高温过热水蒸气的制备及生物质高温气化重整制氢特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物质气化制氢技术是一项富有前景的制氢技术,目前还处于探索阶段。虽然很多学者对生物质制氢技术进行了较为深入的研究,但由于气化手段的差异,以及气化因素的影响所取得的效果也各不相同。这些研究大多集中于用低温气化介质进行气化,气化产气中H_2含量较低,气体中焦油含量较高。针对这个问题,开展了生物质高温水蒸气气化多孔陶瓷气化重整制氢的研究。本文首先进行了高温蒸气发生器的研制并进行了高温过热蒸气和高温空气的制备实验,对高温蒸气发生器进行了热效分析;对高温蒸气发生器的运行过程进行了数值模拟。在非等温与等温加热条件下研究了大物料量物料的气化动力学特性。研究了序批式与连续式进料模式下的生物质高温气化、多孔陶瓷重整制氢实验研究,最后建立了生物质高温热解气化耦合模型,对气化过程进行了数值模拟。主要研究内容如下:
     (1)介绍了自制蓄热式高温带压蒸气发生器的工作原理及运行过程,对炉体结构进行了设计计算,设计并计算了保温层的厚度,根据运行特性,相应地提出了运行控制方案和参数检测方式。在对高温过热蒸气发生器进行调试运行以后,开展了高温水蒸气、高温空气制备的热态实验研究。开展了不同换向周期的高温水蒸气、高温空气制备实验,考察了不同换向周期以及一个换向周期内的高温介质的温度变化情况,并对不同状况下的尾气余热排放进行了探讨。研究了不同工况条件下的温度效率和热回收效率情况。以水蒸气为介质时60s的换向周期条件下热回收效率最大,而以空气为介质时30s为最佳换向周期。对系统热平衡及热效率进行了计算,通过对系统输入能量和系统输出能量的分析,计算了系统热效率,系统热效率可达73.56%,热收入与热支出误差为5.03%,测定结果正确。
     (2)通过数值模拟的方法研究了高温过热蒸气发生器的运行特性,考察了燃烧半周期和水蒸气余热半周期的炉体换热情况。对数值模型的有效性进行了验证,通过开展数值实验主要研究了不同换向周期,燃气进口速度,空气过量系数以及不同介质(水蒸气、空气)的换热特性。数值实验结果表明:换向周期越长,尾气带走的热量也就越多。换向周期过小,过大都不是最佳的选择。根据计算,60s的换向周期为最佳时间;燃气进口速度越大,释放出的热量就越多,但进口速度过大将导致燃烧不充分,不利于发生器效率的提高;当量比为1.5时,在陶瓷体的0.2-0.35m这一部分,陶瓷体温度处于较高水平,其后温度较低。在蓄热室中心线上的温度分布上,以空气为介质的温度分布低于以水蒸气为介质的温度分布,水蒸气和空气的预热曲线受二者物理性质影响较大。
     (3)通过热重差热分析仪在氮气和空气气氛条件下,考察了不同工况条件(升温速率、粒径大小、载气流速等)的生物质微量物料热解和燃烧特性;在自行设计的大物料热重分析装置上,开展了热解、燃烧和水蒸气气化的热重实验和大物料量物料水蒸气气化的等温热重实验,根据这些实验获得的TG和DTG曲线的变化趋势,分析微量物料与大物料量物料两种不同模式的热失重行为,并在此基础上建立了生物质表观动力学模型,进行了生物质热解、燃烧以及气化的动力学参数求解。对相同工况条件下的微量物料与大物料量物料的热失重过程进行了比较分析。实验结果表明:大物料量热重过程和微量物料热失重过程的动力学参数差异明显。
     (4)在自行设计的固定床气化炉实验台上开展了序批式进料模式的生物质高温气化实验研究,重点考察了反应温度、水蒸气流率以及物料粒径等不同工况条件对生物质气化产气特性的影响,实验结果表明不同温度条件下,每kg生物质的氢产率从800℃的21.91g H_2增加到950℃的71.63g H_2。不同水蒸气流率下CO平均浓度随着蒸气流率的增加略有增大,气体平均热值在11.87-12.04kJ/m~3范围变化,水蒸气流率为20.2g/min时的氢气产率最大。随着生物质给料粒径的减小,气体产率和气化效率均减小。
     (5)研究了连续进料模式下的生物质高温水蒸气、高温空气气化重整实验,以多孔陶瓷为重整介质,分别研究了气化温度、水蒸气与物料之比(S/B)、当量率(ER)、重整室温度以及有无多孔陶瓷重整对气化产气的影响,研究了多孔陶瓷重整的焦油去除特性。实验结果表明,高温反应条件有利于气化反应的进行及H_2的生成。以水蒸气与氧气联合气化中,最优当量率为0.05。随着S/B的增大,H_2浓度表现出增大的趋势,2.05是比较理想的S/B值。在重整温度为800℃时H_2浓度最高。多孔陶瓷重整对焦油具有明显的去除作用,焦油的TOC的转化率为29.93-50.31%。以空气为气化剂时,随着反应温度的增加,气化产气中CO浓度增大并占有较大比例,而产氢率及气体LHV随温度的增大而增大;随着ER值的增大,CO浓度逐渐减小,而CO_2浓度则逐渐增大,气体热值显著降低。
     6)生物质气化过程中,将热解区和还原区联合起来模拟气化过程。而以前的数值模拟大多为独立考察这两个过程,并进行数值模拟。本模型在时间和空间上整体模拟了气化过程的温度场和气化产气浓度场分布。主要考察了两种不同加热条件下的产气浓度,一是热解区升温条件为25K/min,另一种是热解区温度恒定为1400K。在两种加热模式中,还原区温度场和气体浓度场存在明显差异。
Biomass gasification process is one of promising ways of producing hydrogen-rich gas, and it is still in the primary exploring stage.Although many researchers had performed experimental study in hydrogen production by biomass gasification and the reforming of product gas and tars,these gasification studies were conducted on low temperature gasification agents,low concentration of H_2 and high content of tars in producing gas.Thus,a new treatment process which integrated the high temperature steam generation and biomass gasification process was presented for hydrogen-rich production.
