城市生活垃圾(MSW)热处理过程中重金属的迁移与分布
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国经济的快速增长以及城镇化进程的加快,城市生活垃圾产量也急剧增加。目前焚烧法处理城市生活垃圾已逐渐成为我国垃圾处理的主要手段之一,然而垃圾热处理的同时会产生大量的二次污染:飞灰、酸性气体、颗粒物、重金属及二噁英等物质。因此在处理城市生活垃圾的同时如何减少污染物排放成为突出存在的环境问题。基于国内外研究进展,本文以垃圾模拟物和典型城市生活垃圾为研究对象,系统地研究了城市生活垃圾热处理过程中镉、铅、锌和铜四种重金属的迁移行为,并对工业垃圾焚烧炉的底灰和飞灰的物理化学形态进行了分析,这对于掌握热处理过程中重金属的迁移规律和控制提供了重要的参考价值。
     首先,为了减少实验影响因素和误差,采用垃圾模拟物的方法研究重金属的挥发特性。在实验室流化床台架上研究了停留时间、氧化还原条件、HCl和SO_2对Al_2O_3颗粒中负载的重金属的挥发特性影响。结果表明氧浓度的增加不利于金属氯化物从Al_2O_3颗粒中的挥发。而HCl则通过抑制重金属铝酸盐及氧化物的生成促进了重金属的挥发。SO_2的存在同样促进了重金属从Al2O3颗粒中的挥发。
     为了更好地研究重金属的动力学挥发特性以及更加深入研究重金属的扩散挥发机理,建立了数学模型模拟了热处理过程中重金属的释放规律。模拟结果表明,扩散系数D对重金属CdCl_2的挥发有非常重要的影响。随着扩散系数的增加,CdCl_2的挥发率也随之增加。孔隙率对CdCl_2的挥发率的影响同样很大。随着孔隙率从0.2增加到0.68,CdCl_2挥发率从20%增加到了40%。重金属的挥发率随着颗粒粒径的减小而迅速增加。颗粒粒径的减小一方面能增加重金属的最大挥发速率,另一方面能够缩短达到最大挥发速率所需要的时间。
     不同垃圾组份中重金属的含量以及所存在的形态的不同,因而不同组份的垃圾在热处理过程中重金属的挥发特性差异很大。在研究了垃圾模拟物中重金属挥发特性的基础上,选取了不同种类的城市生活垃圾。在快速和慢速燃烧条件下,研究了新闻纸、竹筷、垃圾袋、PVC管及橡胶粉等五种典型城市生活垃圾在不同温度下重金属的挥发特性,并与900oC热解条件下重金属的挥发特性进行了比较。研究表明,在快速燃烧条件下,温度对新闻纸、竹筷和PVC管中重金属的挥发率影响不大,而橡胶粉和垃圾袋中重金属的挥发率则随着燃烧温度的增加而增加。所研究几种垃圾组份中,PVC管和竹筷中重金属挥发率最高,纸次之,而垃圾袋和橡胶粉最低。慢速燃烧条件下重金属的挥发率要低于快速燃烧条件下重金属的挥发率。对于新闻纸、垃圾袋和橡胶粉,热解条件下元素镉和锌的挥发率要高于燃烧条件下镉和锌的挥发率。PVC管中由于含有大量的有机氯元素,燃烧条件下能够生成挥发性更高的金属氯化物,因而在燃烧条件下重金属的挥发率更高。而在热解气氛下,铅和铜的挥发率要低于快速燃烧条件下铅和铜的挥发率。
     我国城市生活垃圾组份复杂,因而有必要研究不同垃圾组份混烧对重金属的挥发特性影响。实验研究表明,掺烧不同组份的垃圾对底灰中重金属的残存率的影响并非简单的叠加。掺烧橡胶和垃圾袋后,元素镉的残存率略呈增加趋势。掺烧橡胶和织物后,元素铜的残余率变化不大。而掺烧垃圾袋则对铅的挥发有一定的抑制作用。各工况下锌的残存率要略高于铅。掺烧橡胶、PVC管和垃圾袋后,元素锌的残存率大幅增加。掺烧橡胶后,元素铜的残存率增加最大。而掺烧PVC管和垃圾袋后,底灰中铜的残存率略有下降,表明塑料类垃圾中铜相对易挥发。
     实验研究垃圾热处理过程中重金属的挥发行为与实际焚烧炉中重金属的迁移行为有较大的差别。因而对武汉市某一流化床垃圾焚烧炉产生的底灰和飞灰的物理化学特性进行了研究。研究表明重金属主要富含在较细的底灰以及飞灰中。并且随着底灰粒径的增加,元素镉、铅和锌的析出率大幅增加。而铜的析出率则小幅降低。BCR实验表明铅主要存在于残留态中,从而不易析出到自然环境中。而镉则容易析出到自然环境中。根据飞灰的重金属含量分析以及TCLP实验可以得出,底灰可以直接填埋并不会对环境造成大的危害。然而飞灰在填埋前必须进行预处理。
With the rapid development of economy and accelerated process of urbanization,theamount of municipal solid waste(MSW) has increased substantially. Due to the advantagesof high ability of minimization and eliminating the bacteria and virus, thermal treatment ofMSW is gradually becoming major means of handling MSW. However, thermal treatmentof MSW can give rise to secondary pollutions: fly ashes, acid gases, particulates, heavymetals and Dioxin, and so on. Therefore, it is increasingly turning into one of the majorenvironmental problems that how to effectively dispose the MSW and control pollutionemissions at the same time. Based on the research progress at home and abroad, thebehavior and partitioning of Cd, Pb, Zn and Cu were studied systematically during thethermal treatment of model solid waste and representative MSW, which is of greatsignificance in the understanding of the heavy metals behavior and control.
     To begin with, the influence of reaction times, redox conditions, water and mineralmatrice on metal chlorides volatilization during thermal treatment of model solid waste in afluidized bed reactor was investigated. The results showed that increasing oxygenconcentration and water can inhibit the vaporization of heavy metals by forming involatilecompound. Nevertheless, HCl can promote the heavy metal release by preventing theformation of metal aluminates and metal oxides. SO_2also had positive effects on thevaporization of heavy metals.
