miR-34a在癫痫持续状态后大鼠海马神经元凋亡发生中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     观察大鼠癫痫持续状态(status epilepticus, SE)后海马区脑组织miR-34a的表达分布规律;通过干预miR-34a表达水平,探讨其在癫痫后海马神经元凋亡中的作用。
     方法
     1.建立模型:采用6-8周龄健康雄性SD大鼠,随机分为空白对照组(Normal, N组),癫痫组(Epilepsy, Ep组),干预组(Antagomir,A组)和干预对照组(Antagomir-control,C组)。对EP组、A组、C组建立氯化锂-匹罗卡品致痫大鼠SE模型。在SE诱导成功后4-6小时分别对A组和C组侧脑室立体定向给予Antagomir和Antagomir-control干预miR-34a表达水平,各组均以在1天(24小时,急性期)、7天(静止期)作为研究时间点。
     2.对大鼠行脑电图检查,记录生理状态、致痫期Ⅳ级以上发作状态、造模成功后发作间期状态、自发发作状态的脑电变化,确认癫痫模型的建立。
     3.实时定量-PCR检测各组miR-34a表达水平,检测干预前后miR-34a表达量的变化,以验证药物干预miR-34a的效果。
     4.采用Western Blot和免疫组化技术检测caspase-3蛋白在大鼠海马组织中的分部及其表达量的变化。
     5. TUNEL (Terminal deoxynucleotidyl transferase-mediated dUTP nick-end-labeling)法检测大鼠SE后海马区脑组织神经元细胞凋亡情况。
     6. Nissl染色研究大鼠SE后海马区脑组织神经元细胞缺失及存留情况。
     结果
     1.依据动物行为学表现及脑电图结果,最终造模组(Ep组、A组、C组)大鼠成模率为89.17%。成模及干预后,大鼠因自身恢复、麻醉意外、手术创伤等因素,部分发生死亡,最终可用实验组动物的成活率为69.17%。
     2.实时定量PCR检测显示,在急性期和静止期,miR-34a的表达在Ep组较N组均显著增高,药物干预后A组较C组均显著降低,有显著性差异,干预有效。
     3. Western Blot检测显示,在急性期和静止期,caspase-3蛋白的表达在Ep组较N组均显著增高,药物干预后A组较C组均显著降低,有显著性差异,与实时定量PCR结果趋势相一致。
     4.免疫组化检测显示,在急性期和静止期,Ep组与药物干预对照C组中caspase-3蛋白在海马(CA1、CA3区)神经元胞浆均高表达,而N组和药物干预A组均仅有较低密度的表达,与Western Blot结果相一致。
     5. TUNEL检测显示,在急性期和静止期,Ep组海马(CA1、CA3区)神经元细胞凋亡均明显多于N组;药物干预后A组海马(CA1、CA3区)神经元细胞凋亡均明显低于C组,与实时定量PCR、Western Blot、免疫组化结果相一致。
     6. Nissl染色显示,在急性期和静止期,Ep组海马(CA1、CA3区)神经元细胞损失均明显多于N组,存留的神经元细胞均明显少于N组;药物干预后A组海马(CA1、CA3区)神经元细胞损失均明显少于C组,存留的神经元细胞均明显多于N组,与实时定量PCR、Western Blot、免疫组化、TUNEL结果相适应。
     结论
     大鼠癫痫持续状态后的急性期和静止期,海马(CA1、CA3区)神经元中miRNA-34a可通过上调caspase-3蛋白的表达,激活下游凋亡通路,造成海马区神经元细胞凋亡。
Objective
     To study the expressional change of miR-34a in rat hippocampus following status epilepticus (SE). Through intervention of expressional level of miR-34a, this research was also aimed to explore the role of miR-34a and its mechanism in neuronal apoptosis in rats following SE.
     Method
     1. SE Model:6-8week, healthy male SD rats were randomly divided into the negative control group (Normal, N group), the epilepsy group (epilepsy, Ep group), the intervention group (Antagomir, A group) and the intervention control group (Antagomir-control, C group). Then the lithium chloride-pilocarpine SE model was established, A and C groups.4-6hours after models set, Antagomir and Antagomir-control were injected into rats'lateral ventricle to intervene miR-34a level in A and C groups by animal brain stereotactic skills. Then corresponding indicators in1day (24hours, Acute phase) and7days (Quiescent) after SE were observed.