     In this paper,a high temperature steam generator was invented for high temperature steam and air production,and the thermal efficiency of high temperature steam generator was analyzed.Numerical simulation on the process of high temperature steam generator was carried out.The kinetic characteristics of isothermal and non-isothermal thermo-gravimetric analysis were studied on different operation conditions.The type of sequence batch and continuous batch biomass high temperature gasification were researched on fixed-bed gasifier combined with a porous ceramic reformer.Finally,a pyrolysis and reduction zone models was established to simulate the global process of biomass gasification.The following works are carried out main experimental results and conclusions are as follows in this dissertation:
     (1) This paper introduced the operational principle of the high temperature pressured steam generator.The stove structure and insulating layer were designed and computed.Based on the features and control requirements,the running and controlling programme was proposed.The hot experiments of high temperature steam and air were performed after finishing the installation of high temperature steam generator.And then,the variety of temperature for high temperature agents and exhaust gas in different switching periods and one switching period were studied.The efficiency of temperature and heat recycle was also investigated.It was found that the steam efficiency of heat recycle reach maximum value in 60s switching period,however,that of air in the optimum value is 30s.The heat balance and efficiency of system were calculated through the analysis of generator energy input and output.It is concluded that the efficiency of whole system obtained 73.56%and the error of heat balance is 5.03%.
     (2) The heat exchange of half cycle of combustion and steam preheating were investigated with numerical simulation method.The validity of model was verified through compared the values of experiment and calculation.Several operation parameters such as switching period,fuel inlet velocity,equivalent ratio and preheat agents were studied with numerical simulation.The results show that more heat was carried away by exhaust gas with longer switching period.It is not the optimum option to choose too long and too short switching period for high temperature steam generation,and 60s is the fine value by calculation for system.The release heat increases with the increasing fuel inlet velocity,and it is unfavorable for too fast inlet velocity due to incomplete combustion.The porous ceramic is in high temperature state in the first part 0.2-0.35m as equivalent ratio is 1.5.For the centre line of regenerative chamber,the temperature distribution of air preheating was below steam one,the curves of preheating temperature was affected greatly by their physical properties.
     (3) Thermogravimetry of biomass pyrolysis,gasification and combustion were investigated in thermo-balance and a small batch laboratory-scale externally heated fixed-bed. Different operation conditions(heating rate,particle sizes and flow rates of carrier gas) were investigated.The kinetic characteristics of isothermal thermo-gravimetric analysis were studied on different operation conditions.Comparison the two different modes of weight loss from TG and DTG,it was found that the behavior of thermogravimetric process of small and large amount samples are different obviously.
     (4) The type of sequence batch biomass high steam temperature gasification was studied on fixed-bed gasifier combined with a porous ceramic reformer.Reaction temperature,steam flow rate and particle sizes as different effect factors were studied on producer gas composition.The experimental results show that H_2 production increases from 21.91g/kg biomass to 71.63g/kg biomass as reaction temperature increases from 800 to 950℃.With increase of steam flow rate,the concentration of carbon monoxide increase slightly and low heating value(LHV) changed between 11.87 and 12.04kJ/m~3,H_2 production reach maximum value as steam flow rate is 20.2g/min.With particle sizes of biomass decreased,producer gas production declined
     (5) Hydrogen-rich gas produced from biomass employed an updraft gasifier with a continuous biomass feeder were studied in this paper.A porous ceramic reformer was combined with the gasifier for producer gas reforming.The effects of gasifier temperature, equivalence ratio(ER),steam to biomass ratio(S/B),reforming temperature and the effect of porous ceramic reforming on the gas characteristic parameters(composition,density,yield, low heating value,and residence time,etc.) were investigated.The results show that a higher temperature favors the hydrogen production.With the increasing gasifier temperature varying from 800℃to 950℃,the hydrogen yield increased from 74.84 to 135.4g H_2/kg biomass, irrespectively.The low heating values vary first increased and then decreased with the increased ER from 0 to 0.3.A steam/biomass ratio of 2.05 was found as the optimum in the all steam gasification runs.H_2 production reaches maximum at the reforming temperature is 800~C.The effect of porous ceramic reforming showed the water soluble tar produced in the porous ceramic reforming,the conversion ratio of total organic carbon(TOC) contents show is between 29.93%and 50.31%,and the hydrogen concentration obviously higher than that of without porous ceramic reforming.With reaction temperature increases,CO concentration accounts for a large proportion in producer gas as air is agents,H_2 production and LHV increases with temperature rises.However,CO concentration decreases and CO_2 increase with ER increase,as a result,LHV of producer gas declines.
     (6) The behavior of a globe fixed bed biomass gasification reactor was simulated with a self-programming software.Pyrolysis zone and reduction zone models are combined to simulate the global process of biomass gasification.The volatile and gases broken up from pyrolysis zone were assumed to crack into an equivalent amount of CO,CH_4 and H_2O.It is considered that the volatile and gas leave pyrolysis zone instantaneously and then entering reduction zone as initial gas concentrations.The numerical method applied is Runge-Kutta forth order for the solution of pyrolysis zone model and finite difference for the reduction zone model to solve numerically the coupled ordinary differential equations.Simulations are carried out for the varying pyrolysis temperature with heating rate of 25K/min and constant temperature 1400K as the initial reduction zone temperature at the same time.The simulation results for temperature and concentration of gaseous species are in good agreement with published experimental data.
