [51]Kadowaki N,Ho S,Antonenko S,et al.Subsets of human dendritic cell precursors express different toll-like receptors and respond to different microbial antigens[J].J Exp Med.2001,194(6):863-869.
    [52]Colonna M,Trinchieri G and Liu YJ.Plasmacytoid dendritic cells in immunity[J].Nat.Immunol.2004,5(12):1219-1226.
    [53]Liu YJ.IPC:professional type 1 interferon-producing cells and plasmacytoid dendritic cell precursors[J].Annu.Rev.Immunol.2005,23:275-306.
    [54]Honda K,Yanai H,Negishi H,et al.IRF-7 is themaster regulator of type-I interferon-dependent immune responses[J].Nature.2005,434(7034):772-777.
    [55]Kawai T,Sato S,Ishii KJ,et al.Interferon-alpha induction through Toll-like receptors involves a direct interaction of IRF7 with MyD88 and TRAF6[J].Nat Immunol.2004,5(10):1061-1068.
    [56]Honda K,Yanai H,Mizutani T,et al.Role ofa transductional processor complex involving MyD88 and IRF-7 in Toll-like receptor signaling[J].Proc Natl Acad Sci U S A.2004,101(43):15416-15421.
    [57]Hemmi H,Kaisho T,Takeda K,et al.The roles of Toll-like receptor 9,MyD88,and DNA-dependent protein kinase catalytic subunit in the effects of two distinct CpG DNAs on dendritic cell subsets[J].J Immunol.2003,170(6):3059-3064
    [58]Coccia EM,Severa M,Giacomini E,et al.Viral infection and Toll-like receptor agonists induce a differential expression of type I and lambda interferons in human plasmacytoid and monocyte-derived dendritic cells[J].Eur J Immunol.2004,34(3):796-805.
    [59]Dai J,Megiugorac NJ,Amrute SB,et al.Regulation of IFN regulatory factor-7 and IFN-alpha production by enveloped virus and lipopolysaccharide in human plasmacytoid dendritic cells[J].J Immunol.2004,173(3):1535-1548.
    [60]Uematsu S,Sato S,Yamamoto M,et al.Interleukin-1 receptor-associated kinase-1 plays an essential role for Toll-like receptor(TLR)7- and TLR9-mediated interferon-{alpha}induction[J].J Exp Med.2005,201(6):915- 923.
    [61]Takaoka A,Yanai H,Kondo S,et al.Integral role of IRF-5 in the gene induction programme activated by Toll-like receptors[J].Nature.2005,434(7030):243-249.
    [62]Schoenemeyer A,Barnes BJ,Mancl ME,et al.The interferon regulatory factor IRF5 is a central mediator of TLR7 signaling[J].J Biol Chem.2005,280(17):17005-17012.
    [63]Lund JM,Alexopoulou L,Sato A,et al.Recognition of single-stranded RNA viruses by Toll-like receptor 7[J].Proc Nail Acad Sci U S A.2004,101(15):5598-5603.
    [64]Diebold SS,Kaisho T,Hemmi H,et al.Innate antiviral respones by means of TLRT-mediated recognition of single-stranded RNA[J].Science.2004,303(5663):1529-1531.
    [65]Lee J,Wu CC,Lee K J,et.al.Activation of anti-hepatitis C virus responses via Toll-like receptor 7[J].Proc Natl Acad Sci U S A.2006,103(6):1828-1833.
    [66]Schott E,Witt H,Neumann K,et al.A Toll-like receptor 7 single nucleotide polymorphism protects from advanced inflammation and fibrosis in male patients with chronic HCV-infection[J]. J Hepatol. 2007,47(2): 203-211
    [67] Kohut M, William W, McCann DA, et al. Aging is associated with impaired Type I interferon and TLR7 expression in response to influenza infection[J]. Brain, Behavior, and Immunity. 2006,20(3): 39.
    [68] Croker JA, Kimberly RP. SLE: challenges and candidates in human disease[J]. Trends Immunol. 2005. 26(11), 580-586
    [69] Subramanian S, Tus K, Li QZ, et al. A Tlr7 translation accelerates systemic autoimmunity in murine lupus[J]. Proc Natl Acad Sci USA, 2006,103(26): 9970-9975.