     To thoroughly and deeply understand the kinetic vaporization behavior of heavymetals and study the diffusion mechanisms of heavy metals through the particles, amathematical model was established to predict the behavior of CdCl_2and studied the effectof different parameters. Through the simulation, it can be observed that diffusioncoefficient played an important effect on the heavy metals vaporization. The vaporizationamount increased rapidly with the diffusion coefficient increasd. The porosity of particlesalso had significant effect. The vaporization amount of increased from20%to40%whenthat porosity of particles increased from0.2to0.68. The smaller the diameter of particles,the higher the vaporization rate of heavy metals.
     The heavy metals in the different MSW components may behave differently during thethermal treatment, since the amount and form of heavy metals in the different wastefractions varied. On the basis of previous studies, different categories of MSW weresampled. The behavior of Cd, Pb, Cu and Zn in the Paper, Disposable bamboo chopsticks(DC), Garbage bags (GB), PVC pipe (PVC) and Tire were studied at the different reactiontemperatures under the conditions of rapid and slow combustion. Moreover, pyrolysisexperiments at900oC were conducted to outline the effect of redox conditions on heavymetals behaviors. It was found that incineration temperature made little difference in thevaporization of heavy metals in paper, DC and PVC. Nevertheless, the volatilization rate ofheavy metals in GB and tire increased with the increase in incineration temperature. Amongthese five waste components, the volatilization rate of heavy metals in PVC and DC washighest; the paper lied next while GB and tire were lowest. The volatilization rate of heavymetals at condition of slow combustion was much lower than that at condition of rapidcombustion. The volatilization rate of Cd and Zn in paper, GB and tire under the conditionof pyrolysis was higher than that at combustion condition. Because PVC contained asignificant amount of chlorine,more volatile metal chlorides could be formed undercombustion conditions which contributed to the higher volatilization rate of heavy metals.Under N2atmosphere, the volatilization rate of Cu and Pb was much lower than that undercombustion conditions for all wastes.
     Due to the complexity of MSW, there was the necessity to study the effects ofco-combustion between different compositions of MSW on the heavy metals behaviors.The results revealed the nonlinear relationships between the partitioning of heavy metalsand the fuel mixtures. The retention rate of Cd in residues showed a upward trend with theco-combustion of tire and GB. As to lead, the retention rate changed little with the tire andtextile co-fired, while GB had negative effects on the vaporization of Pb. Compared withlead, the retention rate of zinc was a little higher. With the co-combustion of tire, PVC andGB, more zinc could be retained in the residues. The percentage of copper retained in theresidues was increased significantly when the tire was co-fired, while that of copperdecreased slightly with the PVC and GB co-fired, indicating that the copper in plastic wastewould be vaporized more easily.
     Due to the disparity of the heavy metals partitioning between in industrial incineratorand in experimental reactor, a study of the physical and chemical characteristics of fly ashand bottom ash from a fluidized bed incinerator in Wuhan was carried out. The resultsshowed that the heavy metals were preferentially concentrated in the finer bottom ashes andfly ash particles. BCR results demonstrated that Pb were mainly bound into the matrix andwould not be easily released under natural conditions, while Cd compounds may bereleased easily into the natural environment. According to the chemical characterisation ofresiduals and the leachates, only the bottom ash can be landfilled directly. Nevertheless, flyash must be treated before landfilled.
引文
[1]李培生,孙路石,向军,熊友辉,胡松,李敏.固体废物的焚烧和热解,2006:232.
    [2]刘迅.城市生活垃圾在流化床中燃烧基本特性的研究及可视化计算[硕士学位论文].杭州:浙江大学,2000.
    [3] R. D. W. P. No. Waste Management in China:Issues and Recommendations.2005.
    [4]国家统计局.中国统计年鉴,2000~2010.
    [5] A. P. Whitworth. Municipal solid waste management in china.2005.
    [6] D. O. E. T. DETR. Waste strategy2000for England and Wales. London,UK: HerMajesty’s Stationery Office.2000.
    [7] J. Tai, W. Zhang, Y. Che, D. Feng. Municipal solid waste source-separatedcollection in China: A comparative analysis. Waste Management,2011,31(8):1673-1682.
    [8] L. Zhen-shan, Y. Lei, Q. Xiao-Yan, S. Yu-mei. Municipal solid waste managementin Beijing City. Waste Management,2009,29(9):2596-2599.
    [9] F. R. A. Department Of Environment. Municipal waste management in theEuropean Union.2010.
    [10] C. O. E. W. Plants. Map of European Waste-to-Energy plants in2010.2010.
    [11] L. Bontoux. The incineration of waste in europe: issues and perspectives: Institutefor prospective technological studies.1999.
    [12]范留柱.国内外生活垃圾处理技术的研究现状及发展趋势.中国资源综合利用,2007(7):26-28.
    [13] W. Online. History of Waste and Reycling.2004.
    [14] H. Cheng, Y. Hu. Municipal solid waste (MSW) as a renewable source of energy:Current and future practices in China. Bioresource Technology,2010,101(11):3816-3824.
    [15] T. Malkow. Novel and innovative pyrolysis and gasification technologies for energyefficient and environmentally sound MSW disposal. Waste Management,2004,24(1):53-79.
    [16]建设部人事敎育司,建设部科学技术司,建设部科技发展促进中心.城市生活垃圾焚烧处理技术.北京:中国建筑工业出版社,2004.
    [17]孙燕.几种垃圾焚烧炉及炉排的介绍.环境卫生工程,2002,10(2):77-80.
    [18]马颖骏,王树众,宁新宇,李飞翔,玉白.中国城市生活垃圾处理.动力工程,2005,25:227-235.
    [19]李鑫,刘晓峰,申强.回转炉排炉焚烧医疗垃圾技术.中国环保产业,2004:79-80.
    [20]胡华龙,温雪峰,罗庆明。废物焚烧:综合污染预防与控制最佳可行技术(第1版).北京:化学工业出版社,2009.