引文
[1]国际能源署.世界能源展望2007--中国与印度探索2008.
    [2]刘荣厚,牛卫生,张大雷.生物质热化学转化技术.北京:化学工业出版社,2005.
    [3]Chang J,Leung D Y C,Wu C Z et al.A review on the energy production,consumption,and prospect of renewable energy in China.Renewable and Sustainable Energy Reviews.2003,(7):453-468.
    [4]周中仁,吴文良.生物质能研究现状及展望.农业工程学报.2005,21(12):12-15.
    [5]孙振钧.中国生物质产业及发展取向.农业工程学报.2004,20(5):1-5.
    [6]Newby R A,Lippert T E,Alvin M A.Status of Westinghouse hot gas filters for coal and biomass power systems.Journal of Engineering for Gas Turbines and Power.1999,121:401-408.
    [7]蒋剑春.生物质能源应用研究现状与发展前景.林产化学与工业.2002,22(2):75-80.
    [8]刘刚,沈镭.中国生物质能源的定量评价及其地理分布.自然资源学报.2007,22(1):9-19.
    [9]唐晋.能源发展战略研究.北京:化学工业出版社,2004.
    [10]阴秀丽,吴创之,徐冰 等.生物质气化对减少CO_2排放的作用.太阳能学报.2000,21(1):40-44.
    [11]杨立忠,杨钧锡,别义勋.新能源技术.北京:中国科学技术出版社,1994.
    [12]袁振宏,吴创之,马龙隆等.生物质能利用原理与技术.北京:化学工业出版社,2005.
    [13]姚向君,田宜水.生物质能资源化清洁转化利用技术.北京:化学工业出版社,2005
    [14]McKendry P.Energy production from biomass(part 1):overview of biomass.Bioresource Technology.2002,83(1):37-46.
    [15]Bridgwater A V,Peacocke G V C.Fast pyrolysis processes for biomass.Renewable and Sustainable Energy Reviews.2000,4(1):1-73.
    [16]Demirbas A.Biomass resource facilities and biomass conversion processing for fuels and chemicals.Energy Conversion and Management.2001,42(11):1357-1378.
    [17]Hamelinck C N,Faaij A P C.Future prospects for production of methanol and hydrogen from biomass.Journal of Power Sources.2002,111(1):1-22.
    [18]Demirbas A.Mechanisms of liquefaction and pyrolysis reactions of biomass.Energy Conversion and Management.2000,41(6):633-646.
    [19]庄新妹.生物质超低酸水解制取燃料乙醇的研究:(博士学位论文).杭州:浙江大学,2005.
    [20]王庆一.中国可在生能源现状障碍与对策--开发利用现状.中国能源.2002,(7):39-44.
    [21]李海滨,吴创之,陈勇.我国垃圾处理的技术出路.中国科技成果.2002,(15):19-20.
    [22]莫非.生物质液体燃料的制取.新能源.2000,22(10):18-20.
    [23]迟姚玲,丁福臣,易玉峰等.生物质能的开发利用..北京石油化工学院学报.2008,16(2):11-14.
    [24]马文超,陈冠益,颜蓓蓓等.生物质燃烧技术综述.生物质化学工程.2007,41(1):43-48.
    [25]吴伟烽,刘聿拯.生物质能利用技术介绍.工业锅炉.2003,81(5):11-14.
    [26]翟学民.甘蔗渣锅炉设计新构思.工业锅炉.2000,(2):9.12.
    [27]田宜水,张鉴铭,陈晓夫等.秸秆直燃热水锅炉供热系统的研究设计.农业工程学报.2002,18(2):87-90.
    [28]Kaygusuz K,Tiirker M F.Biomass energy potential in Turkey.Renewable Energy.2002,26(4):661-678.
    [29]Cannell M G R.Carbon sequestration and biomass energy offset:theoretical,potential and achievable capacities globally,in Europe and the UK.Biomass and Bioenergy.2003,24(2):97-116.
    [30]Preto F.Combustion of wood processing residues in a circulating fluidized bedProceedings of 17~(th) International Conference on Fluidized Bed Combustion,Florida:ASME,2003:607.
    [31]Hiltunen M A,Vilokki H A J,Holopainen H A.Green energy from wood-based fuels using foster wheeler CFB boilersProceedings of 17th International Conference on Fluidized Bed Combustion,Flodda:ASME,2003:77-81.
    [32]Amand L-E,Leckner B.Metal emissions from co-combustion of sewage sludge and coal/wood in fluidized bed.Fuel.2004,83(13):1803-1821.
    [33]别如山,李炳熙,陆慧林等.燃生物废料流化床锅炉.热能动力工程.2000,15(4):344-347.
    [34]陈继辉,卢啸风.循环流化床锅炉焚烧生物质燃料的研究进展.农业工程学报.2006,22(10):267-270.
    [35]刘皓,黄琳,林志杰等.稻谷壳的高效低污染综合利用前景.能源研究与利用.1995,(4):15-17.
    [36]骆仲泱,周劲松,王树荣等.中国生物质能利用技术评价.中国能源.2004,26(9):39-42.
    [37]陈冠益,方梦祥,骆仲泱等.燃用稻壳流化床锅炉试验研究及35t&锅炉设计.动力工程.1997,17(6):47-54.
    [38]伊晓路,刁立璋,彭亮等.秸秆原料对循环流化床燃烧的影响.能源工程.2006,15(4):344-347.
    [39]李建锋,郝继红,吕俊复等.循环流化床锅炉掺烧生物质前景研究.电站系统工程.2007,23(6):37-42.