     2. The experimental rats EEG for physiological state, SE, interictal state and spontaneous onset state were recorded to verify that the models were set successfully.
     3. Quantitative real-time PCR(qRT-PCR) detection was performed to study the miR-34a expression level in rats after SE.
     4. Western blot and Immunohistochemical detection were used to detect the expression level of caspase-3protein.
     5. TUNEL (Terminal deoxynucleotidyl transferase-mediated dUTP nick-end-labeling) was used to detect hippocampal neuronal apoptosis in experimental rats.
     6. Nissl staining was exploited to detect hippocampal neuronal loss and retention in experimental rats.
     Result
     1. Based on animal behavior and EEG results, a successful rate of89.7%for SE rats modules was made in A and C groups. After modules set and intervention, there were69.17%rats (Ep, A and C groups) alive. Meanwhile the cause of death mainly included restored ability, anesthesia, surgical trauma and other factors.
     2. qRT-PCR results showed that the expression change of miR-34a at acute phase and quiescent were in consistent trend. Ep group's miR-34a level was significantly higher than N group's, whereas A group's miR-34a level was significantly lower than C group's.
     3. Western blot results showed that expression of caspase-3protein at acute phase and quiescent were in consistent trend. The caspase-3 protein level in Ep group was significantly higher than N group's, whereas A group's caspase-3protein level was significantly lower than C group's, which was consistent with the results of qRT-PCR.
     4. Immunohistochemical results showed that expression of caspase-3protein at acute phase and quiescent were in consistent trend. The expression level of caspase-3protein in Ep group was significantly higher than N group's, whereas A group's caspase-3protein level was significantly lower than C group, which was consistent with qRT-PCR and Western blot results.
     5. TUNEL results showed the apoptotic neurons at acute phase and quiescent were in consistent trend. The hippocampal neuron apoptosis of Ep group was significantly higher than that of N group, whereas the hippocampal apoptotic neurons of A group was significantly lower than its counterpart in C group.
     6. Nissl staining results showed the survival and loss of neurons at acute phase and quiescent were in consistent trend. The loss of hippocampal neurons in Ep group was significantly higher than in N group, wheras survival of hippocampus neurons in Ep group was significantly lower than that in N group. The loss of rat hippocampal neurons in A group was significantly lower than that in C group, while survival of hippocampal neurons in A group was significantly higher than that in C group.
     Conclusion
     After mice SE (at acute phase and quiescent), miR-34a in hippocampal neuron could increase the expression of caspase-3, activate the downstream pathway of apoptosis, and lead to hippocampal neuron loss.
引文
[1]尚伟,刘伟红,张珑,等Fas、caspase-3蛋白在颞叶癫痫病灶内的表达与神经元凋亡[J].中国神经精神疾病杂志,2005,31(5):359-361.
    [2]Sutula TP, Dudek FE. Unmasking recurrent excitation generated by mossy fiber sprouting in the epileptic dentate gyrus:an emergent property of a complex system[J]. Prog Brain Res,2007,163; 547-563.
    [3]Williams PA, Larimer P, Gao Y, et al. Semilunar granule cells:glutamatergic neurons in the rat dentate gyrus with axon collaterals in the inner molecular layer. J Neurosci,2007,27(50):13756-13761.
    [4]侯晓华,赵姝,林志国,等.顽固性颞叶癫痫患者海马或颞叶BDNF及其受体TrkB的测定[J].中国神经免疫学和神经病学杂志,2008,15(6):423-426.
    [5]Scharfman HE. The neurobiology of epilepsy. Curr Neurol Neurosci Rep.2007, 7(4):348-354.
    [6]Berg AT. Defining intractable epilepsy. Adv Neurol.2006,97:5-10.
    [7]Wienholds E, Kloosterman WP, Miska E, et al. MicroRNA expression in zebrafish embryonic development. Science,2005,309(5732):310-311.
    [8]Kim VN, Nam IW. Genomics of microRNA.Trends Gen et 2006;22:165-173.
