交变电磁场对胞浆钙影响机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
“电磁污染”越来越引起科学界的关注,近几年来电磁生物效应的研究主要集中在两个方面:流行病学调查和细胞实验研究。在本论文中,以细胞内重要的第二信使钙离子为研究对象,针对单个细胞建立钙离子浓度变化的动力学模型,此模型考虑了细胞的生理特性、膜电位的变化。在此基础上提出了一种新的解释电磁场对整个细胞影响机制的思想。其中我们得出的主要结论为:
     (1)在胞内钙振荡“最小”模型的基础上,进行了细胞膜、细胞器膜上各种钙离子蛋白在细胞内钙离子浓度非线性变化中各自敏感性的讨论,得出钙振荡机制中,钙库上的ATP驱动的跨越细胞器膜将钙离子泵入钙库的钙泵是最敏感的区域,这已在相关文献中有所报道,是电磁场最可能的作用位点。
     (2)V_m-[Ca~(2+)]_(cyt)模型:·
     V_m-[Ca~(2+)]_(cyt)模型考虑了细胞膜上所有与胞浆内钙离子浓度发生改变有关的蛋白。
     ①解释在交变电场作用下,胞浆膜电位和胞浆内钙离子浓度的变化机制,外部的交变电场会对细胞膜内外的离子施加一种振荡力的作用(F_1=Ezq_e=E_0zq_e sin(2πvt))。当作用力达到某一阈值时,就会介导膜上某种蛋白的打开与关闭,从而影响膜电位的变化,最终达到间接影响各种钙离子蛋白的构象变化,来影响胞浆内钙离子浓度的变化。模拟的结果表明了[Ca~(2+)]_(cyt)的变化和交变电场有一定的关系,当电场强度E_0 (mV/m)与电场频率v(Hz)在数值上比例为1~2时,[Ca~(2+)]_(cyt)的变化最明显。[Ca~(2+)]_(cyt)的生物学反应出现在低频范围内(0~100Hz)。
     ②交变磁场对每个离子的作用力的大小表示为F_1=Buzq_e=B_0uzq_e sin(2πvt),同样道理,模拟的结果表明了当B_0(G)与v(Hz)在数值上的比率大于4时,[Ca~(2+)]_(cyt)信号出现显著的变化。
     (3)V_m-[Ca~(2+)]_(cyt)-[Ca~(2+)]_(ER)模型
     V_m-[Ca~(2+)]_(cyt)-[Ca~(2+)]_(ER)模型是包括了细胞膜上所有与胞浆内钙离子浓度发生改变有关的蛋白,以及细胞内钙库上所有与钙离子变化有关的因素。
     从模拟结果看,当外加电磁场考虑细胞内钙库时,细胞对电磁场的生物反应范围大大增加了。当电磁场频率、强度增加时,细胞也有相应的反应,这说明电磁场很可能的作用位点存在细胞内钙库上。
     另外,本论文还模拟对接了血小板表面的整合蛋白α_(Ⅱb)β_3与RGD小分子。整合蛋白α_(Ⅱb)β_3对血栓的形成具有很重要的调控作用,α_(Ⅱb)β_3与纤维蛋白原上的RGD特征序列结合,促进血小板凝集进而形成血栓。这样可以在理论上设计一个环形RGD小分子(RGD-c)与α_(Ⅱb)β_3蛋白结合,阻断其与纤维蛋白原的结合位点,进而阻断血栓形成。以糖蛋白α_vβ_3(pdb代码1jv2)作为模板,利用modeller8v2软件进行同源模拟得到α_(Ⅱb)β_3三维模型。而小分子则以RGD序列为主,两边各加一个氨基酸X、Y,X和Y之间用一个二硫键相连,通过改变X和Y,重复优化过程则可得到不同的小分子模型,将其与α_(Ⅱb)β_3进行分子对接,可以找出比较理想的XY组合,对治疗血栓的药物设计具有重要的理论指导作用
Interest in hazardous consequences of so-called 'electromagnetic pollution' is increasing within the scientific community. In recent years, researches on biological effects of eletromagnetic filed focus on two aspects: epidemiological investigation and experimental study of cell. In this paper, we take the second messenger calium ion in the cell for the study. The dynamic models on the calcium concentration in the cytosol [Ca~(2+)]_(cyt) was built for single cell. Models include the cellular physiology and changes of the action potential (V_m) of the plasma membrane. A novel thought to explain the mechanism for alternating eletromagnetic filed induced-effects on cytosolic calcium was put forward. The main conclusions were:
     (1) The sensitivity of calcium channels on the plasma membrane and calcium stores is discussed for the calcium nonlinear dynamic in the cytosol based on the 'minimal model' about calcium oscillation. The simulated result shows that the ATP-pump on the calcium store is the most sensitive part in the model. This result is consistent with some empirical literatures. The ATP-pump is the possible active part of the eletromagnetic field.