    [21]刘志强,黎晓麟.回转窑处理城市垃圾的技术特点与前景展望.能源研究与信息,2006(3):137-140.
    [22]李鑫,申强,刘晓峰.回转炉排垃圾焚烧炉技术.中国环境保护产业发展战略论坛专家征文中国环境保护产业发展战略论坛论文集.2000:214-217.
    [23] Basu Prabir.生物质气化与热解:实用设计与理论.北京:科学出版社,2011.
    [24]徐嘉,严建华,肖刚,张加权,池涌,倪明江.城市生活垃圾气化处理技术.科技通报,2004(6):560-564.
    [25]何庆,王启路.垃圾气化技术与设备研究.机械设计与制造,2011(10):241-243.
    [26] UBA. Draft of a German Report with basic informations for a BREF-Document“Waste Incineration”: Umweltbundesamt.2001.
    [27] Thermoselect. Thermoselect-High Temperature Recycling.2003.
    [28] S. Fendeleur. Heavy metals and industrial waste incineration: speciation andlocation of metallic elements in different phases (solid, liquid, gas) from thetreatment [Ph.D. thesis]: Université de Haute-Alsace,1998.
    [29] P. H. Brunner, H. M nch. The flux of metals through municipal solid wasteincinerators. Waste Management&Research,1986,4(1):105-119.
    [30] A. J. Chandler, T. T. Eighmy, O. Hjelmar, D. S. Kosson, S. E. Sawell, J. Vehlow, H.A. van der Sloot, J. Hartlén. Municipal solid waste incinerator residues. Amsterdam:The International Ash Working group (IAWG), Elsevier Science,1997.
    [31]马文超,杨肖,陈程,陈冠益.城市生活垃圾中氯含量及氯种类的分析方法.天津大学学报,2011,44(1):7-12.
    [32] M. K. Khallaf. The Impact of Air Pollution on Health, Economy, Environment andAgricultural Sources. Rijeka,Croatia: InTech,2011.
    [33] BREF. Integrated Pollution Prevention and Control-Reference Document on theBest Available Techniques for Waste Incineration: European Commission.2006.
    [34] M. Achternbosch, U. Richers. Materials flows and investment costs of flue gascleaning systems of municipal solid waste incinerators. Karlsruhe,Germany:Forschungszentrum Karlsruhe,2002.
    [35]标准编制组.《生活垃圾焚烧污染控制标准》(征求意见稿)编制说明,2010.
    [36]李清海,李文革,张衍国,蒙爱红,武俊.垃圾焚烧的主要污染物毒性分析.环境科学与管理,2006(3):144-147.
    [37]国家环境保护总局.生活垃圾焚烧污染物控制标准,2001.
    [38]北京市环境保护局.生活垃圾焚烧大气污染物排放标准,2008.
    [39]赵由才,宋立杰.垃圾焚烧厂焚烧底灰的处理研究.环境污染与防治,2003(2):95-97.
    [40]中华人民共和国环境保护部.国家危险废物名录,2008.
    [41] M. J. Quina, J. C. Bordado, R. M. Quinta-Ferreira. Treatment and use of airpollution control residues from MSW incineration: An overview. WasteManagement,2008,28(11):2097-2121.
    [42] C. H. K. Lam, A. W. M. Ip, J. P. Barford, G. McKay. Use of Incineration MSW Ash:A Review. Sustainability,2010,2(7):1943-1968.
    [43]邓燚超,李建新,袁镇福.垃圾焚烧飞灰的无害化处理技术.电站系统工程,2007(4):1-4.
    [44]蒋建国,王伟,李国鼎,那崇铮,甑晓月,赵翔龙.重金属螯合剂处理焚烧飞灰的稳定化技术研究.环境科学,1999(3):14-18.
    [45] A. J. Chandler, T. T. Eighmy, O. Hjelmar, D. S. Kosson, S. E. Sawell, J. Vehlow, H.A. van der Sloot, J. Hartlén. Municipal Solid Waste Incinerator Residues.Amsterdam, The Netherlands: Elsevier,1997.
    [46] Le Goux J. Y., Le Douce C. L'incinération des Déchets Ménagers,(HouseholdWaste Incineration). Paris: Ed. Economica,1995.
    [47] A. Rodriguez. The removal of an airborne low-volatility heavy metal from exhaustgases through condensation onto sorbent particles[Ph.D. thesis]: The University ofTexas at Austin,2001.
    [48] W. P. Linak, J. O. L. Wendt. Toxic metal emissions from incineration: Mechanismsand control. Progress in Energy and Combustion Science,1993,19(2):145-185.
    [49] F. Chang, M. Wey. Comparison of the characteristics of bottom and fly ashesgenerated from various incineration processes. Journal of Hazardous Materials,2006,138(3):594-603.
    [50] R. G. Barton, W. D. Clark, W. R. Seeker. Fate of Metals in Waste CombustionSystems. Combustion Science and Technology,1990,74(1-6):327-342.
    [51] H. Belevi, H. Moench. Factors Determining the Element Behavior in MunicipalSolid Waste Incinerators.1. Field Studies. Environmental Science&Technology,2000,34(12):2501-2506.
    [52]孙路石,陆继东,张娟, S Abanades, G Flamant, D Gauthier.城市垃圾焚烧过程中重金属释放行为的试验研究.燃烧科学与技术,2003(6):516-520.
    [53] Y. Zhang, Y. Chen, A. Meng, Q. Li, H. Cheng. Experimental and thermodynamicinvestigation on transfer of cadmium influenced by sulfur and chlorine duringmunicipal solid waste (MSW) incineration. Journal of Hazardous Materials,2008,153(1–2):309-319.
    [54] Z. Youcai, S. Stucki, C. Ludwig, J. Wochele. Impact of moisture on volatility ofheavy metals in municipal solid waste incinerated in a laboratory scale simulatedincinerator. Waste Management,2004,24(6):581-587.
    [55] K. Chiang, K. Wang, F. Lin, W. Chu. Chloride effects on the speciation andpartitioning of heavy metal during the municipal solid waste incineration process.Science of The Total Environment,1997,203(2):129-140.