    [40]中国新能源网.国外生物质发电产业化发展:http://www.newenergy.org.cn/Html/0075/2007528_13755.html,2008.
    [41]杜瑛,胡常伟.生物质热解前景研究.山西师范大学学报(自然科学版).2007,21(2):76-80.
    [42]Goyal H B,Seal D,Saxena R C.Bio-fuels from thermochemical conversion of renewable resources:A review.Renewable and Sustainable Energy Reviews.2008,12(2):504-517.
    [43]王洪志,陈攀峰,刘朝等.生物质热解研究进展(综述).河北科技师范学院学报.2006,20(3).
    [44]郭艳,王垚魏飞,金涌.生物质快速裂解液化技术的研究进展.化工进展.2001,(8):13-17.
    [45]常杰.生物质液化技术的研究进展.现代化工.2003,23(9):13-16.
    [46]Cuevas A,Reinoso C,Scott D S.Pyrolysis oil production and its perspectivesPower production from biomass II,Espoo 1995.
    [47]L A.Improvement of pyrolysis products:bio-oil and bio-carbon/emulsion and slurries.(In):G G,D P,H Z.Energy from Biomass 4,Proceedings of the Third Contractors'Meeting,London:Elsevier Applied Science,1989:531.
    [48]Graham R G,Freel B A,Bergougnou M A.Rapid thermal processing(RTP):Biomass fast pyrolysis overview.(In):Hogan E,Robert J,Grassi Get al.Biomass Thermal Processing,Newbury,UK:CPL Press,1992:52-63.
    [49]Bridgwater A V.Developments in Thermochemical Biomass Conversion.(In):Boocock DGB.Blackie Academic and Professional,London 1997.
    [50]王峥,范浩杰,龚希武等.旋转锥式热解炉内煤颗粒混合热解的实验研究.动力工程2007,27(2):242-246.
    [51]朱聪玲,王述洋,李滨等.生物质裂解旋转锥式热解液化反应器的设计研究.佳木斯大学学报(自然科学版).2006,24(1):46-48.
    [52]Czernik S.Biomass pyrolysis activities in the USA in 1996.Pyrolysis Network for Europe.1997,(3):8-9.
    [53]Bridgwater A V,Meier D,Radlein D.An overview of fast pyrolysis of biomass.Organic Geochemistry.1999,30(12):1479-1493.
    [54]Roy C.Pyrovac Institute launches a new reactor enhancing heat transfer efficiency.PyNE Pyrolysis Network for Europe.1997,(3):5.
    [55]Ismadji S,Sudaryanto Y,Hartono S Bet al.Activated carbon from char obtained from vacuum pyrolysis of teak sawdust:pore structure development and characterization.Bioresource Technology.2005,96(12):1364-1369.
    [56]P D,A G.Bio-oil from pyrolysis of cashew nut shell:A near fuel.Biomass and Bioenergy.2003,25(1):113-117.
    [57]杨素文,丘克强.生物质真空热解液化技术研究现状.现代化工.2008,28(1):22-26.
    [58]P(u|¨)it(u|¨)n A E,(O|¨)zcan A,Gercel H F et al.Production of biocrudes from biomass in a fixed-bed tubular reactor:product yields and compositions.Fuel.2001,80(10):1371-1378.
    [59]N.O,A.E.P,B.B.U et al.Biocrude from biomass:pyrolysis of cottonseed cake.Renewable Energy.2001,24(3):615-625.
    [60]C D B,G S,C D R et al.Product distribution from pyrolysis of wood and agricultural residues.Ind Eng Chem Res.1999,38(22):16-24.
    [61]Onay O,Kockar O M.Fixed-bed pyrolysis of rapeseed(Brassica napus L.).Biomass and Bioenergy.2004,26(3):289-299.
    [62]Beis S H,Onay(O|¨),Kockar(O|¨) M.Fixed-bed pyrolysis of safflower seed:influence of pyrolysis parameters on product yields and compositions.Renewable Energy.2002,26(1):21-32.
    [63]张巍巍,陈雪莉,于遵宏.生物质慢速热解工艺的新探讨.环境科学与技术.2008,31(2):38-42.
    [64]Teng H,Lin H C,Ho J A.Thermogravimetric Analysis on Global Mass Loss Kinetics of Rice Hull Pyrolysis.Ind.Eng.Chem.Res.1997,36:3974-3977.
    [65]Mohan D,Pittman C U,Philip H et al.Pyrolysis of wood/biomass for bio-oil:a critical review.Energy Fuels.2006,20:848-889.
    [66]Gomez C J,Manya J J,Velo J E et al.Further applications of a revisited summative model for kinetics ofbiomass pyrolysis.Ind Eng Chem Res.2004,43:901-906.
    [67]Antal M J,Varhegyi G,Jakab E.Cellulose pyrolysis kinetics:revisited.Ind Eng Chem Res.1998,37:1267-1275.
    [68]Varhegyi G,Szabo P,Antal M J.Kinetics of charcoal devolatilization.Energy Fuels.2002,16:724-731.
    [69]Hu S,Jess A,Xu M.Kinetic study of Chinese biomass slow pyrolysis:Comparison of different kinetic models.Fuel.2007,86(17-18):2778-2788.
    [70]Mangut V E,Sabio E.Thermogravimetric study of the pyrolysis of biomass residues from tomato processing industry.Fuel Process Technol.2006,87:109-115.
    [71]蔡均猛,易维明,何芳等.坚果壳类生物质慢速热解动力学分析.农业工程学报.2006,22(1):119-122.
    [72]陈袆,罗永浩,陆方等.稻秆慢速热解的需热量及动力学分析.化学工程.2008,36(1):44-47.