    [70] Deane JA, Pisitkun P, Barrett RS, et al. Control of toll-like receptor 7 expression is essential to restrict autoimmunity and dendritic cell proliferation[J]. Immunity. 2007, 27(5): 801-810.
    [71] Lord KA, Hoffman-Liebermann B, Liebermann DA. Complexity of the immediate early response of myeloid cells to terminal differentiation and growth arrest includes ICAM-1, Jun-B and histone variants[J]. Oncogene. 1990, 5(3): 387-396.
    [72] Lord KA, Hoffman-Liebermann B, Liebermann DA. Nucleotide sequence and expression of a cDNA encoding MyD88, a novel myeloid differentiation primary response gene induced by IL6[J]. Oncogene. 1990, 5(7): 1095-1097.
    [73] Lord KA, Abdollahi A, Hoffman-Liebermann B, et al. Dissection of the immediate early response of myeloid leukemia cells to terminal differentiation and growth inhibitory stimuli[J]. Cell Growth Differ. 1990,1(12): 637-645.
    [74] Hardiman G, Rock FL, Balasubramanian S, et al. Molecular characterization and modular analysis of human MyD88[J]. Oncogene. 1996,13(11): 2467-2475.
    [75] Bonnert TP, Garka KE, Parnet P, et al. The cloning and characterization of human MyD88: a member of an IL-1 receptor related family[J]. FEBS Lett. 1997,402(1): 81-84.
    [76] Janssens S, Beyaert R. A universal role for MyD88 in TLR/IL-1R-mediated signaling[J]. Trends Biochem Sci. 2002 Sep;27(9):474-482
    [77] Harroch S, Gothelf Y, Revel M, et al. 5' upstream sequences of MyD88, an IL-6 primary response gene in Ml cells: detection of functional IRF-1 and Stat factors binding sites[J]. Nucleic Acids Res. 1995, 23(17):3539-3546
    [78] Xu, Y. Xu Y, Tao X, Shen B, et al. Structural basis for signal transduction by the toll/interleukin-1 receptor domains. Nature. 2000 , 408(6808): 111 - 115
    [79] Martinon F, Hofmann K, Tschopp J. The pyrin domain: a possible member of the death domain-fold familyimplicated in apoptosis and inflammation. Curr Biol. 2001, 11(4): R118-R220
    [80] Yamamoto M, Sato S, Hemmi H, et al. Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway[J]. Science. 2003. 301(5633): 640-643.
    [81] Yamamoto M, Takeda K, Akira S. TIR domain-containing adaptors define the specificity of TLR signaling[J]. Mol Immunol. 2004. 40(12): 861-868.
    [82] Ouyang X, Negishi H, Takeda R, et al. Cooperation between MyD88 and TRIF pathways in TLR synergy via IRF5 activation[J]. Biochem Biophys Res Commun. 2007, 354(4):1045-1051.
    [83]Muzio M,Ni J,Feng P,et al.IRAK(Pelle) familymembers IRAK-2 and MyD88 as proximal mediators of IL-1 signaling[J].Science.1997,278(5343):1612"- 1615
    [84]Ghosh TK,Mickelson D J,Solberg JC,et al.TLR-TLR cross talk in human PBMC resulting in synergistic and antagonistic regulation of type-1 and interferons,IL-12 and TNF- α[J].Int Immunopharmacol.2007 Aug;7(8):1111 - 1121
    [85]Boraschi D,Tagliabue A.The interleukin-1 receptor family[J].Vitam Horm.2006,74:229-254.
    [86]Muzio M,Ni J,Feng P,et al.IRAK(Pelle) family member IRAK-2 and MyD88 as proximal mediators of IL- 1 signaling[J].Science.1997,278(5343):1612-1615
    [87]Adachi O,Kawai T,Takeda K,et al.Targeted disruption of the MyD88 gene results in loss of IL-1- and IL-18-mediated function[J].Immunity.1998,9(1):143-150
    [88]Shi S,Nathan C,Schnappinger D,Drenkow J,Fuortes M,Block E,et al.MyD88 primes macrophages for full-scale activation by interferon-gamma yet mediates few responses to Mycobacterium tuberculosis[J].J Exp Med.2003,198(7):987-997.
