Kac-Moody代数的实根向量和虚根向量及Schubert-子模的一些性质
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文分为两个相对独立的篇章:
     第一部分主要讨论了Kac-Moody代数中的一类基本问题,即给定一个实根或虚根,其对应的实根向量和虚根向量该如何表示?我们要求给定的广义Cartan矩阵满足条件或,对;对应的李代数记为g(A)。我们得到结果如下:[定理1]设广义Cartan矩阵满足以下条件:
     (ⅰ)1≤i≠j≤n时,a_(i,j)=0或a_(i,j)<-2;
     (ⅱ)Kac-moody代数g(A)的Weyl群W中元素w_j的简约表示为:
     (ⅲ)任何两个相邻的因子r_(ik)和r_(ik-1)不可交换。记实根其相应的实根向量为:则有:[定理2]条件及符号如同定理1中所述,设t_(j-1)满足条件
    
     贝:
     /1\一</jj一1,O;>+ti_1(Qi。j。。十工),。\一<U。_,、口y>一t。1t,_
     在第二部分,我们主要关注Schubert-子模的维数问题。M.E.Hall
     在他的博士论文中,已经讨论过Schubert-伸和可积最高权模之间所
     具有的紧密联系,包括可积最高权模可表成Schubert-子模的并;且尽
     管可积最高权模的维数本身是无限的,但Schubert-子模的维数总是有
     限的;等等。本文中,我们试图对SChllbeyt-子模的维数作些探讨。
     本部分组织如下:
     第一节是引言,主要给出Schubert-子模的定义以及M.E.Hall在他
     的论文中已经得到的结果。
     第二节是概念和背景知识,主要是给出一些本文用到的概念及符
     号,以及一些本文用到的与W的性质相关的引理;并着重介绍引理2.2,
     弓理2.3,弓理2.4。
     第三节是一些既有的结果。从这一节起。我们只讨论对应于广义
     /2-n\
     Cartan矩阵A=DIn>2的一类特殊的二阶双曲型李代数。
     \2-n j
     特别介绍引理s2中关于g卜)的实根集的描述。
     在第四节中,令咤表示某些根空间的和。然后我们证明咤是交
     2
    
     换李代数,并且 Schubert-子模儿=U(n£).vw(。)。
     第五节我们先证明了g卜)的实根和虚根的几个性质,然后对
     Schubert-子模的维数表示给出猜想,这一猜想的证明在目前的证明
     中尚有困难。
There are two parts in this article.
    Part I is mainly discussing an elementary problem in Kac-Moody Algebra:how to describe the real and imaginary root vectors corresponding to a given real or imaginary root? We reqire the generalized Cartan matrice satisfy the following condition that a- is zero or less than -2 for all 1 i,j    (iii)for all k{2,3,...}, r and r are not exchangeable. Let denote the real roots: Let X. denote the corresponding real root vectors: Then:
    [Theorem 2] The conditions same as [Theorem 1]. Suppose that tj-1
    
    
    satisfies:Then,
    In Part II,we are specifically interested at dimensions of Schubert submodules. We got to know the close relationships between an integrable highest-weight module and Schubert submodules in the paper by M.E.Hall. He demenstrates some properties of Schubert submodules including the fact that an integrable highest-weight module V is a union of it's Schubert submodules and the dimensions of Schubert submodules are finite although the integrable highest-weight module itself is infinite-dimensional. It's the purpose to find an expression to dimensions of Schubert submodules in this part.
    This part is oganized as follows:
    Chapter 1 is an introduction. We present the definition of Schubert submodules and what M.E.Hall has done.
    Chapter 2 is preliminaries. We cite some relevant lemmas to introduce the properties of w,which is an element in Weyl group of a Lie algebra.
    Chapter 3 is some results associated with a special kind of Lie al-
    
    gebras. These Lie algebras are hyperbolic corresponding to a generalized
    Cartan matrice A =
    n>2. We specially introduce lemma
    3.3,an expression of the real set of g(A).
    Then in chapter 4,we denote n as the sum of some root spaces ga. And we prove that n is a commutative Lie algebra and a Schubert submodule Vw can be expressed by Vw = U(n,}.vw.
    At last in chapter 5,we give proofs to some properties of real and imaginary roots of g(A) and a guess to express the dimensions of Schubert submodules,whose proof is encountering some difficulty at present.
引文
1 M.E.Hall:An Introduction to Schubert Submodules(Doctorial dissertation, not found in published magzines)
    2 V.G.Kac: Infinite Dimensinal Lie Algebra, Third Edition, Cambridge University Press, Cambridge, 1990.
    3 卢才辉、王秋媛:秩为2的对称双曲型的正实根集与广义Fibonacci数列的关系(王秋媛毕业论文,未发表)
    4 万哲先:Kac-Moody代数导引,科学出版社,1993年。
    5 孟道骥:复半单李代数引论,北京大学出版社

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700