    [73]Ates F,P(u|¨)it(u|¨)in A E,P(u|¨)t(u|¨)n E.Pyrolysis of two different biomass samples in a fixed-bed reactor combined with two different catalysts.Fuel.2006,85(12-13):1851-1859.
    [74]Adam J,Antonakou E,Lappas A et al.In situ catalytic upgrading of biomass derived fast pyrolysis vapours in a fixed bed reactor using mesoporous materials.Mieroporous and Mesoporous Materials.2006,96(1-3,26):93-101.
    [75]Antonakou E,Lappas A,Nilsen M H et al.Evaluation of various types of Al-MCM-41 materials as catalysts in biomass pyrolysis for the production ofbio-fuels and chemicals.Fuel.2006,85(14-15):2202-2212.
    [76]陈鸿伟,王晋权,庞永梅等.玉米秸秆催化热解试验研究.可再生能源.2007,25(5):19-22.
    [77]陈鸿伟,庞永梅,王晋权等.CaO催化热解玉米秸秆实验研究.节能.2007,(7):21-23.
    [78]邓霞,肖军,沈来宏.麦秸催化热解的TG-FTIR分析.能源研究与利用.2007,(3):22-26.
    [79]宋春财,胡浩权.秸秆及其主要组分的催化热解及动力学研究.煤炭转化.2003,26(3):91-97.
    [80]王昶,刘康,李桂菊等.操作条件对生物质催化热解产轻质芳烃的影响.生物加工过程.2007,5(4):54-59.
    [81]张秀梅,陈冠益,孟祥梅等.催化热解生物质制取富氢气体的研究.燃料化学学报.2004,32(4):446-449.
    [82]鲁长波,杨昌炎,林伟刚等.生物质催化热解的TG-FTIR研究.太阳能学报.2007,28(6):638-643.
    [83]闵凡飞,张明旭,陈清如等.新鲜生物质催化热解特性的研究.林产化学与工业.2008,28(3):28-34.
    [84]肖军,沈来宏,郑敏等.基于TG-FTIR的生物质催化热解试验研究.燃料化学学报.2007,35(3):280-284.
    [85]Aho A,Kumar N,Eranen K et al.Catalytic pyrolysis of woody biomass in a fluidized bed reactor:Influence of the zeolite structure.Fuel.2008,87(12):2493-2501.
    [86]P(u|¨)t(u|¨)n E,Ates F,P(u|¨)t(u|¨)n A E.Catalytic pyrolysis of biomass in inert and steam atmospheres.Fuel.2008,87(6):815-824.
    [87]尚琳琳,程世庆,张海清.生物质与煤共热解特性研究.太阳能学报.2006,27(8):852-856.
    [88]阎维平,陈吟颖.生物质混合物与煤共热解的协同特性.中国电机工程学报.2007,27(2):80-86.
    [89]马林转.褐煤与生物质两步法热解探索性实验研究:昆明理工大学硕士学位论文,2004
    [90]Vuthaluru H B.Investigations into the pyrolytic behaviour of coal/biomass blends using thermogravimetric analysis.Bioresource Technology.2004,92(2):187-195.
    [91]Meesri C,Moghtaderi B.Lack of synergetic effects in the pyrolytic characteristics of woody biomass/coal blends under low and high heating rate regimes.Biomass and Bioenergy.2002,23(1):55-66.
    [92]Moghtaderi B,Meesri C,Wall T F.Pyrolytic characteristics of blended coal and woody biomass.Fuel.2004,83(6):745-750.
    [93]马光路,刘岗,曹青等.不同物种生物质与废轮胎共热解对热解油的影响.现代化工.2007,第27卷增刊(2):249-252.
    [94]曹青,刘岗,鲍卫仁等.生物质与废轮胎共热解及催化对热解油的影响.化工学报.2007,158(15):1283-1289.
    [95]周利民,王一平,黄群武等.生物质塑料共热解热重分析及动力学研究.太阳能学报.2007,28(9):979-983.
    [96]邓代举,李圣峰,李桂英等.聚丙烯和毛竹共热解的研究.化学研究与应用.2006,18(10):1245-1248.
    [97]马光路,刘岗,曹青.生物质与聚合物、煤共热解研究进展.生物质化学工程.2007,41(3).
    [98]Comelissen T,Yperman J,Reggers G et al.Flash co-pyrolysis of biomass with polylactic acid.Part 1:Influence on bio-oil yield and heating value.Fuel.2008,87(7):1031-1041.
    [99]Sharypov V I,Beregovtsova N G,Kuznetsov B Net al.Co-pyrolysis of wood biomass and synthetic polymers mixtures:Part Ⅳ:Catalytic pyrolysis of pine wood and polyolefinic polymers mixtures in hydrogen atmosphere.Journal of Analytical and Applied Pyrolysis.2006,76(1-2):265-270.
    [100]Marin N,Collura S,Sharypov V I et al.Copyrolysis of wood biomass and synthetic polymers mixtures.Part Ⅱ:characterisation of the liquid phases.Journal of Analytical and Applied Pyrolysis.2002,65(1):41-55.
    [101]米铁,唐汝江,陈汉平等.生物质能利用技术及研究进展.煤气与热力.2004,24(12):701-705.
    [102]何方,王华,金会心.生物质液化制取液体燃料和化学品.能源工程.1999,14(5):14-17.
    [103]颜涌捷,任铮伟.纤维素连续催化水解研究.太阳能学报.1999,20(1):55-58.
    [104]Demirbas A.Yields of oil products fi'om thermochemical biomass conversion processes.Energy Conversion and Management.1998,39(7):685-690.
    [105]曹稳根,段红.我国生物质能资源及其利用技术现状.安徽农业科学.2008,36(14):6001-6003.