    [9]Kim J,Inoue K,Ishii J,et al.A MicroRNA feedback circuit in midbrain dopamine neurons [J].Science,2007,317(5842):1220-1224.
    [10]Lei P, Li Y, Chen X,et al.Microarray based analysis of microRNA expression in rat cerebral cortex after traumatic brain injury. Brain Res.2009,1284:191-201.
    [11]文全庆,贾延劫,王明闯,等.大鼠脑缺血急性期脑组织miRNA的表达变化[J].重庆医科大学学报,2008,33(1):23-40.
    [12]Bommer GT, Gerin I, Feng Y, et al. P53 mediated activation of miRNA34 candidate tumor -suppressor genes[J].Curr Biol,2007,17:1298-1307.
    [13]Bommer GT, Gerin I, Feng Y, et al. P53 mediated activation of miRNA34 candidate tumor -suppressor genes[J].Curr Biol,2007,17:1298-1307.
    [14]Duan W, Gao L, Wu X, et al.MicroRNA-34a is an important component of PRIMA-1-induced apoptotic network in human lung cancer cells[J].Int J Cancer.2009,11:1-8.
    [15]戚艳婷,赵喻,张智,等.miR-34a在神经元中的表达特征及功能研究.分子细胞生物学报.2009,42(3):217-223.
    [16]Martinou JC, Dubois-Dauphin M, Staple JK, et al. Overexpression of bcl-2 in transgenic mice protects neurons from naturally occurring cell death and experimental ischemia[J].Neuron,1994,13:1017-1030.
    [17]Farlie PG, Dringen R, Rees SM, et al. Bcl-2 transgene expression can protect neurons against developmental and induced cell death[J].Proc Natl Acad Sci USA,1995,92:4397-4401.
    [18]Srinivasan A, Foster LM, Testa MP, et al. Bcl-2 expression in neural cells blocks activation of ice/ced-3 family proteases during apoptosis. J Neurosci,1996, 16:5654-5660.
    [19]Kuida K, Zheng TS, Na S, et al. Decreased apoptosis in the brain and premature lethality in cpp32-deficient mice. Nature,1996,384:368-372.
    [20]Keane RW, Srinivasan A, Foster LM, et al.Activation of cpp32 during apoptosis of neurons and astrocytes. J Neurosci Res,1997,48:168-180.
    [21]Ko LJ, Prives C, P53:Puzzle and paradigm. Genes Dev,1996,10:1054-1072.
    [22]Cregan SP, MacLaurin JG, Craig CG, et al. Bax-dependent caspase-3 activation is a key determinant in p53-induced apoptosis in neurons. J Neurosci,1999,19:7 860-7869.
    [23]Bommer GT, Gerin I, Feng Y, et al. P53-mediated activation of miRNA34 candidate tumor -suppressor genes. Curr Biol,2007,17:1298-1307.
    [24]Chang TC, Wentzel EA, Kent OA et al. Transactivation of mir-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell,2007,26: 745-752.
    [25]He L, He X, Lim LP, et al, A microRNA component of the p53 tumour suppressor network. Nature,2007,447:1130-1134.
    [26]Raver-Shapira N, Marciano E, Meiri E et al. Transcriptional activation of mir -34a contributes to p53-mediated apoptosis. Mol Cell,2007,26:731-743.
    [27]Tarasov V, Jung P, Verdoodt B, et al. Differential regulation of microRNAs by p53 revealed by massively parallel sequencing:miR-34a is a p53 target that induces apoptosis and G1 -arrest. Cell Cycle,2007,6:1586-1593.
    [28]Sempere LF,Freemantle S,Pitha-RoweI,et al.Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation.Genome Biol.2004,5(3):13.
    [29]Racine RJ. Modification of seizure activity by electrical stimulation Ⅱ Motor Seizure. Electroencephogr Clin Neurophysiol,1972,32:781-794.
    [30]Coulter DA. Epilepsy-associated plasticity in gamma-aminobutyric acid receptor expression, function, and inhibitory synaptic properties. Int Rev Neurobiol,2001,45(2):237-252.
    [31]Hanaya R, Boehm N, Nehlig A. Dissociation of the immunoreactivity of synaptophysin and GAP-43 during the acute and latent phases ofthe lithium-piloearpine model in the immature and adult rat[J]. Exp Neurol,2007, 204(2):720-732.