     (2) V_m-[Ca~(2+)]_(cyt) model
     The V_m-[Ca~(2+)]_(cyt) model includes all channels in the plasma involving in the changes of [Ca~(2+)]_(cyt).
     ①The mechanism for the alternating electric field induced-effects on V_m and [Ca~(2+)]_(cyt) was elucidated. An alternating external electric field may exert an oscillating force (F_1=Ezq_e=E_0zq_e sin(2πvt)) to each of the free electrolytes, existing on both sides of the plasma membrane. When the force gets to a special value, some membrane proteins will open or close. Thus the changes of the membrane potential will impact the influx and outflux of ions. Consequently, the [Ca~(2+)]_(cyt) changes. The simulated results showed a correlation between the changes of [Ca~(2+)]_(cyt) and the alternating electric field. When the numerical ratio between the intensity E_0 (mV/m) and the frequency v (Hz) of the field was about 1~2, the [Ca~(2+)]_(cyt) signal was changed dramatically. The bioactive changes of [Ca~(2+)]_(cyt) appeared at low frequency, at the range of 0~100Hz.
     ②An alternating external magnetic field may exert an oscillating force (F_1=Buzq_e=B_0uzq_e sin(2πvt)) to each of the free electrolytes. In the same way, when the numerical ratio between the intensity B_0 (G) and the frequency v (Hz) of the field was about B_0 > 4v, the [Ca~(2+)]_(cyt) signal was changed dramatically.
     (3) V_m-[Ca~(2+)]_(cyt)-[Ca~(2+)]_(ER) model
     The V_m-[Ca~(2+)]_(cyt)-[Ca~(2+)]_(ER) model includes not only the channels in the plasma membrane, but also the membrane of endoplasmic reticulum (ER).
     From the simulated results, we can concluded when the calcium fluxes in the ER is considered, the reaction frequency of the electromagnetic on the [Ca~(2+)]_(cyt) is enlarged dramatically. It proved that the possible active part located on the calcium stores.
     Besides the paper have docked integrinα_(Ⅱb)β_3 and the RGD sequence. Integrinα_(Ⅱb)β_3 of the platelet surfaces regulates the thrombosis formation.α_(Ⅱb)β_3 binds to the RGD sequence (Arg-Gly-Asp) of fibrinogen, promotes the platelet aggregation and finally leads to the thrombus. We obtained the three-dimensional molecular structure ofα_(Ⅱb)β_3 using homology-modeling (modeller8v2 software), with integrinα_vβ_3 (pdb code 1JV2) as the template. Accordingly, a cyclic RGD(RGD-c) peptide was designed to bindα_(Ⅱb)β_3 as an antagonist and to block the formation of thrombus. We added two amino acids X, Y to both sides of RGD. X and Y could bind to each other by disulfide bond that finally made RGD-c cyclic peptide. The optimum structure of RGD-c was obtained from the energetic optimization processes. All amino acids were placed at the X and Y to conduct molecular docking to the integrinα_(Ⅱb)β_3 We got the optimum structure of RGD-c by energetic optimization and the antagonistic combination analysis. The results might provide an insight into designing and screening integrinα_(Ⅱb)β_3 antagonists.