    [106]Wang Z,Pan Y,Dong T et al.Production of hydrogen from catalytic steam reforming of bio-oil using C12A7-O--based catalysts.Applied Catalysis A:General.2007,320:24-34.
    [107]Garcia L,French R,Czemik Set al.Catalytic steam reforming of bio-oils for the production of hydrogen:effects of catalyst composition.Applied Catalysis A:General.2000,201(2):225-239.
    [108]Minowa T,Ogi T.Hydrogen production from cellulose using a reduced nickel catalyst.Catalysis Today.1998,45(1-4):411-416.
    [109]Albertazzi S,Basile F,Brandin J et al.The technical feasibility of biomass gasification for hydrogen production.Catalysis Today.2005,106(1-4):297-300.
    [110]Rossum G v,Potic B,Kersten S R Aet al.Catalytic gasification of dry and wet biomass.Catalysis Today.2008,doi:10.1016/j.cattod.2008.04.048.
    [111]Courson C,Udron L,Swierczynski D et al.Hydrogen production from biomass gasification on nickel catalysts:Tests for dry reforming of methane.Catalysis Today.2002,76(1):75-86.
    [112]Hao X,Guo L,Zhang X et al.Hydrogen production from catalytic gasification of cellulose in supercritical water.Chemical Engineering Journal.2005,110(1-3):57-65.
    [113]Lu Y,Guo L,Zhang X et al.Thermodynamic modeling and analysis of biomass gasification for hydrogen production in supercritical water.Chemical Engineering Journal.2007,131(1-3):233-244.
    [114]Florin N H,Harris A T.Enhanced hydrogen production from biomass with in situ carbon dioxide capture using calcium oxide sorbents.Chemical Engineering Science.2008,63(2):287-316.
    [115]Engelen K,Zhang Y,Draelants D Jet al.A novel catalytic filter for tar removal from biomass gasification gas:Improvement of the catalytic activity in presence of H2S.Chemical Engineering Science.2003,58(3-6):665-670.
    [116]Zhang R,Cummer K,Suby A et al.Biomass-derived hydrogen from an air-blown gasifier.Fuel Processing Technology.2005,86(8):861-874.
    [117]Cao Y,Wang Y,Riley J T et al.A novel biomass air gasification process for producing tar-free higher heating value fuel gas.Fuel Processing Technology.2006,87(4):343-353.
    [118]Ni M,Leung D Y C,Leung M K Het al.An overview of hydrogen production from biomass.Fuel Processing Technology.2006,87(5):461-472.
    [119]Hu G,Xu S,Li S et al.Steam gasification of apricot stones with olivine and dolomite as downstream catalysts.Fuel Processing Technology.2006,87(5):375-382.
    [120]Gonzalez J F,Roman S,Bragado D et al.Investigation on the reactions influencing biomass air and air/steam gasification for hydrogen production.Fuel Processing Technology.2008,89(8):764-772.
    [121] Proll T, Hofbauer H. H2 rich syngas by selective CO2 removal from biomass gasification in a dual fluidized bed system - Process modelling approach. Fuel Processing Technology. In Press, Corrected Proof.
    [122] Calzavara Y, Joussot-Dubien C, Boissonnet G et al. Evaluation of biomass gasification in supercritical water process for hydrogen production. Energy Conversion and Management. 2005,46(4):615-631.
    [123] Haykiri-Acma H, Yaman S, Kucukbayrak S. Gasification of biomass chars in steam-nitrogen mixture. Energy Conversion and Management. 2006, 47(7-8): 1004-1013.
    [124] Yan Q, Guo L, Lu Y. Thermodynamic analysis of hydrogen production from biomass gasification in supercritical water. Energy Conversion and Management. 2006,47(11-12):1515-1528.
    [125] Caglar A, Demirbas A. Hydrogen rich gas mixture from olive husk via pyrolysis.Energy Conversion and Management. 2002,43(1):109-117.
    [126] Guehenneux G, Baussand P, Brothier M et al. Energy production from biomass pyrolysis: a new coefficient of pyrolytic valorisation. Fuel. 2005, 84(6):733-739.
    [127] Yanik J, Ebale S, Kruse A et al. Biomass gasification in supercritical water: Part 1.Effect of the nature of biomass. Fuel. 2007, 86(15):2410-2415.
    [128] Franco C, Pinto F, Gulyurtlu I et al. The study of reactions influencing the biomass steam gasification process. Fuel. 2003, 82(7):835-842.
    [129] Rapagn S, Jand N, Foscolo P U. Catalytic gasification of biomass to produce hydrogen rich gas. International Journal of Hydrogen Energy. 1998,23(7):551-557.
    [130] Turn S, Kinoshita C, Zhang Z et al. An experimental investigation of hydrogen production from biomass gasification. International Journal of Hydrogen Energy. 1998,23(8):641-648.
    [131] Demirbas A. Hydrogen-rich gas from fruit shells via supercritical water extraction. International Journal of Hydrogen Energy. 2004,29(12): 1237-1243.
    [132] Lu Y J, Guo L J, Ji C M et al. Hydrogen production by biomass gasification in supercritical water: A parametric study. International Journal of Hydrogen Energy.2006,31(7):822-831.
    [133] Wei L, Xu S, Zhang L et al. Steam gasification of biomass for hydrogen-rich gas in a free-fall reactor. International Journal of Hydrogen Energy. 2007, 32(1):24-31.
    [134] Mahishi M R, Goswami D Y. An experimental study of hydrogen production by gasification of biomass in the presence of a CO2 sorbent. International Journal of Hydrogen Energy. 2007, 32(14):2803-2808.