    [56] K. Wang, K. Chiang, C. Tsai, C. Sun, C. Tsai, K. Lin. The effects of FeCl3on thedistribution of the heavy metals Cd, Cu, Cr, and Zn in a simulated multimetalincineration system. Environment International,2001,26(4):257-263.
    [57] A. J. Pedersen, F. J. Frandsen, C. Riber, T. Astrup, S. N. Thomsen, K. Lundtorp, L.F. Mortensen. A Full-scale Study on the Partitioning of Trace Elements inMunicipal Solid Waste Incineration—Effects of Firing Different Waste Types.Energy&Fuels,2009,23(7):3475-3489.
    [58]沈伯雄,郭彩霞,吴顺伟.焚烧污泥重金属迁移的研究进展.电站系统工程,2008(1):15-16.
    [59] A. S. Damle, D. S. Ensor, M. B. Ranade. Coal Combustion Aerosol FormationMechanisms: A Review. Aerosol Science and Technology,1981,1(1):119-133.
    [60] P. Biswas, C. Y. Wu. Control of Toxic Metal Emissions from Combustors UsingSorbents: A Review. Journal of the Air&Waste Management Association,1998,48(2):113-127.
    [61] W. P. Linak, R. K. Srivastava, J. O. L. Wendt. Metal Aerosol Formation in aLaboratory Swirl Flame Incinerator. Combustion Science and Technology,1994,101(1-6):7-27.
    [62] C. Wu, P. Biswas. Particle Growth by Condensation in a System with LimitedVapor. Aerosol Science and Technology,1998,28(1):1-20.
    [63] K. Lundholm, A. Nordin, R. Backman. Trace element speciation in combustionprocesses-Review and compilations of thermodynamic data. Fuel ProcessingTechnology,2007,88(11-12):1061-1070.
    [64] S. Abanades, G. Flamant, B. Gagnepain, D. Gauthier. Fate of heavy metals duringmunicipal solid waste incineration. Waste Management&Research,2002,20(1):55-68.
    [65] T. Ginsberg, D. Liebig, M. Modigell, B. Sundermann. Multizonal thermochemicalmodelling of heavy metal transfer in incineration plants. Process Safety andEnvironmental Protection,2012,90(1):38-44.
    [66] Y. Ménard, A. Asthana, F. Patisson, P. Sessiecq, D. Ablitzer. ThermodynamicStudy of Heavy Metals Behaviour During Municipal Waste Incineration. ProcessSafety and Environmental Protection,2006,84(4):290-296.
    [67] E. G. Eddings, J. S. Lighty and J. A. Kozinski. Determination of Metal Behaviorduring the Incineration of a Contaminated Montmorillonite Clay. EnvironmentalScience&Technology,1994,28(11):1791-1800.
    [68] T. C. Ho, H. T. Lee, C. C. Shiao, J. R. Hopper, W. D. Bostick. Metal behaviorduring fluidized bed thermal treatment of soil. Waste Management,1995,15(5-6):325-334.
    [69] T. Zeng, A. F. Sarofim, C. L. Senior. Vaporization of arsenic, selenium andantimony during coal combustion. Combustion and Flame,2001,126(3):1714-1724.
    [70] R. J. Quann and A. F. Sarofim. Vaporization of refractory oxides during pulverizedcoal combustion. Symposium (International) on Combustion,1982,19(1):1429-1440.
    [71] J. Yao, W. Li, Q. Kong, Y. Wu, R. He, D. Shen. Content, mobility and transferbehavior of heavy metals in MSWI bottom ash in Zhejiang province, China. Fuel,2010,89(3):616-622.
    [72] C. H. Jung, T. Matsuto, N. Tanaka, T. Okada. Metal distribution in incinerationresidues of municipal solid waste (MSW) in Japan. Waste Management,2004,24(4):381-391.
    [73] Y. Shim, S. Rhee, W. Lee. Comparison of leaching characteristics of heavy metalsfrom bottom and fly ashes in Korea and Japan. Waste Management,2005,25(5):473-480.
    [74] C. C. Wiles. Municipal solid waste combustion ash: State-of-the-knowledge.Journal of Hazardous Materials,1996,47(1-3):325-344.
    [75] D. O. Reimann. Heavy metals in domestic refuse and their distribution inincinerator residues. Waste Management&Research,1989,7(1):57-62.
    [76] O. Hjelmar. Disposal strategies for municipal solid waste incineration residues.Journal of Hazardous Materials,1996,47(1-3):345-368.
    [77]叶暾旻,王伟,高兴保,万晓,王峰.我国垃圾焚烧飞灰性质及其重金属浸出特性分析.环境科学,2007(11):2646-2650.
    [78] J. M. Toledo, J. Corella, L. M. Corella. The partitioning of heavy metals inincineration of sludges and waste in a bubbling fluidized bed:2. Interpretation ofresults with a conceptual model. Journal of Hazardous Materials,2005,126(1-3):158-168.
    [79] P. H. Brunner, H. M nch. The flux of metals through municipal solid wasteincinerators. Waste Management&Research,1986,4(1):105-119.
    [80] M. Lemann, R. Walder, A. Schwyn. Heavy metals in municipal solid wasteincineration residues. Journal of Power Sources,1995,57(1-2):55-59.
    [81] C. Chang, C. Wang, D. T. Mui, M. Cheng, H. Chiang. Characteristics of elements inwaste ashes from a solid waste incinerator in Taiwan. Journal of HazardousMaterials,2009,165(1-3):766-773.
    [82]江康钰.添加剂对模拟都市垃圾衍生燃料(RDF-5)燃烧过程污染物排放特性影响之研究[硕士学位论文]:逢甲大学,2003.
    [83] D. Kunii, O. Levenspiel. Fluidization Engineering: Butterworths (Canada) Limited,1991.
    [84] B. Nowak, A. Pessl, P. Aschenbrenner, P. Szentannai, H. Mattenberger, H.Rechberger, L. Hermann, F. Winter. Heavy metal removal from municipal solidwaste fly ash by chlorination and thermal treatment. Journal of Hazardous Materials,2010,179(1-3):323-331.