引文
[1] 李刚,杨英超,林凌等.电磁场的生物效应的研究现状与展望.生命科学仪,2008,6(3):3-7
    [2] Wertheimer N, Leeper E D. Electrical wiring configurations and childhood cancer. Am J Epidemiology, 1979, 109(3):273-275
    [3] Theriault G, Goldberg M, Miller A B, et al. Cancer risks associated with occupational exposure to magnedc fields among electric utility workers in Ontario and quebec, Canada, and France: 1970-1989. Am J Epidemiology, 1994, 139(6):550-572
    [4] London S J, Thomas D C, Bowman J D, et al. Exposure to residential electric and magnetic fields and risk ofchildhood leukemia. Am J Epidemiol, 1991,134(9):923-937
    [5] Savitz. D A, Liao D, Sastre A, et al. Magnetic Field Exposure and Cardiovascular Disease Mortality among Electric Utility Workers. Am J Epidemiol, 1999, 149(2): 135-42
    [6] 刘润国,陈秀光,沈平.福州市鼓楼区高频辐射职业危害的调查报告.福建医药杂志,1995,17(1):77-78
    [7] Baris D, Armstrong BG, Deadman J, et al. A mortality study of electrical utility workers in Quebec. Occupational and Environmental Medicine, 1996, 53(1):25-31
    [8] Savitz D A, Boyle C A, Holmgreen P. Prevalence of depression among electrical workers. Am J Ind Med, 1994, 25(2): 165-176
    [9] Sobel E, Davanipour Z. Occupations with exposure to electromagnetic fields: A possible risk factor for Alzheimer's Disease. American Journal of Epidemiology, 1995, 142(5):515-524
    [10] 马菲,熊鸿燕,张耀等.高强度电磁辐射对军事作业人群神经行为功能影响的流行病学调查.第三军医大学学报,2004,26(22):2048-2050
    [11] Juutilainen J, M atiiainen P, Saarikoski S, et al. Early pregnancy loss and exposure to 50 Hz magnetic fields. Bioelectromagneties, 1993, 14(3):229-236
    [12] Wertheimer N, Leeper E. Possible effects of electric blankets and heated waterbeds on fetal developlment. Bioelectromagnetics, 1986, 7(1):13-22
    [13] 丁晓萍,闫素文,张宁等.微波辐射对雷达操作人员精液质量影响的现况调查.中华流行病学杂志,2004,25(1):40-43
    [14] 谢健华,朱连标,陈锦生等.铁路电力牵引工频电磁场对作业人员淋巴细胞DNA损伤的探讨.海峡预防医学杂志,2004,10(3):33-34
    [15] Liboff A R, Williams T J, Strong D M, et al. Time-varying magnetic fields effect on DNA synthesis. Science, 1984, 223(4638):818-820
    [16] Smith S D, McLeod B R. Liboff A R, et al. Calcium cyclotron resonance and diatom mobility. Bioelectromagneties, 1987, 8(3):215-227
    [17] Zhou J, Yao G, Zhang J, et al. CREB DNAbinding activation by a 50 Hz magnetic field in HL60 cells is dependent on extraand intracellular Ca~(2+) but not PKA, PKC, ERK,or p38 MAPK. Biochem Biophys Res Commun, 2002, 296(4):1013-1018
    [18] 陈树德,张红锋.低频电磁场对细胞生物效应的研究.Chin J Phys Med,1998,20(2):78-80
    [19] 汤青,赵南明.低频电磁场对成骨细胞增值及细胞周期的影响.科学通报,1999,44(20):2191-2194
    [20] 李巧改,王秀娥.电磁场对小鼠血液的影响.青岛大学学报,2003,16(1):40-42