    [32]Peredery O, Persinger MA, Parker G, et al.Temporal changes in neuronal dropout following inductions of lithium/pilocarpine seizures in the rat. Brain Res,2000,881:9-17.
    [33]Racine RJ. Modification of seizure activity by electrical stimμLation Ⅱ Motor Seizure. Electroencephogr Clin Neurophysiol,1972,32:781-794.
    [34]Sandeep P. Naira, Deng-Shan Shiaub, Jose C. Principec,e, et al. An investigation of EEG dynamics in an animal model of temporal lobe epilepsy using the maximum Lyapunov exponent, Exp Neurol.2009,216(1):115-121.
    [35]Jin CL,Yang LX, Effects of carnosine on amygdaloid-kindled seizures in Sprague-dawley rats, Neuroscience,2005,135:939-947.
    [36]Yang LX, Jin CL, Zhu-ge CL, et al. Unilateral low-frequency stimulation of central piriform cortex delays seizure development induced by amygdaloid kindling in rats, Neuroscience,2006,138:1089-1096.
    [37]Aronica E, Fluiter K, Iyer A, et al. Expression pattern of miR-146a, an inflammation-associated microRNA, in experimental and human temporal lobe epilepsy. European Journal of Neuroscience,2010,31:1100-1107.
    [38]Paul William Dyce, Derek Toms, Julang Li. Stem cells and germ cells: microRNA and gene expression signatures. Histol Histopathol,2010,:505-513.
    [39]Beatriz M. Longo, Luiz E.A.M. Mello. Supragranular mossy fiber sprouting is not necessary for spontaneous seizures in the intrahippocampal kainate model of epilepsy in the rat. Epilepsy Research,1998,32:172-182.
    [40]Liu DZ, Tian YF, Ander BP, et al. Brain and blood microRNA expression profiling of ischemic stroke, intracerebral hemorrhage, and kainate seizures. Journal of Cerebral Blood Flow & Metabolism,2010,30:92-101.
    [41]Nina Raver-Shapira, Efi Marciano, Eti Meiri, et al. Transcriptional activation of miR-34a contributes to p53-Mediated Apoptosis. Molecular Cell,2007, 26:731-743,
    [42]Dutta KK, Zhong Y, Liu YT, et al. Association of microRNA-34a overexpression with proliferation is cell type-dependent. Cancer Sci,2007, 98:1845-1852.
    [43]Lee Y, Kim M, Han J, et al. MicroRNA genes are transcribed by RNA polymerase, Molecular Cell,2010,31:1109-1115.
    [44]Han J, Lee Y, Yeom KH, et al. The Drosha-DCR8 complex in primary microRNA processing, Genes,2004,18:3016-3027.
    [45]Frankel LB, Christoffersen NR, Jacobsen A, et al. Programmed Cell Death 4(PDCD4)Is an important Functional Target of the MicroRNA miR-21 in Breast Cancer Cells, J Biol Chem,2008,283:1026-1033.
    [46]Kiriakidon M, Nelson PT, Kouranov A, et al. A combined computational-experimental approach predicts human microRNA target, Genes,2004, 18:1165-1178.
    [47]Bohnsack MT, Czaplinski K, Gorlich D. Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs, Rna,2004, 10:185-191.
    [48]Lee Y, Ahn C, Han J, et al. The nuclear RNaseⅢ Drosha initiates microRNA processing, Nature,2003,425:415-419.
    [49]McManus MT, Sharp PA, Gene silencing inmammalsby small interfering RNAs,Nature Reviews Genetics,2002,3:737-774.
    [50]Lee RC, Ambros V, An extensive class of small RNAs in Caenorhabditis elegans, Science,2001,294:862-64.
    [51]Reinhart BJ, Weinstein EG, Rhoades MW, et al, MicroRNAs in plants, Genes, 2002,16(13):1616-162.
    [52]Rana TM, Illuminating the silence:understanding the structure and function of small RNAs, Nat Rev Mol Cell Biol,2007,8(1):23-26.
    [53]Li CS, Feng Y, Coukos G, et al. Therapeutic MicroRNA Strategies in Human Cancer, The AAPS Journal,2009,11:747-756.