    [85] M. Uberoi, F. Shadman. High-temperature removal of cadmium compounds usingsolid sorbents. Environmental Science&Technology,1991,25(7):1285-1289.
    [86] R. Masseron, R. Gadiou, L. Delfosse. Study of the Adsorption of CdCl2Vapor onVarious Minerals Using a Drop Tube Furnace. Environmental Science&Technology,1999,33(20):3634-3640.
    [87] A. Jakob, S. Stucki, P. Kuhn. Evaporation of Heavy Metals during the HeatTreatment of Municipal Solid Waste Incinerator Fly Ash. Environmental Science&Technology,1995,29(9):2429-2436.
    [88] T. M. Owens, C. Wu, P. Biswas. An equilibrium analysis for reaction of metalcompounds with sorbents in high temperature systems. Chemical EngineeringCommunications,1995,133(1):31-52.
    [89] S. K. Durlak, P. Biswas, J. Shi. Equilibrium analysis of the affect of temperature,moisture and sodium content on heavy metal emissions from municipal solid wasteincinerators. Journal of Hazardous Materials,1997,56(1-2):1-20.
    [90] J. Wang, A. Tomita. A Chemistry on the Volatility of Some Trace Elements duringCoal Combustion and Pyrolysis. Energy&Fuels,2003,17(4):954-960.
    [91] M. Uberoi, F. Shadman. Sorbents for removal of Lead compounds from hot fluegases. AIChE Journal,1990,36(2):307-309.
    [92] M. V. Scotto, M. Uberoi, T. W. Peterson, F. Shadman, J. O. L. Wendt. Metalcapture by sorbents in combustion processes. Fuel Processing Technology,1994,39(1-3):357-372.
    [93] S. Stucki, A. Jakob. Thermal treatment of incinerator fly ash: Factors influencingthe evaporation of ZnCl2. Waste Management,1998,17(4):231-236.
    [94] F. Jiao, L. Zhang, W. Song, Y. Meng, N. Yamada, A. Sato, Y. Ninomiya. Effect ofinorganic particulates on the condensation behavior of lead and zinc vapors uponflue gas cooling. Proceedings of the Combustion Institute,2013,34(2):2821-2829.
    [95] J. Liu, Q. Falcoz, D. Gauthier, G. Flamant, C. Z. Zheng. Volatilization behavior ofCd and Zn based on continuous emission measurement of flue gas fromlaboratory-scale coal combustion. Chemosphere,2010,80(3):241-247.
    [96] S. Abanades, G. Flamant, D. Gauthier. Kinetics of Heavy Metal Vaporization fromModel Wastes in a Fluidized Bed. Environmental Science&Technology,2002,36(17):3879-3884.
    [97] G. De Micco, A. E. Bohé, D. M. Pasquevich. A thermogravimetric study of copperchlorination. Journal of Alloys and Compounds,2007,437(1-2):351-359.
    [98] A. S. Meawad, D. Y. Bojinova, Y. G. Pelovski. An overview of metals recoveryfrom thermal power plant solid wastes. Waste Management,2010,30(12):2548-2559.
    [99] B. B. Miller, R. Kandiyoti, D. R. Dugwell. Trace Element Behavior duringCo-Combustion of Sewage Sludge with Polish Coal. Energy&Fuels,2004,18(4):1093-1103.
    [100] H. S. Zhou, S. Abanades, G. Flamant, D. Gauthier, J. D. Lu. Predicting heavy metalvaporization dynamics in a circulating fluidized bed riser by a Lagrangian approach.Powder Technology,2004,146(1-2):20-31.
    [101] E. G. Eddings, J. S. Lighty. Fundamental Studies of Metal Behavior During SolidsIncineration. Combustion Science and Technology,1992,85(1-6):375-390.
    [102]程俊峰.燃煤锅炉痕量元素释放、分布与排放的研究[博士学位论文].武汉:华中科技大学,2002.
    [103] G. Mazza, Q. Falcoz, D. Gauthier, G. Flamant. A particulate model of solid wasteincineration in a fluidized bed combining combustion and heavy metal vaporization.Combustion and Flame,2009,156(11):2084-2092.
    [104] G. Mazza, Q. Falcoz, J. Soria, D. Gauthier, G. Flamant. Nonisothermal particlemodeling of municipal solid waste combustion with heavy metal vaporization.Combustion and Flame,2010,157(12):2306-2317.
    [105] S. Abanades, G. Flamant, D. Gauthier. Modelling of heavy metal vaporisation froma mineral matrix. Journal of Hazardous Materials,2001,88(1):75-94.
    [106] D. J. Maloney, R. Sampath, J. W. Zondlo. Heat capacity and thermal conductivityconsiderations for coal particles during the early stages of rapid heating.Combustion and Flame,1999,116(1-2):94-104.
    [107] W. Chen, X. Dong, Y. Sun. Analysis of diffusion models for protein adsorption toporous anion-exchange adsorbent. Journal of Chromatography A,2002,962(1-2):29-40.
    [108] J. Szekely, J. W. Evans, H. Y. Sohn. Gas-solid reactions: Academic Press,1976.
    [109]岑可法.循环流化床锅炉理论、设计与运行.北京:中国电力出版社,1998.
    [110] C. Delvosalle, J. Vanderschuren. Gas-to-particle and particle-to-particle heattransfer in fluidized beds of large particles. Chemical Engineering Science,1985,40(5):769-779.
    [111] J. O. Hirschfelder, C. F. Curtiss, R. B. Bird. Molecular theory of gases and liquids:Wiley,1954.
    [112] R. C. Reid, J. M. Prausnitz, T. K. Sherwood. The properties of gases and liquids:McGraw-Hill,1977.
    [113] H. Zhou, S. Abanades, G. Flamant, D. Gauthier, J. Lu. Simulation of heavy metalvaporization dynamics in a fluidized bed. Chemical Engineering Science,2002,57(14):2603-2614.
    [114] J. Welty, C. E. Wicks, G. L. Rorrer, R. E. Wilson. Fundamentals of Momentum,Heat and Mass Transfer: Wiley,2007.