    [135] Mahishi M R, Goswami D Y. Thermodynamic optimization of biomass gasifier for hydrogen production. International Journal of Hydrogen Energy. 2007,32(16):3831-3840.
    [136] Florin N H, Harris A T. Hydrogen production from biomass coupled with carbon dioxide capture: The implications of thermodynamic equilibrium. International Journal of Hydrogen Energy. 2007, 32(17):4119-4134.
    [137] Sime R, Kuehni J, D'Souza L et al. The redox process for producing hydrogen from woody biomass. International Journal of Hydrogen Energy. 2003,28(5):491-498.
    [138] Merida W, Maness P-C, Brown R C et al. Enhanced hydrogen production from indirectly heated, gasified biomass, and removal of carbon gas emissions using a novel biological gas reformer. International Journal of Hydrogen Energy. 2004,29(3):283-290.
    [139] Hao X H, Guo L J, Mao X et al. Hydrogen production from glucose used as a model compound of biomass gasified in supercritical water. International Journal of Hydrogen Energy. 2003, 28(1):55-64.
    [140] Hauserman W B. High-yield hydrogen production by catalytic gasification of coal or biomass. International Journal of Hydrogen Energy. 1994,19(5):413-419.
    [141] Midilli A, Dogru M, Akay G et al. Hydrogen production from sewage sludge via a fixed bed gasifier product gas. International Journal of Hydrogen Energy. 2002,27(10):1035-1041.
    [142] Minowa T, Inoue S. Hydrogen production from biomass by catalytic gasification in hot compressed water. Renewable Energy. 1999, 16(1-4): 1114-1117.
    [143] Lv P, Yuan Z, Ma L et al. Hydrogen-rich gas production from biomass air and oxygen/steam gasification in a downdraft gasifier. Renewable Energy. 2007,32(13):2173-2185.
    [144] Guan J, Wang Q, Li X et al. Thermodynamic analysis of a biomass anaerobic gasification process for hydrogen production with sufficient CaO. Renewable Energy.2007, 32(15):2502-2515.
    [145] Lv P, Wu C, Ma L et al. A study on the economic efficiency of hydrogen production from biomass residues in China. Renewable Energy. 2008, 33(8): 1874-1879.
    [146] Rapagn S, Latif A. Steam gasification of almond shells in a fluidised bed reactor: the influence of temperature and particle size on product yield and distribution. Biomass and Bioenergy. 1997, 12(4):281-288.
    [147] Hanaoka T, Yoshida T, Fujimoto S et al. Hydrogen production from woody biomass by steam gasification using a CO2 sorbent. Biomass and Bioenergy. 2005,28(1):63-68.
    [148] Fujimoto S, Yoshida T, Hanaoka T et al. A kinetic study of in situ CO_2 removal gasification of woody biomass for hydrogen production. Biomass and Bioenergy.2007,31(8):556-562.
    [149] Shen L, Gao Y, Xiao J. Simulation of hydrogen production from biomass gasification in interconnected fluidized beds. Biomass and Bioenergy. 2008, 32(2): 120-127.
    [150] Nikoo M B, Mahinpey N. Simulation of biomass gasification in fluidized bed reactor using ASPEN PLUS. Biomass and Bioenergy. In Press, Corrected Proof.
    [151] Rapagn S, Provendier H, Petit C et al. Development of catalysts suitable for hydrogen or syn-gas production from biomass gasification. Biomass and Bioenergy. 2002,22(5):377-388.
    [152] Sadaka S S, Ghaly A E, Sabbah M A. Two-phase biomass air-steam gasification model for fluidized bed reactors: Part Ill-model validation. Biomass and Bioenergy.2002,22(6):479-487.
    [153] Tomishige K, Asadullah M, Kunimori K. Syngas production by biomass gasification using Rh/CeO_2/SiO_2 catalysts and fluidized bed reactor. Catalysis Today. 2004,89(4):389-403.
    [154] Lv P, Chang J, Wang T et al. Hydrogen-Rich Gas Production from Biomass Catalytic Gasification. Energy Fuels. 2004,18(1):228-233.
    [155] Boateng A A, Walawender W P, Fan L T et al. Fluidized-bed steam gasification of rice hull. Bioresource Technology. 1992,40(3):235-239.
    [156] Asadullah M, Ito S-i, Kunimori K et al. Biomass Gasification to Hydrogen and Syngas at Low Temperature: Novel Catalytic System Using Fluidized-Bed Reactor. Journal of Catalysis. 2002, 208(2):255-259.
    [157] Hashaikeh R, Fang Z, Butler I S et al. Sequential hydrothermal gasification of biomass to hydrogen. Proceedings of the Combustion Institute. 2005, 30(2):2231-2237.
    [158] Hanaoka T, Fujimoto S, Yoshida T et al. Hydrogen production from woody biomass by novel gasification using CO_2 Sorbent Studies in Surface Science and Catalysis:Elsevier, 2004. p. 103-108.
    [159] Yu J, Tian F J, McKenzie L J et al. Char-Supported Nano Iron Catalyst for Water-Gas-Shift Reaction: Hydrogen Production from Coal/Biomass Gasification.Process Safety and Environmental Protection. 2006, 84(2): 125-130.
    [160] Hanamura K, Kameya Y, Rubin E S et al. Hydrogen-rich gasification of biomass using porous catalyst Greenhouse Gas Control Technologies 7. Oxford: Elsevier Science Ltd, 2005. p. 2579-2582.
    [161] McKendry P. Energy production from biomass (part 3): gasification technologies.Bioresource Technology. 2002, 83(1):55-63.
    [162] Warnecke R. Gasification of biomass: comparison of fixed bed and fluidized bed gasifier. Biomass and Bioenergy. 2000,18(6):489-497.