    [89]Sun D,Ding A.MyD88-mediated stabilization of interferon-gamma-induced cytokine and chemokine mRNA[J].Nat Immunol.2006,7(4):375-381
    [90]Schroder K,Hertzog PJ,Ravasi T,et al.Interferon-gamma:an overview of signals,mechanisms and functions[J].J Leukoc Biol.2004,75(2):163-189.
    [91]Han J.MyD88 beyond Toll[J].Nat Immunol.2006,7(4):370-371
    [92]Reiling N,Ehlers S,Holscher C.MyDths and un-TOLLed truths:Sensor,instructive and effector immunity to tuberculosis.Immunol Lett.2008,116(1):15-23.
    [93]Zeisel MB,Druet VA,Sibilia Jet al.Cross talk between MyD88 and focal adhesion kinase pathways[J].J Immunol.2005,174(11):7393-7397.
    [94]Semaan N,Alsaleh G,Gottenberg JE,et al.Etk/BMX,a Btk Family Tyrosine Kinase,and Mal Contribute to the Cross-Talk between MyD88 and FAK Pathways[J].J Immunol.2008,180(5):3485-3491
    [95]McKean DJ.,Bell M,Huntoon C,et al.1L-1 receptor and TCR signals synergize to activate NF-KB-mediated gene transcription[J].International Immunology.1995,7(1):9-20.
    [96]de Veer MJ,Curtis JM,Baldwin TM,et al.MyD88 is essential for clearance of Leishmania major:possible role for lipophosphoglycan and Toll-like receptor 2 signaling[J].Eur J Immunol.2003,33(10):2822-2831
    [97]Liu N,Montgomery RR,Barthold SW,et al.Myeleid differentiation antigen 88 deficiency impairs pathogen clearance but does not alter inflammation in Borrelia burgdorferi-infected mice[j].Infect Immun.2004,72(6):3195-3203
    [98]Yates RM,Russell DG.Phagosome maturation proceeds independently of stimulation of toll-like receptors 2 and 4[J].Immunity.2005,23(4):409-417
    [99]Nagarajan UM,Ojcius DM,Stahl L,et al.Chlamydia trachomatis induces expression of IFN-gamma-inducible protein 10 and IFN-beta independent of TLR2 and TLR4,but largely dependent on MyD88[J].J Immunol.2005.175(1):450-460
    [100]Yah SR,Qing G,Byers DM,et al.Role of MyD88 in diminished tumor necrosis factor alpha production by newborn mononuclear cells in response to lipopolysaccharide[J].Infect Immun.2004,72(3):1223-1229.
    [101]Weighardt H,Mages J,Jusek G,et al.Organ-specific role of MyD88 for gene regulation during polymicrobial peritonitis[J].Infect Immun.2006,74(6):3618-3632
    [102]Naugler WE,Sakural T,Kim S,et al.Gender disparity in liver cancer due to sex differences in MyD88-dependent IL-6 production[J].Science.2007,317(5834):121 -124
    [103]Lawrence T,Hagemann T,Balkwill F.Sex,Cytokines,and Cancer[J].Science.2007,317(5834):51-52
    [104]Prieto J.Inflammation,HCC and sex:IL-6 in the centre of the triangle[J].J Hepatol.2008,48(2):380-381
    [105]李跃华,哈团柱,陈琪等.MyD88依赖性核因子-KB信号途径在心肌肥大发生过程中的调控作用[J].中华医学杂志.2005,85(4):267-272
    [106]冯 艳 王 芳 陈襄文等.MyD88缺去突变基因转染降低病原茵感染的人呼吸道上皮细胞IL-8的分泌[J].生物医学工程学杂志.2006,23(5):1092-1095.
    [107]Bjorkbacka H,Kunjathoor VV,Moore K J,et al.Reduced atherosclemsis in MyD88-null mice links elevated serum cholesterol levels to activation of innate immunity signaling pathways[J].Nat Med.2004,10(4):416-421.