    [21] Robison G, Amanda R. Decreased DNA repair rates and protection from heat induced apoptosis mediated by electromagnetic field exposme. Bioelectromagnetics, 2002, 23(2): 106-112
    [22] Tian F, Nakahara T. Exposure to powerfrequency magnetic fields suppresses X-my-induced apoptosis transiently in Ku80-deficient xrs5 cells. Biochem Biophys Res Commun, 2002, 292:355-61
    [23] Arber S L. The effect of microwave radiation on passive membrane properties ofsnail neurons. J Microw Power, 1981, 16(1): 15-20
    [24] Garajvrhovac V, Horvat D, Koren Z. The effect of microwave radiation on the cell genome. Mutat Res, 1990, 243(2):87-93
    [25] Henry L, Narendra P, Singh A. cute low intensity microwave exposure increases DNA single-strand breaks in rat brain ceils. Bioelectromagnefics, 2005, 16(3):207-210
    [26] Lekseev S I, Ziskin M C. Millimeter microwave effect on iontransport across lipid bilayer membranes. Bioelectromagnetics, 1994, 16(2):124-131
    [27] 谢长宜,王易.微波非热效应对杂交瘤细胞的影响研究.自然杂志,2000,22(5):305-306
    [28] 陈永斌,曾桂英.J005A电磁波屏蔽织物对2450MHz微波辐照小鼠骨髓细胞的影响.第四军医大学学报,2003,24(2):150-152
    [29] Hinrikus H, Parts M, Lass J, et al. Changes in human EEG caused by low level modulated microwave stimulation. Bioelectromagnetics, 2004, 25(6):431-40
    [30] 邓桦,王德文,彭润云等.微波对心肌细胞膜受体及离子通道影响得研究.中国公共卫生,2003,19(12):1469-1470
    [31] 赵亚丽,马洪波.微波照射对小鼠海马细胞膜ATPase活性和离子通道的影响.航天医学与医学工程,2003,16(1):36-40
    [32] Bawin S M, Adey W R, Sabbot I M. Ionic factors in release of 45Ca2+ from chicken cerebral tissue by eletromagnetic field. Proc Natl Acad Sci USA, 1978, 75(12):6314-8
    [33] Adey W R. Cell membranes: the electromagnetic environment and cancer promotion, Neurochem Res, 1988, 13(7):671-7
    [34] Blackman C F. Influence of electromagnetic fields on the efflux of calcium ions from brain tissue in vitro: a three-model analysis consistent with the frequency response up to 510 Hz. Bioelectromagnetics, 1988, 9(3):215-217
    [35] Hendee S P, Faour F A, Christensen D A, et al. The Effects of Weak Extremely Low Frequency Magnetic Fields on Calcium/Calmodulin Interactions. Biophysical Journal. 1996. 70(6):2915-2923
    [36] 杨文修.细胞分子信息学-新的生命科学研究前沿领域.生物医学物理研究,云南,云南科技出版社,2003,1-7
    [37] Berridge M J. Inositol trisphosphate and calcium signalling. Nature, 1993, 361(6410): 315-325
    [38] Hua S Y, Liu C, Lu F M, et al. Modes of propagation of Ca~(2+)-induced Ca~(2+) release in bullfrog sympathetic ganglion cells. Cell Calcium, 2000,27 (4): 195-204
    [39] Sauer H, Hofmann C, Wartenberg M, et al. Spontaneous calcium oscillations in embryonic stem cell-derived primitive endodermal cells. Exp Cell Res, 1998, 238(1): 13-22.