    [115]陶文铨,杨世铭.传热学.北京:高等教育出版社,2006.
    [116]李庆扬.数值分析.武汉:华中科技大学出版社,2007.
    [117] A. Jakob, S. Stucki, R. P. W. J. Struis. Complete Heavy Metal Removal from FlyAsh by Heat Treatment: Influence of Chlorides on Evaporation Rates.Environmental Science&Technology,1996,30(11):3275-3283.
    [118] A. Jakob, S. Stucki, P. Kuhn. Evaporation of Heavy Metals during the HeatTreatment of Municipal Solid Waste Incinerator Fly Ash. Environmental Science&Technology,1995,29(9):2429-2436.
    [119] B. Nowak, L. Perutka, P. Aschenbrenner, P. Kraus, H. Rechberger, F. Winter.Limitations for heavy metal release during thermo-chemical treatment of sewagesludge ash. Waste Management,2011,31(6):1285-1291.
    [120] M. Uberoi, F. Shadman. High-temperature removal of cadmium compounds usingsolid sorbents. Environmental Science&Technology,1991,25(7):1285-1289.
    [121] A. Khajuria, Y. Yamamoto, T. Morioka. Estimation of municipal solid wastegeneration and landfill area in Asian developing countries. Journal ofEnvironmental Biology,2010,5(31):649-654.
    [122] E. Gidarakos, G. Havas, P. Ntzamilis. Municipal solid waste compositiondetermination supporting the integrated solid waste management system in theisland of Crete. Waste Management,2006,26(6):668-679.
    [123] Y. Long, D. Shen, H. Wang, W. Lu, Y. Zhao. Heavy metal source analysis inmunicipal solid waste (MSW): Case study on Cu and Zn. Journal of HazardousMaterials,2011,186(2-3):1082-1087.
    [124] Waste Management&Research,2005,23(2):126-132.
    [125] H. H. Heck, E. Korzun, C. Shieh, J. Archer. Sources and Fate of Lead, Cadmium,and Mercury in the Resource Recovery Process. Gainesville: Florida Institute ofTechnology.1994.
    [126] F. Hasselriis, A. Licata. Analysis of heavy metal emission data from municipalwaste combustion. Journal of Hazardous Materials,1996,47(1-3):77-102.
    [127] A. J. Pedersen, S. C. van Lith, F. J. Frandsen, S. D. Steinsen, L. B. Holgersen.Release to the gas phase of metals, S and Cl during combustion of dedicated wastefractions. Fuel Processing Technology,2010,91(9):1062-1072.
    [128]李镜云.纸和颜料中锌和镉含量的测定.四川造纸:180-185.
    [129]本刊编辑部.一次性筷子:存在VS废弃.中国林业产业,2009(10):62-64.
    [130] X. Chen, Y. Geng, T. Fujita. An overview of municipal solid waste management inChina. Waste Management,2010,30(4):716-724.
    [131]梁坤,李荣勋,刘光烨. Ca/Zn复合热稳定剂的作用机理与研究进展.塑料科技,2009(8):76-79.
    [132] E. Dimitrakakis, A. Janz, B. Bilitewski, E. Gidarakos. Determination of heavymetals and halogens in plastics from electric and electronic waste. WasteManagement,2009,29(10):2700-2706.
    [133]张启交.具有橡胶硫化促进作用的金属含硫配合物的合成与应用研究[博士学位论文].广州:华南师范大学,2003.
    [134]马君贤.重金属镉的环境污染化学.当代化工,2007(2):192-194.
    [135]佘集锋.浅谈食品包装用纸中有毒有害物质的来源及其危害.湖北造纸:36-38.
    [136]傅华新,林鸿权.无机镉化合物的开发与应用.湖南化工,1995,2(25):6-10.
    [137]谢忠麟.关于我国橡胶工业环保和节能问题的思考(一).世界橡胶工业,2007(2):44-49.
    [138]刘崇华,沈晓銮,周小丽,钟志光,陈向阳,王晶.微波消解-原子吸收光谱法测定橡胶及其制品中镉.分析试验室,2009(8):86-89.
    [139] M. Uberoi, F. Shadman. High-temperature removal of cadmium compounds usingsolid sorbents. Environmental Science&Technology,1991,25(7):1285-1289.
    [140] G. Xu, J. Zou, G. Li. Stabilization/Solidification of Heavy Metals in SludgeCeramsite and Leachability Affected by Oxide Substances. Environmental Science&Technology,2009,43(15):5902-5907.
    [141] R. C. Kistler, F. Widmer, P. H. Brunner. Behavior of chromium, nickel, copper,zinc, cadmium, mercury, and lead during the pyrolysis of sewage sludge.Environmental Science&Technology,1987,21(7):704-708.
    [142] H. Belevi, M. Langmeier. Factors Determining the Element Behavior in MunicipalSolid Waste Incinerators.2. Laboratory Experiments. Environmental Science&Technology,2000,34(12):2507-2512.
    [143]陆轶男,王海華,刘创仁,谭耀新,彭康珍.聚氯乙烯稳定性的研究Ⅴ硬脂酸钡和硬脂酸镉的稳定作用.中山大学学报(自然科学版),1966(1):57-71.
    [144]蔺海兰,廖双泉,廖建和.橡胶阻燃技术的研究进展.合成橡胶工业,2005(4):241-247.
    [145] R. Masseron, R. Gadiou, L. Delfosse. Study of the Adsorption of CdCl2Vapor onVarious Minerals Using a Drop Tube Furnace. Environmental Science&Technology,1999,33(20):3634-3640.
    [146]卢欢亮,王伟.改性钙基吸附剂对垃圾焚烧模拟烟气中镉的吸附研究.环境科学学报,2005(8):999-1003.
    [147]葛扣根,陈军.我国铅铬系颜料工业现状和应用领域评价.中国涂料,2005(12):1-2.
    [148]陈根荣.造纸工业用填料和颜料(续).造纸化学品,2002(2):1-8.