    [108]Griesenbach U,Scheid P,Hillery E,et al.Anti-inflammatory gene therapy directed at the airway epithelium[J].Gene Ther.2000,7(4):306-313
    [109]Basilia Z,Maeve S,Hector Rw.Nuclear factor-kappaB as a therapeutic target in critical care medicine[J].Crit Care Med.2003,31(1Suppl):S105
    [110]Sears IB,O'Connor J,Rossanese OW,et al.A versatile set of vectors for constitutive and regulated gene expression in Pichia pastoris[J].Yeast.1998,14(8):783-790
    [111]Cregg JM,Ceregino JL,Shi J,et al.Recombinant protein expression in Pichia pastoris[J].Molecular Biotechnology.2000,16(1):23-52.
    [112]Sreekfishna K,Brankamp RG,Kropp KE,et al.Strategies for optimal synthesis and secretion of heterologous proteins in the methylotrophic yeast Pichia pastoris[J].Gene.1997,190(1):55-62.
    [113]Cregg JM,Higgins DR.Production of foreign proteins in the yeast Pichia pastoris[J].CAN.J.BOT.1995,73(1):891-897.
    [114]Thiry M,Cingolani D.Optimizing scale-up fermentation processes[J].Trends Biotechnol.2002,20(3):103-105
    [115]Macauley-Patrick S,Fazenda ML,McNeil B,et al.Heterologous protein production using the Pichia pastoris expression system[J].Yeast.2005,22(4):249-270
    [116]Rogelj B,Strukelj B,Bosch D,et al.Expression,purification,and characterization of equistatin in Pichia pastoris[J].Protein Expr Pudf.2000,19(3):329-334.
    [117]李志龙,张富春.Pichia pastoris表达系统研究进展[J].生物技术通报.2006,6:9-13
    [118]王清路,李俏俏,薛金艳等.Pichia pastoris表达系统的特点及应用[J].生物技术通讯.2006,17(4):640-643
    [119]赵翔,霍克克,李育阳.毕赤酵母的密码子用法分析[J].生物工程学报.2000,16(3):308-311.
    [120]Sreekrishna K,Barr K A,Hoard S A,et al.Expression of human serum albumin in Pichia pastods[J].Yeast.1990,6(special issue):447-453.
    [121]Cregg JM,Tschopp JF,Stillman C,et al.High-level expression and efficient assembly of hepatitis B surface antigen in the methylotrophic yeast Pichia pastoris[J].Bio/Teclhnology,1987,5(4):479-485.
    [122]Scorer CA,Clare JJ,McCombie WR,el al.Rapid selection using G418 of high copy number transformants of Pichia pastoris for high-level foreign gene expression[J].Biotechnology(N Y).1994,12(2):181-184.:
    [123]Higgins DR,Busser K,Comiskey J,el al.Small vectors for expression based on dominant drug resistance with direct multicopy selection[J].Methods Mol Biol.1998;103:41-53.
    [124]Linder S,Schliwa M,Kube-Granderath E.Direct PCR screening of Pichia pastoris clones[J].Biotechniques.1996,20(6):980-982
    [125]Lopes TS,Hakkaart GJ,Koerts BL,el al.Mechanism of high-copy-number integration of pMIRY-type vectors into the ribosomal DNA of Saccharomyces cerevisiae[J].Gene.1991,105(1):83-90
    [126]Li Z,Xiong F,Lin Q,et al.Low-temperature increases the yield of biologically active herring antifreeze protein in Pichia pastofis[J].Protein Expr Purif.2001,21(3):438-445
    [127]Hong F,Meinander NQ,Jtnsson LJ.Fermentation strategies for improved beterologous expression of laccase in Pichia pastofis[J].Biotechnol Bioeng.2002,79(4):438-449
    [128]Whittaker MM,Whittaker JW.Expression of recombinant galactose oxidase by Pichia pastofis[J].Protein Expr Purif.2000,20(1):105-111.
    [129]熊爱生,彭日荷.信号肽序列对毕赤酵母表达外源蛋白质的影响[J].生物化学与生物物理学报.2003,35(2):154-160
    [130]韦宇拓,甘凤琼,苏华波等.Pichia pastoris新型分泌表达载体构建[J].广西农业生物科学.2003,22(1):37-40
    [131]魏凡华,曹瑞兵,吴 润等.Piehia pastoris表达系统研究进展[J].农业科学研究.2007,28(1):68-71
    [132]Gay N J,Keith F J.Drosophila Toll and IL-1 receptor[J].Nature,1991,351(6325):335-356.