    [40] Elliott A C. Recent development in non-excitable cell calcium entry. Cell Calcium, 2001, 30 (2): 73-93
    [41] Babcock D F, Hille B. Mitochondrial oversight of cellular Ca~(2+) signaling. Curr Opin Neurobiol,1998, 8(3): 398-404
    [42] Bernardi P, Petronilli V. The permeability transition pore as a mitochondrial calcium release channel: a critical appraisal. J Bioenerg Biomemb, 1996, 28(2): 131-137
    [43] Babcock D F, Herrington J, Goodwin P C, et al. Mitochondrial participation in the intracellular Ca~(2+) network. J. Cell Biol, 1997, 136(4): 833-844
    [44] Smith G D, Wagner J, Keizer J. Validity of the rapid buffering approximation near a point source of calcium ions. Biophys. J, 1996, 70(6): 2527-2539
    [45] Jafri M S, Keizer J. On the roles of Ca~(2+) diffusion, Ca~(2+) buffers, and the endoplasmic reticulum in IP3-induced Ca~(2+) waves. Biophys J, 1995, 69(5): 2139-2153
    [46] Petersen O H, Gerasimenko OV. The calcium store in the nuclear envelope. Cell Calcium, 1998, 23(2-3): 87-90
    [47] 符民桂,唐朝枢.细胞Ca~(2+)信号对基因转录的调节.国外医学-生理、病理科学与临床分册,2000,18(4):12-16
    [48] Means T K, Lien E, Yoshimura A, et al. The CD14 ligands lipoarabinomannan and lipopolysaccharide differ in their requirement for Toll-like receptors. J Immunol, 1999, 163(12):6748-6755
    [49] Meldolesi J, Grohovaz F. Total calcium ultrastructure: advances in excitable cells. Cell Calcium, 2001,30(1): 1-8
    [50] Takeuchi O, Hoshino K, Kawai T, et al. Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components. Immunity, 1999, 11(4):443-451
    [51] Berridge M J, Lipp P, Bootman M D. The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol. 2000, 1(1): 11-21
    [52] Berridge M J. Capacitative calcium entry. Biochem J, 1995, 312(1): 1 -11
    [53] Mackrill J J. Protein -protein interactions in intracellular Ca~(2+) release channel function. Biochem J, 1999, 337(3):345-461
    [54] Berridge M J. Elementary and global aspects of calcium signalling. The Journal of Experimental Biology, 1997, 200(2):315-319
    [55] Bootman M, Niggli E, Berridge M, et al. Imaging the 2-hierarchical Ca~(2+) signalling system in Hela cells . Journal of Physiology, 1997, 499 (2):307-314
    [56] Berridge M J, Dupont G. Genevieve Dupont. Spatial and temporal signalling by calcium. Current Opinion in Cell Biology, 1994, 6(2):267-271
    [57] Lindstr(?)m E, Lindstr(?)m P, Berglund A, et al. Intracellular calcum oscillations induced in a T-cell-line by a weak 50Hz magnetic field . Journal of cellular physiology, 1993, 156(2):395-398
    [58] Adey W R. In Biological coherence and response to external stimuli. Germany:Herbert Frohlich press, 1998, 148-170
    [59] Harland J D, Liburdy R P. Environmental magnetic fields inhibit the antiproliferative action of Tamoxifen and melatonin in a human breast cancer cell line. Bioelectromagnetics, 1997, 18(8):555-562
    [60] Reinbold KA, Pollack S R. Serum plays a critical role in modulating [Ca~(2+)] of primary culture bone cell exposed to weak ion-resonance magnetic fields. Bioelectromagnetics, 1997, 18(3):203-214
    [61] 陈树德,陈家森,王丽英.低频电磁场与细胞信号系统.基础医学与临床,2000,20(1):16-19
    [62] Sage S O, Adams D J, Van Breemen C. Synchronized oscillations in cytoplasmic free calcium concentration in confluent bradykinin-stimulated bovine pulmonary artery endothelial cell monolayers. J Biol Chem, 1989, 264(1):6-9
    [63] Jacob R, Merrit JE, Hallam TJ, et al. Repetitive spikes in cytoplasmic calcium evoked by histamine in human endothelial cells. Nature, 1988, 335(6185):40-45
    [64] Woods N M, Cuthbertson K S R, Cobbold P H. Repetitive transient rises in cytoplasmic free calcium in hormone stimulated hepatocytes. Nature, 1986, 319(6054):600-602