    [54]Fetsch JF, Laskin WB, Tavassoli FA, et al.Superficial angiomyxoma (cutaneoua myxoma).A clinicopatholgic study of 17 cases arising in the genital region, Int I Gynecol Pathol,1997,16:325-34.
    [55]David CH, Jun C, Roger PS, Involvement of easpase-3-like protease in the mechanism of cell death following focally evoked limbic seizures, J Neurochem, 2000,74:1215-1223.
    [56]Alexei K, Karen G, Introcerebral injection of Caspase-3 inhibitor prevents neuronal apoptosis after kainic acid-envoked status epilepticus, Mol Brain Res, 2000,75:216-224.
    [57]Steeper TA, Rosai J.Aggressive angiomyxoma of the female genital pelvis and perineum:report of nine cases of a distinctive type of gynecologic soft-tissue neoplasm, Am J Surg Pathol,1983,7:463-475.
    [58]Shashi Bala, Miguel Marcos, Gyongyi Szabo. Emerging role of microRNAs in liver diseases, World J Gastroenterol,2009,15(45):5633-5640.
    [59]Davis TH, Cuellar TL, Koch SM, et al, Conditional Loss of Dicer Disrupts Cellular and Tissue Morphogenesis in the Cortex and Hippocampus, The Journal of Neuroscience,2008,28(17):4322-4330.
    [60]Qian YZ, Shipley JB, LevaSseur JE, et al, Dissociation of heat shock proreins expression with isehemic tohrance by whole body hyperthermia in rat heart, J Mol Cell Cardiol,1998,30:1163-1172.
    [61]Dybdahl B, Slordahl SA, Waage A, et al.Myocardial ischaemia and the inflammatory response:release of heat shock pmtein 70 after myocardial infarction, Heart,2005,91:299-304.
    [62]牛廷献,罗晓红,史智勇等.红藻氨酸致痫大鼠海马区神经元凋亡的动态变化,中国行为医学科学,2006;15(4):297-310.
    [1]Prescott EM,Proudfoot NJ.Transcriptional collision between conver gent genes in budding yeast.Proc Natl Acad Sci USA,2002,99(13):8796-801.
    [2]Hastings ML,Milcarek C,Martincic K,et al.Expression of the thyroid hormone receptor gene,erbAalpha,in B lymphocytes:alternative mRNA processing is independent of differentiation but correlates with antisense RNA levels.Nucleic Acids Res,1997,25(21):4296-300.
    [3]Eddy SR.Non-coding RNA genes and the modern RNA world.Nat Rev Cancer,2001,2(12):919-29.
    [4]Ota A, Tagawa H, Karnan S. Identification and characterization of a novel gene, C13orf25, as a target for 13q31-q32 amplification in malignant lymphoma Cancer Research,64(9):3087-3095.
    [5]Poy MN, A pancreatic islet-specific microRNA regulates insulin secretion. Nature,2004,432(7014):226-230
    [6]Chen CZ, Li L. MicroRNAs modulate hematopoietic lineage differentiation. Science,303(5654):83-86
    [7]Lagos-Quintana M, Rauhut R, Lendeckel W,et al. Identification of novel genes coding for small expressed RNAs[J].Science,2001,294:853-858.
    [8]Chalfie M, Horvitz HR, Sulston JE. Mutations that lead to reiterations in the cell lineages of C.elegans.Cell,1981,24(1):59-69.
    [9]Neilson JR, Sharp PA. Small RNA regulators of gene expression. Cell, Volume 134, Issue 6,19 September 2008, Pages 899-902.
    [10]Lee Y, Kim M, Han J, et al. MicroRNA genes are transcribed by RNA polymerase
    [11]Cai X, Hagedorn CH, Cullen BR. Human microRNAs are processed from capped,polyadenylated transcripts that can also function as mRNAs.Rna,2004, 10(12):1957-66.
    [12]Han J, Lee Y, Yeom KH, et al.The Drosha-DCR8 complex in primary microRNA processing.Genes Dev,2004,18(24):3016-27.
    [13]Frankel LB, Christoffersen NR, Jacobsen A, et al. Programmed Cell Death 4(PDCD4)Is an important Functional Target of the MicroRNA miR-21 in Breast Cancer Cells.J Biol Chem,2008,283(2):1026-33.