    [133]Dunne A,o'Neill L A J.The interleukin- 1 receptor/Toll-like receptor superfamily:signal transduction during inflammation and host defense[J].Science,2003,2003(171):re3.
    [134]Tobian AA,Potter NS,Ramachandra L,et al.Alternate class I MHC antigen processing is inhibited by Toll-like receptor signaling pathogen-associated molecular patterns:Mycobacterium tuberculosis 19-kDa lipoprotein,CpG DNA,and lipopolysaccharide[J].The Journal of Immunology.2003,171(3):1413-1422.
    [135]Beignon A S,McKenna K,Skobeme Met al.Endocytosis of HIV-1 activates plasmacytoid dendritic cells via Toll-like receptor-viral RNA interactions[J].The Journal of Clinical Investigation,2005,115(11):3265-3275
    [136]Kenneth JL,Thomas DS.Analysis of relative gene expression data using real-time quantitative PCR and the 2-AACT method[J].Methods.2001,25:402-408.
    [137]张驰宇,徐顺高,黄新祥.一种新颖简便的荧光实时RT-PCR相对定量方法的建立[J].生物化学与生物物理研究进展.2005,32(9):883-887.
    [138]Pfaffl MW.A new mathematical model for relative quantification in real-time RT-PCR[J].Nucleic Acids Res.2001,29(9):2002-2007.
    [139]John Quackenbush,Jennifer Cho,Daniel Lee,et al.The TIGR Gene Indices:analysis of gene transcript sequences in highly sampled eukaryotic species[J].Nucleic Acids Res.2001.29:159-164.
    [140]李铁石,常智杰,傅新元等.基于Internet网生物信息资源特定基因同源新基因克隆策略[J].生命科学.2002,14(4):235-237.
    [141]王洪振,周晓馥,宋朝霞等.简并PCR技术及其在基因克隆中的应用[J].遗传.2003,25(2):201-204.
    [142]王少峡,陈丽媛,张竟秋等.利用生物信息学资源设计简并引物[J].天津师范大学学报(自然科学版).2006,22(2):26-29.
    [143]Fwhman MA,Dush MK,Martin GP.Rapid production of full-length cDNAs from rare transcripts:Amplification using a single gone-specific oligonucleotide[J].Proc Natl Acad Sci USA,1988,85:8998-9002.
    [144]Loh EY,Ellitl JF,Cwila S,et al.Polymerase chain reaction witlI single-sided specificity:analysis ofT cell receptor chain[J].Sscience,1989,243:217-220.
    [145]Ohara O,Dorit RL,Gilbert W.One-sided Polymerase chain reaction:The Amplification of cDNA[J].Proc Natl Acad Sci USA.1989,86:5673-5677.
    [146]杨少华,王长法,高运东等.利用巢式PCR快速鉴定牛传染性鼻气管炎[J].家畜生态学报.2007,28(4):81-83.
    [147]郑和平,欧志英,胡玉山等.梅毒螺旋体的巢式PCR检测与基因分型[J].中华皮肤科杂志.2005,38(9):546-548.
    [148]吴月平,罗文明,陈育凤等.应用磁珠法和巢式PCR检测血清HIV1RNA的临床研究[J].现代检验医学杂志.2007,22(3):129-129.
    [149]于琦,牛昀,丁秀敏等.乳腺肿瘤克隆性检测方法的比较[J].肿瘤防治研究.2007,34(5):390-391.
    [150]Haas NB.,Grabowski JM.,North J et al..Subfamilies of CR1 non-LTR retrotransposons have different 5'UTR sequences but are othersise conserved[J].Gene.2001,265:175-183.
    [151]Slack JL,Schooley K,Bonnert TP,et al.Identification of two major sites in the type I interleukin-1 receptor cytoplasmic region responsible for couping to proinflammatory signaling pathways[J].J.Biol.Chem.2000.275:4670-4680.
    [152]Kaltenboeck B,Wang C.Advances in real-time PCR:application to clinical laboratory diagnostics[J].Adv.Clin.Chem.2005,40:219-259.
    [153]Jeanine SM,James CR,Frances MVD.Microarray validation:factors influencing correlation between oligonueleotide microarrays and real-time PCR[J].Biol.Proced.Oline.2006,8(1):175-193.