    [65] Kummer U, Olsen L F, Dixon C J, et al. Switching from simple to complex oscillation in calcium signaling. Biophysic J, 2000, 79(3): 1188-195
    [66] Crunelli V, Kelly J S, Leresche N, et al. The ventral and dorsal lateral geniculate nucleus of the rat: Intracellular recordings in vitro. J physiol, 1987, 384:587-601
    [67] Harris-Warrick R M, Flamm R E. Multiple mechanisms of bursting in a conditional bursting neuron. J Neurosci, 1987,7(7):2113-2128
    [68] Ashcroft F M, Rorsman P. Electrophysiology of the pancreatic β-cell, Prog Biophys Molec Biol, 1989, 54(2):87-143
    [69] Johnson S W, Seutin V, North R A. Burst firing in dopamine neurons induced by N-Methyl-D-Aspartate:Role of electrogenic sodium pump. Science. 1992, 258(5082):665-667
    [70] Meyer T, Stryer L. Molecular model for receptor stimulated calcium spiking. Pro Natl Acad Sci USA, 1988, 85(14):5051-5055
    [71] Changya L, Gallacher D V, Irvine R F, et al. Inositol 1.3,4.5.-tetrakisphosphate and inositol 1,4,5,-trisphosphate act by diffrent mechanisms when controlling Ca~(2+) in mouse lacrimal acinar cells. FEBS lett, 1989, 251(1-2):43-48
    [72] Joseph S K, Rice H L.Williamson J R. The effect of external calcium and PH on inositol triphosphate mediated calcium release from cerebellum microsomal fractions. Biochem J, 1989, 258(1):261-265
    [73] Berridge M J, Irvine E F. Inositol phophates and cell signaling. Nature, 1989, 341 (6239): 197-205
    [74] Muallem S, Pandol S J, Beeker T G. Two components of hormone evoked calcium release from intracellular stores of pancreatic acinar cells. Biol J, 1988, 255(1):301-307
    [75] Low A M, Kwan C Y, Daniel E E. Evidence for two types of internal Ca~(2+) stores in canine mesenteric artery with diffrerent refilling mechanism. Am J Physiol, 1992, 262:H32-H37
    [76] Wakui M, Potter B V, Peterson O H. Pulsatile intracellular calcium release does not dependent on fluctuations in inositol trisphosphate concentration. Nature, 1989, 339(6222):317-320
    [77] Combetter L, Berthon B, Doucet E, et al. Characteristics of bile acid-mediated Ca~(2+)release from permeabilized liver cells and liver microsomers. J Biol Chem,1989, 264(1): 157-167
    [78] Swann K. Different triggers for calcium oscillations in mouse eggs invovle a ryanodine-sen sitve calcium store. Biochem J, 1992, 287(1): 79-84
    [79] Goldbeter A, Dupont G, Berridge M L. Minimal model for signal-induced Ca~(2+) oscillations and for their frequency encoding through protein phosphorylation. Pro Natl Acad Sci USA, 1990, 87(4):1461-1465
    [80] Somogyi R, Stucki J W. Hormone-induced calcium oscillation in liver cells can be explained by a simple one pool model. J Biol Chem, 1991, 266(17): 11068-11077
    [81] Bezprozvanny I, Watras J, Ehrlich B E. Bell-shaped calcium-response curves of IP_3 and calcium-gated channels from endoplasmic reticulum of cerebellum. Nature, 1991, 352(6329):751-754
    [82] Fabiato. A. Excitation-contraction coupling in skeletal, Cardiac, and smooth muscle, Plenum press,New York, 1992:245
    [83] Tang Y H, Othmer H G. A Model of Calcium Dynamics in Cardiac Myocytes Based on the Kinetics of Ryanodine-Sensitive Calcium Channels. Biophysical Journal, 1994,67(6):2223-2235
    [84] Jose A, Borghans M, Dupont G et al. Complex intracellular calcium oscillations: A theoretical exploration of possible mechanisms. Biophysical Chemistry, 1997, 66(1):25-41
    [85] Eichwald C, Kaiser F. Model for external influences on cellular signal transduction pathway including cytosolic calcium oscillation. Bioelectromagnetics, 1995, 16(2):75-85