    [14]Kiriakidon M, Nelson PT, Kouranov A, et al. A combined computational experimental approach predicts human microRNA target.Genes Dev,2004,18 (10):1165-78.
    [15]Bohnsack MT, Czaplinski K, Gorlich D. Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. Rna,2004,10(2):185-91.
    [16]Lee Y, Ahn C, Han J, et al. The nuclear RNaseⅢ Drosha initiates microRNA processing.Nature,2003,425:415-419.
    [17]JORDAN YZ, Review:The role of microRNAs in kidney disease. Nephrology, 15,2010:599-608.
    [18]McManus MT, Sharp PA. Gene silencing inmammalsby small interfering RNAs.Nature Reviews Genetics,2002,3(10):737-74.
    [19]Lee RC, Ambros V. An extensive class of small RNAs in Caenorhabditis elegans.Science,2001,294:862-64.
    [20]Reinhart BJ, Weinstein EG, Rhoades MW, et al. MicroRNAs in plants.Genes Dev,2002,16(13):1616-162.
    [21]Rana TM. Illuminating the silence:understanding the structure and function of small RNAs.Nat Rev Mol Cell Biol,2007,8(1):23-26.
    [22]戚艳婷,赵喻,张智,等.miR-34a在神经元中的表达特征及功能研究.分子细胞 生物学报.2009,42(3):217-223.
    [23]Bommer GT, Gerin I, Feng Y, et al. P53 mediated activation of miRNA34 candidate tumor -suppressor genes[J].Curr Biol,2007,17:1298-1307.
    [24]Duan W, Gao L, Wu X, et al. MicroRNA-34a is an important component of PRIM A-1-induced apoptotic network in human lung cancer cells[J].Int J Cancer,2009,11:1-8.
    [25]Ko LJ, Prives C, P53:Puzzle and paradigm. Genes Dev,1996,10:1054-1072.
    [26]Cregan SP, MacLaurin JG, Craig CG, et al. Bax -dependent caspase-3 activation is a key determinant in p53-induced apoptosis in neurons. J Neurosci,1999,19:7 860-7869.
    [27]Bommer GT, Gerin I, Feng Y, et al. P53-mediated activation of miRNA34 candidate tumor -suppressor genes. Curr Biol,2007,17:1298-1307.
    [28]Chang TC, Wentzel EA, Kent OA, et al. Transactivation of mir-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell,2007, 26:745-752.
    [29]He L, He X, Lim LP, et al. A microRNA component of the p53 tumour suppressor network. Nature,2007,447:1130-1134.
    [30]Raver-Shapira N, Marciano E, Meiri E, et al. Transcriptional activation of mir-34a contributes to p53-mediated apoptosis. Mol Cell,2007,26:731-743.
    [31]Tarasov V, Jung P, Verdoodt B, et al. Differential regulation of microRNAs by p53 revealed by massively parallel sequencing:Mir-34a is a p53 target that induces apoptosis and G1-arrest. Cell Cycle,2007,6:1586-1593.
    [32]Chunsheng Li, Yi Feng, George Coukos, et al.Therapeutic MicroRNA Strategies in Human Cancer. The AAPS Journal, Vol.11, No.4, December 2009,748-757.