    [149] S. C. Van Lith. Release of inorganic elements during wood-firing on a grate[Ph.D.thesis]. Lyngby, Denmark: Technical university of Denmark,2005.
    [150] S. C. van Lith, V. Alonso-Ramírez, P. A. Jensen, F. J. Frandsen, P. Glarborg.Release to the Gas Phase of Inorganic Elements during Wood Combustion. Part1:Development and Evaluation of Quantification Methods. Energy&Fuels,2006,20(3):964-978.
    [151]赵毅,林文江.焚化废气中氯化铅之捕获.台大工程学刊,2001(83):83-89.
    [152] C. Wu, C. Chang, J. Hor, S. Shih, L. Chen, F. Chang. Two-Stage pyrolysis model ofPVC. The Canadian Journal of Chemical Engineering,1994,72(4):644-650.
    [153]吴严亮,陈港.纸张中锌含量的分光光度测定法研究.中国造纸学报,2011(4):21-24.
    [154] S. C. van Lith, P. A. Jensen, F. J. Frandsen, P. Glarborg. Release to the Gas Phaseof Inorganic Elements during Wood Combustion. Part2: Influence of FuelComposition. Energy&Fuels,2008,22(3):1598-1609.
    [155] K. Chiang, K. Wang, C. Tsai, C. Sun. Formation of heavy metal species duringpvc-containing simulated msw incineration. Journal of Environmental Science andHealth, Part A,2001,36(5):833-844.
    [156] T. M. Owens, C. Wu, P. Biswas. An equilibrium analysis for reaction of metalcompounds with sorbents in high temperature systems. Chemical EngineeringCommunications,1995,133(1):31-52.
    [157]张芳,李荣,安胜利,罗果萍. Zn在高炉中热力学行为研究.内蒙古科技大学学报,2012(3):213-217.
    [158]颜料、颜料制剂及填料.涂料技术与文摘,2011(3):54-55.
    [159] D. Verhulst, A. Buekens, P. J. Spencer, G. Eriksson. Thermodynamic Behavior ofMetal Chlorides and Sulfates under the Conditions of Incineration Furnaces.Environmental Science&Technology,1995,30(1):50-56.
    [160] B. B. Miller, R. Kandiyoti, D. R. Dugwell. Trace Element Emissions fromCo-combustion of Secondary Fuels with Coal: A Comparison of Bench-ScaleExperimental Data with Predictions of a Thermodynamic Equilibrium Model.Energy&Fuels,2002,16(4):956-963.
    [161] L. S rum, F. J. Frandsen, J. E. Hustad. On the fate of heavy metals in municipalsolid waste combustion Part I: devolatilisation of heavy metals on the grate. Fuel,2003,82(18):2273-2283.
    [162] D. Lin, K. Qiu. Recycling of waste lead storage battery by vacuum methods. WasteManagement,2011,31(7):1547-1552.
    [163] Y. Sekine, K. Sakajiri, E. Kikuchi, M. Matsukata. Release behavior of traceelements from coal during high-temperature processing. Powder Technology,2008,180(1-2):210-215.
    [164] G. Belardi, R. Lavecchia, F. Medici, L. Piga. Thermal treatment for recovery ofmanganese and zinc from zinc-carbon and alkaline spent batteries. WasteManagement,2012,32(10):1945-1951.
    [165]夏娟娟,钟慧琼,赵增立,李海滨.修复植物热解过程中重金属元素迁移行为研究.生态环境学报,2010(7):1696-1699.
    [166]温俊明,池涌,罗春鹏,倪明江,岑可法.城市生活垃圾典型有机组分混合热解特性的研究.燃料化学学报,2004(5):563-568.
    [167]沈祥智.生活垃圾中主要可燃组分热解特性的试验研究[博士学位论文]:浙江大学,2006.
    [168]李建新,严建华,池涌.利用流化床实验台研究生活垃圾焚烧重金属分布规律.中国电机工程学报,2005(17):100-104.
    [169] B. Miller, D. Dugwell, R. Kandiyoti. The Fate of Trace Elements during theCo-Combustion of Wood-Bark with Waste. Energy&Fuels,2006,20(2):520-531.
    [170] M. Becidan, L. S rum, D. Lindberg. Impact of Municipal Solid Waste (MSW)Quality on the Behavior of Alkali Metals and Trace Elements during Combustion:A Thermodynamic Equilibrium Analysis. Energy&Fuels,2010,24(6):3446-3455.
    [171]国家环境保护总局.空气和废气监测分析方法.北京:中国环境科学出版,2003.
    [172]国家环境保护总局.大气固定污染源—镉的测定石墨炉原子吸收分光光度法(HJ/T64.2-2001),2001.
    [173] B. B. Miller, D. R. Dugwell, R. Kandiyoti. Partitioning of trace elements during thecombustion of coal and biomass in a suspension-firing reactor. Fuel,2002,81(2):159-171.
    [174] W. S. Seames, J. O. L. Wendt. Partitioning of arsenic, selenium, and cadmiumduring the combustion of Pittsburgh and Illinois#6coals in a self-sustainedcombustor. Fuel Processing Technology,2000,63(2–3):179-196.
    [175] P. T. Williams, J. Evans. Interaction of Cadmium and Flyash Sorbents in anExperimental Waste Incineration Furnace-Flue Gas System. Process Safety andEnvironmental Protection,2001,79(6):357-364.
    [176]付中华,张延玲,王玉刚,李士琦.熔融条件下飞灰中Zn与Pb的挥发行为及其影响因素.过程工程学报,2009:473-481.
    [177] L. S rum, F. J. Frandsen, J. E. Hustad. On the fate of heavy metals in municipalsolid waste combustion Part I: devolatilisation of heavy metals on the grate. Fuel,2003,82(18):2273-2283.
    [178] M. Li, S. Hu, J. Xiang, L. Sun, P. Li, S. Su, X. Sun. Characterization of Fly Ashesfrom Two Chinese Municipal Solid Waste Incinerators. Energy&Fuels,2003,17(6):1487-1491.