    [86] Galvanovskis J, Sandblom J. Periodic forcing of intracellular calcium oscillators theoretical studies of the effects of low frequency fields on the magnitude of oscillations. Bioelectrochemistry and Bioenergetics, 1998, 46(2): 161-174
    [87] 周永春.外电场作用下细胞跨膜电压的计算研究:[硕士学位论文].南京:南京农业大学,2007
    [88] 解少柏.生物电之谜.北京:科学普及出版社,1982
    [89] 张辉,许家栋.牛中奇等.胞内钙振荡的同步性对电磁场的响应.北京生物医学工程.2007,26(6):321-324
    [90]张辉,许家栋,牛中奇等.极低频磁场对胞内钙振荡影响的机理分析.中国医学物理学杂志,2007, 24(3):189-192
    [91] Brighton C T, Wang W, Seldes, et al. Signal transduction in electrically stimulated bone cells. J Bone and Joint surgery, 2001,83(10):514-1523
    
    [92] Khatib L, Golan D G, Cho M. Physiologic electrical stimulation provokes intracellular calcium increase mediated by phospholipase C activation in human osteoblasts, The FASER J, 2004, 18(15): 1903-1905
    [93] Galvanovskis J, Sandblom J, Bergqvist B, et al. The influence of 50 Hz magnetic fields on cytoplasmic Ca~(2+) oscillations in human leukemia cells. Sci Total Environ, 1996, 180(1): 19-33
    [94] Galvanovskis J, Sandblom J, Bergqvist B, et al. Cytoplasmic Ca~(2+) oscillations in human leukemia T-cells are reduced by 50Hz magnetic fields. Bioelectromagnetics, 1999,20(5):269-76
    
    [95] Galvanovskis J, Sandblom J. Periodic forcing of intracellular calcium oscllators -Theoretical studies of the effects of low frequency fields on the magnitude of oscillations. Bioelectrochemistry and Bioenergetics, 1998,46(2): 161-174
    
    [96] Sandblom J, Galvanovskis J, Electromagnetic field absorption in stochastic cellular systems: enhanced signal detection in ion channels and calcium oscillator. Chaos, Solitons and Fractals, 2000,11(12):1905-191
    [97] Torres J J, Cornelisse L N, Harks E G, et al. Modeling action potential generation and propagation in NRK fibroblasts. Am J Physiol Cell Physiol, 2004, 287(4):851-865
    [98] Kusters J M, Dernison M M, van Meerwijk W P, et al. Stabilizing role of calcium store-dependent plasma membrane calcium channels in action-potential firing and intracellular calcium oscillations. Biophy J, 2005, 89(6):3741-3756
    [99] Barker A T, Dixon R A, Sharrard W J, et al. Pulsed magnetic therapy for tibial non-union. Lancet, 1984, 1 (8384):994-996
    [100] Bassett C A. Pulsing electromagnetic fields: A new method to modify cell behavior in calcified and noncalcified tissues. Calcif Tissue Int, 1982:34(1): 1-8
    [101] Brighton C T, Wang W, Richard S, et al. Signal transaction in electrically stimulated bone cells. J Bone Joint Surg, 2001, 83-A(10):1514-1523
    
    [102] Hartig M, Joos U, Wiesmann H. Capacitively coupled electric fields accelerate proliferation ofosteoblast-like primary cells and increased bone extracellular matrix formation in vitro. Eur Biophys J, 2000, 29(7):499-506
    [103] Aaron R K, Ciombor D M. Acceleration of experimental endochondral ossification by biophysicalstimulation of the progenitor cell pool. J Orthop Surg, 1995, 14:582-589
    [104] Bassett C A. The development and application of pulsed electromagnetic fields for ununited fractures and arthrodesis . Clin Plast Surg. 1985. 12(2):259-277
    
    [105] Strauch B. Patel M K. Rosen D J. et.al. Pulsed Magnetic Field Therapy Increases Tensile Strength in a Rat Achilles' Tendon Repair Model. The Journal of Hand Surgery, 2006, 31(7):1131- 1135
    [106] Panagopoulos D J, Messini N, Karabarbounis A, et al. A mechanism for action of oscillating electric fields on cells. Biochem Biophys Res Commun, 2000, 272(3):634-640
    [107] Panagopoulos D J, Karabarbounis A, Margaritis L H. Mechanism for action of electromagnetic fields on cells. Biochem Biophys Res Commun, 2002, 298(1):95-102
    [108] Adair R K. Biological effects on the cellular level of electric field pulses. Health Phys, 1991,61(1):395-399