    [33]Oltersdorf T, Elmore SW, Shoemaker AR, et al. An inhibitor of Bcl-2 family proteins induces regression of solid tumours.Nature,2005,435(7042):677-81
    [34]Han Z, Hong L, Han Y, et al. Phospho Akt mediates multidrugresis-tanceofgastriccancercellsthroughregulation of P-gp, Bcl-2 and Bax. J Exp Clin Cancer Res,2007,26(2):261-8
    [35]Reed JC. Bcl-2 family proteins:regulators of apoptosis and chemoresistance in hematologic malignancies. SeminHematol,1997,34(4 Suppl 5):9-19
    [36]Reed JC. Double identity for proteins of the Bcl-2 family.Nature,1997, 387(6635):773-776
    [37]Cole KA, Attiyeh EF, Mosse YP, et al. A functional screen identifies miR-34a as a candidate neuroblastoma tumor suppressor gene. Mol Cancer Res,2008, 6(5):735-42
    [38]Bommer GT, Gerin I, Feng Y, et al. p53-mediated activation of miRNA34 candidate tumor-suppressor genes. Curr Biol,2007,17(15):1298-307
    [39]Ji Q, Hao XB, Meng Y, et al. Restoration of tumor suppressor miR-34 inhibits human p53-mutant gastric cancer tumorspheres. BMC Cancer,2008,8:266
    [40]Ogawa H, Ishiguro K, Gaubatz S, et al. A complex with chromatin modifiers that occupies E2F- and Myc-responsive genes in GO cells. Science,2002, 296(5570):1132-1136
    [41]Tazawa H, Tsuchiya N, Izumiya M, et al. Tumor-suppressive miR-34a induces senescence-like growth arrest through modulation of the E2F pathway in human colon cancer cells.Proc Natl Acad Sci USA,2007,104(39):15472-15477
    [42]Welch C, Chen Y, Stallings RL. MicroRNA-34a functions as a potential tumor suppressor by inducing apoptosis in neuroblastoma cells. Oncogene,2007, 26(34):5017-22
    [43]Rossi AG, Sawatzky DA, Walker A, et al. Cyclin-dependentkinaseinhi-bitorsenhancetheresolutionofinflammation by promoting inflammatory cell apoptosis. Nat Med,2006,12(9):1056-1064
    [44]Vietri M, Bianchi M, Ludlow JW, et al. Direct interaction between the catalytic subunit of protein phosphatase 1 and pRb. Cancer Cell Int,2006,6:3
    [45]Bartkova J, Gron B, Dabelsteen E, et al. Cell-cycle regulatory proteins in human wound healing. Arch Oral Biol,2003,48(2):125-132
    [46]Sun F, Fu HJ, Liu Q, et al. Downregulation of CCND1 and CDK6 by miR-34a induces cell cycle arrest. FEBS Lett,2008,582(10):1564-8
    [47]He L, He XY, Lim LP, et al. A microRNA component of the p53 tumour suppressor network. Nature,2007,447(7148):1130-4
    [48]Kong YW, Cannell IG, de Moor CH, et al. The mechanism of micro-RNA-mediated translation repression is determined by the promoter of the target gene. Proc Natl Acad Sci USA,2008,105(26):8866-71
    [49]He L, He XY, Lowe SW, et al. MicroRNAs join the p53 network—another piece in the tumour-suppression puzzle. Nat Rev Cancer,2007,7(11):819-22
    [50]Brennecke J, Hipfner DR, Stark A, et al. Bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in drosophila. Cell,2003,113:25-36.
    [51]Harris KS, Zhang Z, McManus MT, et al. Dicer function is essential for lung epithelium morphogenesis. Proc Natl Acad Sci USA,2006,103:2208-2213.
    [52]Thompson BJ, Cohen SM. The hippo pathway regulates the bantam microRNA to control cell proliferation and apoptosis in drosophila. Cell,2006,126:767-774.
    [53]Lagos -Quintana M, Rauhut R, Yalcin A, et al. Identification of tissue-specific microRNAs from mouse. Curr Biol,2002,12:735-739.
    [54]Kapsimali M, Kloosterman WP, de Bruijn E, et al. MicroRNAs show a wide diversity of expression profiles in the developing and mature central nervous system[J]. Genome Biol,2007,8:173.
    [55]Brigitte VP, Estelle K, HerveK, et al. Temporal patterns of the cerebral inflammatory response in the rat lithium-pilocarpine model of temporal lobe epilepsy.Neurobiol Dis,2004; 17:385-402.
    [56]Samland H, Huitron Resendiz S, Masliah E, et al. Campbell L Profound increase in sensitivity to glutamatergic-but not cholinergic agonist-induced seizures in transgenic mice with astrocyte production of IL-6.J Neurosci Res. 2003;73:176-187.
    [57]孙艺平,张万琴,洪昭雄,等.癫痫敏感大鼠脑内GFAP2免疫反应活性的变化.神经科学,1996;3:73-78.
    [58]孙艺平,孙长凯,范明,等.NO对红藻氨酸癫痫发作和IL-6表达的影响.中国药理学通报.2003:19:397-400.