    [179] M. Li, J. Xiang, S. Hu, L. Sun, S. Su, P. Li, X. Sun. Characterization of solidresidues from municipal solid waste incinerator. Fuel,2004,83(10):1397-1405.
    [180] H. Shi, L. Kan. Leaching behavior of heavy metals from municipal solid wastesincineration (MSWI) fly ash used in concrete. Journal of Hazardous Materials,2009,164(2–3):750-754.
    [181] C. H. Jung, T. Matsuto, N. Tanaka, T. Okada. Metal distribution in incinerationresidues of municipal solid waste (MSW) in Japan. Waste Management,2004,24(4):381-391.
    [182] K. Karlfeldt Fedje, S. Rauch, P. Cho, B. M. Steenari. Element associations in ashfrom waste combustion in fluidized bed. Waste Management,2010,30(7):1273-1279.
    [183] Z. Mester, M. Angelone, C. Brunori, C. Cremisini, H. Muntau, R. Morabito.Digestion methods for analysis of fly ash samples by atomic absorptionspectrometry. Analytica Chimica Acta,1999,395(1-2):157-163.
    [184] A. George, D. R. Dugwell, R. Kandiyoti. Development of a Miniaturized Techniquefor Measuring the Leachability of Toxic Trace Elements from Coal BiomassCo-combustion Ash Residues. Energy&Fuels,2007,21(2):728-734.
    [185] T. G. Kazi, M. K. Jamali, G. H. Kazi, M. B. Arain, H. I. Afridi, A. Siddiqui.Evaluating the mobility of toxic metals in untreated industrial wastewater sludgeusing a BCR sequential extraction procedure and a leaching test,2005,383(2):297-304.
    [186] N. Koukouzas, J. H m l inen, D. Papanikolaou, A. Tourunen, T. J ntti.Mineralogical and elemental composition of fly ash from pilot scale fluidised bedcombustion of lignite, bituminous coal, wood chips and their blends. Fuel,2007,86(14):2186-2193.
    [187] M. J. Quina, J. C. Bordado, R. M. Quinta-Ferreira. Treatment and use of airpollution control residues from MSW incineration: An overview. WasteManagement,2008,28(11):2097-2121.
    [188] M. J. Quina, R. C. Santos, J. C. Bordado, R. M. Quinta-Ferreira. Characterization ofair pollution control residues produced in a municipal solid waste incinerator inPortugal. Journal of Hazardous Materials,2008,152(2):853-869.
    [189] Z. Haiying, Z. Youcai. Study on Physicochemical Characteristics of MunicipalSolid Waste Incineration (MSWI) Fly Ash. Proceedings of the2009InternationalConference on Environmental Science and Information Application Technology-Volume01: IEEE Computer Society.2009:28-31.
    [190] G. Song, K. Kim, Y. Seo, S. Kim. Characteristics of ashes from different locationsat the MSW incinerator equipped with various air pollution control devices. WasteManagement,2004,24(1):99-106.
    [191] J. Jiang, X. Xu, J. Wang, S. Yang, Y. Zhang. Investigation of basic properties of flyash from urban waste incinerators in China. Journal of Environmental Sciences,2007,19(4):458-463.
    [192] Y. Liu, L. Zheng, X. Li, S. Xie. SEM/EDS and XRD characterization of raw andwashed MSWI fly ash sintered at different temperatures. Journal of HazardousMaterials,2009,162(1):161-173.
    [193] C. Chen, I. Chiou. Distribution of chloride ion in MSWI bottom ash andde-chlorination performance. Journal of Hazardous Materials,2007,148(1-2):346-352.
    [194]王学涛.城市生活垃圾焚烧飞灰熔融特性及重金属赋存迁移规律的研究[博士学位论文]:东南大学,2005.
    [195] R. Ibá ez, A. Andrés, J. R. Viguri, I. Ortiz, J. A. Irabien. Characterisation andmanagement of incinerator wastes. Journal of Hazardous Materials,2000,79(3):215-227.
    [196] V. Bruder-Hubscher, F. Lagarde, M. J. F. Leroy, C. Coughanowr, F. Enguehard.Application of a sequential extraction procedure to study the release of elementsfrom municipal solid waste incineration bottom ash. Analytica Chimica Acta,2002,451(2):285-295.
    [197]李润东,聂永丰,李爱民,王雷,严建华,岑可法.垃圾焚烧飞灰理化特性研究.燃料化学学报,2004(2):175-179.
    [198] H. Zhang, P. He, L. Shao. Fate of heavy metals during municipal solid wasteincineration in Shanghai. Journal of Hazardous Materials,2008,156(1–3):365-373.
    [199]李娜,郝庆菊,江长胜,陆清萍,朱伟,赵蕾.重庆市垃圾焚烧飞灰粒径分布及重金属形态分析.环境化学,2010(4):659-664.
    [200]金晶,王琪,李航,田书磊,胡小英,黄启飞,张正安.垃圾焚烧飞灰中重金属的分布规律及浸出特性.环境科学与技术,2007(4):1-3.
    [201] A. J. Pedersen, S. C. van Lith, F. J. Frandsen, S. D. Steinsen, L. B. Holgersen.Release to the gas phase of metals, S and Cl during combustion of dedicated wastefractions. Fuel Processing Technology,2010,91(9):1062-1072.
    [202] F. Jiao, Y. Cheng, L. Zhang, N. Yamada, A. Sato, Y. Ninomiya. Effects of HCl,SO2and H2O in flue gas on the condensation behavior of Pb and Cd vapors in thecooling section of municipal solid waste incineration. Proceedings of theCombustion Institute,2011,33(2):2787-2793.
    [203] F. Jiao, L. Zhang, W. Song, Y. Meng, N. Yamada, A. Sato, Y. Ninomiya. Effect ofinorganic particulates on the condensation behavior of lead and zinc vapors uponflue gas cooling. Proceedings of the Combustion Institute,2013,34(2):2821-2829.
    [204] R. wietlik, M. Trojanowska, M. A. Jó wiak. Evaluation of the distribution ofheavy metals and their chemical forms in ESP-fractions of fly ash. Fuel ProcessingTechnology,2012,95(0):109-118.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700