    [109] Balcavage W X, Alvager T, Swez J, et al. A mechanism for action of extremely low frequency electromagnetic fields on biological systems. Biochem Biophys Res Commun, 1996, 222(2):374-378
    [110] Liman E R, Tytgat J, Hess P. Subunit stoichiometry of a mammalian K+ channel determined by construction of multimeric cDNAs. Neuron, 1992, 9(5):861-871
    [111] Wei L X, Goodman R, Gold S, et al. Changes in levels of c-mys and histone H2B following exposure of cells to low frequency sinusoidal signals: evidence for window effect. Bioeletromagnetics, 1990, 11(4):269-272
    [112] Adey W R, Norden B, Ramel C, Collective properties of cell membranes: interaction mechanisms of Low level electromagnetic fields in living systems, Oxford Univ. Press, 1992,47-77
    [113] Liman E R, Hess P, Weaver F, et al. Voltage-sensing residues in the S4 region of a mammalian K~+ channel. Nature, 1991, 353(6346):752-756
    [114] Bezanilla F, White M M, Taylor R E, Gating currents associated with potassium channel activation. Nature, 1982,296(5858):657-659
    [115] Lu S T, Mathur S P, Akyel Y, et al. Ultrawide-band electromagnetic pulses induced hypotension in rats. Physiol Behav, 1999, 67(3):753-761
    [116] Seymour J L, Henzel W J, Nevins B, et al. Decorsin, a potent glycoprotein IIb/IIIa antagonist and platelet aggregation inhibitor from the leech Macrobdella decora. J Biol Chem, 1990;265(17):10143-7
    [117] Adair B D, Xiong J P, Maddock C, et al. Three-dimensional EM structure of the ectodomain od integrin(alphaVbeta3) in a complex with fibronectin. J Cell Biol, 2005, 168(7): 1109-1118
    [118] Greer J. Comparative Modeling of Homologous Proteins. Meth Enzymol 1991, 202:239-252
    [119] Yang J, Zhang C Y, Dong X C, et al. Interaction of human fibrinogen receptor (GPIIb-IIIa)with decorsin. Acta Pharmacol Sin, 2004; 25(8): 1096-1104
    [120] Blundell T L, Sibanda B L, Sternberg M J, et al. Knowledge-Based Prediction of Protein Structures and the Design of Novel Molecules. Nature, 1987,326(6111): 347-352
    [121] Topol EJ, Byzova TV, Plow EF. Platelet GPIIb/IIIa blockers. Lancet 1999, 353(9148):227-231
    [122] Polverino de Laureto P, Scaramella E, De Filippis V, et al. Chemical synthesis and structural characterization of the RGD-protein decorsin: a potent inhibitor of platelet aggregation. Protein Sci. 1998, 7(2):433-444
    [123] Xiong J P, Stehle T, Diefenbach B, et al. Crystal Structure of the Extracellular Segment of Integrin alphaVbeta3. Science, 2001, 294(5541):339-345
    [124] Vilmos F(?)l(?)p, David T J. β Propellers: structural rigidity and functional diversity. Current Opinion in Structural Biology. 1999, 9(6):715-721
    [125] Calvete J J. Platelet Integrin GPⅡb/Ⅲa: Structure-Function Correlations. An Update and Lessons from Other Integrins. Proc Soc Exp Biol Med, 1999, 222(1):29-38
    [126] Morris G M, Goodsell D S, Halliday R S, et al. Automated docking using a lamarckian genetic algorithm and empirical binding free energy function. J Computat Chem, 1998,19(14): 1639-1662
    [127] 苏纪勇,刘燕楠,宋昆等.电流作用后成骨细胞的表面增强拉曼光谱.中国组织工程研究与临床康复,2007,11(44):8839-8843
    [128] 宋昆,苏纪勇,何烁杰等.低频弱脉冲电磁场作用下成骨细胞的实时表面增强拉曼光谱研究.中国组织工程研究与临床康复,2007,11(40):8090-8094
    [129] 周永军,牛中奇.极低频脉冲电磁场细胞生物效应及机制的研究.航天医学与医学工程,2008,21(2):121-125
    [130] Hongyong Guo, Lingxiao Xing, Mo Zheng , et al. Effects of 50Hz Homogeneous Ferromagnetic Field on theConcentrations of Intracellular Calcium-ion of SNU Cells and Lymphma Cells In Vitro. Engineering in Medicine and Biology 27th Annual Conference, Shanghai, China, 2005, 5:4874-4877

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700