    [59]赵文元,刘建民,卢亦成,等.海马神经元癫痫样放电模型中神经元凋亡的研究[J].中国神经精神疾病杂志.2002,28(6):447-448.
    [60]尚伟,刘伟红,张珑,等Fas、caspase-3蛋白在颞叶癫痫病灶内的表达与神经元凋亡[J].中国神经精神疾病杂志.2005,31(5):359-361.
    [61]Kosik KS. The neuronal microRNA system, Nat Rev Neurosci,2006,7(12): 911-9201
    [62]王晓映,刘鹏,朱华,等,阿尔茨海默病中mir234a作用机制的探讨,中国比 较医学杂志,2009,19(10):5-10。
    [63]SailleC, Marin P, Martinou JC, et al. Transgenic murine cortical neurons expressing human Bcl22 exhibit increased resistance to amyloid beta2peptide neurotoxicity [J]. Neuroscience,1999,92(4):1455-14631
    [64]Song YS, Park HJ, Kim SY, et al. Protective role of Bcl22 on beta2 amyloid2induced cell death of differentiated PC 12 cells:reduction of NF2kappaB and p38 MAP kinase activation [J]. Neurosci Res,2004,49 (1):69-801
    [65]Ferreiro E, Eufrasio A, Pereira C, et al. Bcl22 overexpression protects against amyloid2beta and prion toxicity in GT127 neural cells [J]. J Alzheimers Dis, 2007,12(3):223-2281
    [66]Rohn TT, Vyas V, Hernandez Estrada T, et al. Lack of pathology in a triple transgenic mouse model of Alzheimerps disease after overexpression of the anti2apoptotic protein Bcl22 [J]. J Neurosci,2008,28 (12):3051-30591
    [67]Kosik KS. The neuronal microRNA system [J]. Nat Rev Neurosci,2006,7 (12):911-9201
    [68]Wang WX, Rajeev BW, Stromberg AJ, et al. The expression of microRNA miR2107 decreases early in Alzheimerps disease and may accelerate disease progression through regulation of beta2site amyloid precursor protein2cleaving enzyme 1[J]. J Neurosci,2008,28 (5):1213-12231
    [69]Hebert SS, HorreK, NicolaCL, et al. MicroRNA regulation of Alzheimerps Amyloid precursor protein expression [J]. Neurobiol Dis,2009,33 (3):422-4281
    [70]Hebert SS, HorreK, NicolaCL, et al. Loss of microRNA cluster miR229aPb21 in sporadic Alzheimerps disease correlates with increased BACElPbeta-2secretase expression [J]. Proc Natl Acad Sci USA,2008,105 (17):6415-64201
    [71]Boissonneault V, Plante I, Rivest S, et al. MicroRNA2298 and microRNA2328 regulate expression of mouse beta2amyloid precursor protein2converting enzyme 1[J]. J Biol Chem,2009,284 (4):1971-19811
    [72]Lukiw WJ. Micro2RNA speciation in fetal, adult and Alzheimerps disease hippocampus [J]. Neuroreport,2007,18 (3):297-3001
    [73]Rokhlin OW, Scheinker VS, Taghiyev AF, et al. MicroRNA-34 mediates AR-dependent p53-induced apoptosis in prostate cancer. Cancer Biol Ther,2008, 7(8):1288-96
    [74]Han Z, Hong L, Han Y, et al. Phospho Akt mediates multidrugresistanceo-fgastriccancercellsthroughregulation of P-gp, Bcl-2 and Bax. J Exp Clin Cancer Res,2007,26(2):261-268
    [75]Schratt GM, Tuebing F, Nigh EA, et al. A brain-specific microRNA regulates dendritic spine development Nature,2006,439:283-289
    [76]Cao XW, Pfaff SL, Gage FH. A functional study of miR-124 in the developing neural tube, Genes Dev,2007,21:531-536
    [77]Calin GA, Sevignani C, Dumitru CD, et al. Human microRNA gene2 sare frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA,2004,101:2999-3004
    [78]Jennifer A C, Anna M K, Kenneth S K. MicroRNA-21 Is an antiapoptotic factor in human glioblastoma cells. Cancer Res,2005,65(14):6029-6

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700