    [154]Nishimura M,Nalto S.Tissue-specific mRNA expression profiles of human toll-like receptors and related genes[J].Biol Pharm Bull.2005,28(5):886-92.
    [155]Zarember KA,Godowski PJ.Tissue expression of human Toll-like receptors and differential regulation of Toll-like receptor mRNAs in leukocytes in response to microbes,their products,and cytokines[J].J Immunol.2002,168(2):554-61.
    [156]Okui Y,Kano R,Maruyama H,et al.Cloning of canine Toll-like receptor 7 gene and its expression in dog tissues[J].Vet Immunol Immunopathol.2008,121(1-2):156-60.
    [157]MacDonald MR,Xia J,Smith AL,et al.The duck toll like receptor 7:genomic organization,expression and function[J].Mol Immunol.2008,45(7):2055-61.
    [158]刘冬妍,刘沛.肠道免疫防御[J].国外医学:流行病学.传染病学分册.2005年,32(3):184-187.
    [159]Menzies M,Ingham A.Identification and expression of Toll-like receptors 1 - 10 in selected bovine and ovine tissues[J].Vet Immunol Immunopathol.2006,109(1-2):23-30.
    [160]Chuang TH,Ulevitch RJ.Cloning and characterization of a sub-family of human toll-like receptors:hTLR7,hTLR8 and hTLR9[J].Eur Cytokine Netw.2000,11(3):372-378.
    [161]Paul MS,Li WH.The codon adaptation index:a measure of directional synonymous codon usage bias,and its potential applications.Nucleic Acids Research.1987,15(3):1281 ~ 1295.
    [162]Lukasz Huminiecki and Roy Bicknell.In Silico Cloning of Novel Endothelial-Specific Genes[J].Genome Res.,Nov 2000;10:1796
    [163]Hardiman G,Jenkins NA,Copeland NG,et al.Genetic structure and chromosomal mapping of MyD88[J].Genomics.1997,45(2):332-339.
    [164]Wheaton S,Lambourne MD,Sarson AJ,et al.Molecular cloning and expression analysis of chicken MyD88 and TRIF genes[J].DNA Seq.2007,18(6):480-486
    [165]Wu J,Lu M,Meng Z,et al.Toll-like receptor-mediated control of HBV replication by nonparenchymal liver cells in mice[j].Hepatology.2007,46(6):1769-1778.
    [166]Isogawa M,Robek MD,Furulchi Y,et al.Toll-like receptor signaling inhibits hepatitis B virus replication in vivo[J].J Virol.2005,79(11):7269-7272.
    [167]Xu N,Yao HP,Sun Z,et al.Toll-like receptor 7 and 9 expression in peripheral blood mononuclear cells from patients with chronic hepatitis B and related hepatocellular carcinoma[J].Acta Pharmacol Sin.2008,29(2):239-244.
    [168]Sbehata MA,Abou El-Enein A,El-Sharnouby GA.Significance of toll-like receptors 2 and 4mRNA expression in chronic hepatitis C virus infection[J].Egypt J Immunol.2006,13(1):141 - 152.
    [169]李校堃,袁辉.药用蛋白质分离与纯化技术.2005.北京:化学工业出版社.
    [170]GE Healthcare.Protein Purification handbook(Cat.No.18-1132-29).2001
    [171]Terpe K.Overview of tag protein fusion:from molecular and biochemical fundamentals to commercial system.Appl.Microbiol.Bioteclnol.2003,60(5):523-533.
    [172]Sassenfeld HM,Brewer SJ.A polypeptide fusion designed for purification of recombinabt proteins.Bio-Technology.1984,2:76-81.
    [173]Hochui E,Barmwarth W,Dobeli H,et al.Genetic approach to facilitate purification of recombinant proteins with a novel metal chelate adsorbent.Bio-Technology.1988,6:1321-1325.
    [174]Hopp TP,Pricker KS,Price VL,et al.A short polypeptide marker sequence useful for recombinant protein identification and purification.Bio-Technology.1988,6:1204-1210.
    [175]Schmidt TGM,Skerra A.The random peptide library-assisted engineering of a C-terminal affinity peptide,useful for the detection and purification of a functional Ig Fv fragment.Protein Engineering.1993,6:109-122.
    [176]Evan GI,Lewis GK,Ramsay G,et al.Isolation of monoclonal antibodies specific for human c-myc proto-oncogene product.Mol Cell Biol.1985,5:3610-3616.
    [177]Karpeisky MY,Senchenko VN,Dianova MV,et al.Formation and properties of S-protein complex with S-peptide-containing fusion protein.FEBS Lett.1994,339:209-212.
    [178]Stotko-Hahn RE,Carr DW,Scott JD,et al.A single-step purification for recombinant proteins.FEBS Lett.1992,302:274-278.
    [179]McCormick M,Berg J.Purification and S-tag detection of CBD fusion protein,in Novations.1997,7:12-15.
    [180]Wilson DS,Keefe AD,Szostak JW.The use ofmRNA display to select high-affinity protein-binding peptides.PNAS.2001,98:3750-3755.
    [181]Smith DB,Johnson K.Single-step purification of polypeptides expressed in Escherichia coli as fusion with glutathione S-transferase.Gene.1988,67:31-40.
    [182]Duplay P,bedouelle H,Fowler A,et al.Sequence of male gene and of its product,the maltose-binding protein of Escherichia coli K12.J.Biol.Chem.1988,259:10606-10613.
    [183]Christoph S,Volker S,Konrad B.An automated method for high-throughput protein purification applied to a comparison of His-tag and GST-tag affinity chromatography.BMC Biotechnology.2003,3(12).
    [184]Janknecht R,de Martynoff G,Lou J,et al.Rapid and efficient purification of native histidine-tagged protein expressed by recombinant vaccine virus.PNAC.1991,88:8972-8976.
    [185]Macauley-Patrick S,Fazenda ML,McNeil B,et al Heterologous protein production using the Pichia pastoris expression system[J].Yeast.2005,22(4):249-70.
    [186]Peng Y,Bu W,Kang LY.Methylotrophic yeast system[J].Biotechnol Information.2000,1:38
    [187]唐元家,余柏松.巴斯德毕赤酵母表达系统[J].国外医药·抗生素分册.2002,23(6):246
    [188]Vanderklei IJ,Harder W,Veenhuis M.Biosynthesis and assembly of alcohol oxidase,a peroxisomal matrix protein in methylotrophic yeast:a review[J].Yeast.1991,7(3):195-209
    [189]Couderc R,Baratti J.Oxidation of methanol by the yeast Pichia pastoris:Purification and properties of alcoholoxidase[J].Agric Biol Chem.1980,44:2279-2289
    [190]Ma L,Zhang ZQ,Chen AJ,et al.Expression and characterization of human vascular endothelial growth factor in Pichia pastaris[J].Chinese Journal Of Experimental And Clinical Virolog.2000;14(4):309-312
    [191]Clare J,Sreekrishna K,Romanos M.Expression of tetanus toxin fragment C[J].Methods Mol Biol.1998,103:193-208.
    [192]Clare JJ,Romanos MA,Rayment FB,et al.Production of mouse epidermal growth factor in yeast:high-level secretion using Pichia pastoris strains containing multiple gene copies[J].Gene.1991;105(2):205-212
    [193]Kozak M.At least six nucleotides preceding the AUG initiator codon enhance translation in mammalian cells[J].Journal Of Molecular Biology.1987;196(4):947-950
    [194]Jonsson LJ,Salnheimo M,Penttila M.Laccase from the white-rot fungus Trametes versicolor:cDNA cloning of lccl and expression in Pichia pastoris[J].Current Genetics.1997;32(6):425-30
    [195]聂东宋,梁宋平,李敏.外源蛋白在巴氏毕赤酵母中高效表达的策略[J].吉首大学学报(自然科学版).2001.22(3):40-44
    [196]林政,黄义德,张彦定.外源蛋白在毕赤酵燃系统中高效表达的培养条件的优化策略[J].中国巨学研靠与临床.2006,11(4):29-32.
    [197]Li YJ,Chen YY,Bi LJ.Fusion tags technology and their applications[J].Sheng Wu Gong Cheng Xue Bao.2006,22(4):523-527.
    [198]Hefti MH,Caroline JG,der Toorn VV,et al.A novel purification method for histidine-tagged protein containing a thrombin cleavage site[y].Anal.Biochem.2001,295:180-185.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700