    [163] Pindoria R V, Megaritis A, Messenbock R C et al. Comparison of the pyrolysis and gasification of biomass: effect of reacting gas atmosphere and pressure on Eucalyptus wood. Fuel. 1998, 77(11):1247-1251.
    [164] Di Blasi C, Buonanno F, Branca C. Reactivities of some biomass chars in air. Carbon.1999,37(8):1227-1238.
    [165] Rao M S, Singh S P, Sodha M S et al. Stoichiometric, mass, energy and exergy balance analysis of countercurrent fixed-bed gasification of post-consumer residues.Biomass and Bioenergy. 2004,27(2):155-171.
    [166] Hanaoka T, Inoue S, Uno S et al. Effect of woody biomass components on air-steam gasification. Biomass and Bioenergy. 2005,28(1):69-76.
    [167] Corella J, Toledo J M, Padilla R. Catalytic Hot Gas Cleaning with Monoliths in Biomass Gasification in Fluidized Beds. 1. Their Effectiveness for Tar Elimination.Ind. Eng. Chem. Res. 2004,43(10):2433-2445.
    [168] Matsumura Y, Minowa T. Fundamental design of a continuous biomass gasification process using a supercritical water fluidized bed. International Journal of Hydrogen Energy. 2004, 29(7):701-707.
    [169] Wu Z, Wu C, Huang H et al. Test Results and Operation Performance Analysis of a 1-MW Biomass Gasification Electric Power Generation System. Energy Fuels. 2003,17(3):619-624.
    [170] Kersten S R A, Prins W, van der Drift B et al. Principles of a novel multistage circulating fluidized bed reactor for biomass gasification. Chemical Engineering Science. 2003, 58(3-6):725-731.
    [171] Pfeifer C, Rauch R, Hofbauer H. In-Bed Catalytic Tar Reduction in a Dual Fluidized Bed Biomass Steam Gasifier. Ind. Eng. Chem. Res. 2004,43(7):1634-1640.
    [172]陈蔚萍,陈迎伟,刘振峰.生物质气化工艺技术应用与进展.河南大学学报(自然科学版).2007 37(1):35-41.
    [173]Lv P,Yuan Z,Wu C et al.Bio-syngas production from biomass catalytic gasification.Energy Conversion and Management.2007,48(4):1132-1139.
    [174]Lv P,Chang J,Xiong Z et al.Biomass Air-Steam Gasification in a Fluidized Bed to Produce Hydrogen-Rich Gas.Energy Fuels.2003,17(3):677-682.
    [175]Corella J,Aznar M P,Caballero M Aet al.140 g H2/kg biomass d.a.f,by a CO-shift reactor downstream from a FB biomass gasifier and a catalytic steam reformer.International Journal of Hydrogen Energy.2008,33(7):1820-1826.
    [176]陈冠益,高文学,颜蓓蓓等.生物质气化技术研究现状与发展.煤气与热力.2006,26(7):20一26.
    [177]Andre R N,Pinto F,Franco C et al.Fluidised bed co-gasification of coal and olive oil industry wastes.Fuel.2005,84(12-13):1635-1644.
    [178]D'Jesus P,Boukis N,Kraushaar-Czarnetzki Bet al.Gasification of corn and clover grass in supereritical water.Fuel.2006,85(7-8):1032-1038.
    [179]Pinto F,Franco C,Andr R N et al.Co-gasification study of biomass mixed with plastic wastes.Fuel.2002,81(3):291-297.
    [180]Zhu W,Song W,Lin W.Catalytic gasification of char from co-pyrolysis of coal and biomass.Fuel Processing Technology.2008,89(9):890-896.
    [181]Yang W,Ponzio A,Lucas C et al.Performance analysis of a fixed-bed biomass gasifier using high-temperature air.Fuel Processing Technology.2006,87(3):235-245.
    [182]Skoulou V,Zabaniotou A,Stavropoulos G et al.Syngas production from olive tree cuttings and olive kernels in a downdraft fixed-bed gasifier.International Journal of Hydrogen Energy.2008,33(4):1185-1194.
    [183]Song X,Guo Z.Technologies for direct production of flexible H2/CO synthesis gas.Energy Conversion and Management.2006,47(5):560-569.
    [184]Blasi C D.Kinetic and heat transfer control in the slow and flash pyrolysis of solids.Industrial and Engineering Chemistry Research.1996,35(1):37-46.
    [185]Guo X J,Xiao B,Zhang X Let al.Experimental study on air-stream gasification of biomass micron fuel(BMF) in a cyclone gasifier.Bioresource Technology.In Press,Corrected Proof.
    [186]Lv P M,Xiong Z H,Chang J et al.An experimental study on biomass air-steam gasification in a fluidized bed.Bioresource Technology.2004,95(1):95-101.
    [187]Zainal Z A,Rifau A,Quadir G Aet al.Experimental investigation of a downdraft biomass gasifier.Biomass and Bioenergy.2002,23(4):283-289.
    [188]Mansaray K G,Ghaly A E,AI-Taweel A Met al.Air gasificationnext term of rice husk in a dual distributor type fluidized bed gasifier.Biomass and Bioenergy.1999,17(4):315-332.
    [189]Garcia L,Benedicto A,Romeo E et al.Hydrogen Production by Steam Gasification of Biomass Using Ni-A1 Coprecipitated Catalysts Promoted with Magnesium.Energy Fuels.2002,16(5):1222-1230.
    [190]Sutton D,Kelleher B,Ross J R H.Review of literature on catalysts for biomass gasification.Fuel Processing Technology.2001,73(3):155-173.
    [191]Aznar M P,Corella J,Delgado Jet al.Improved steam gasification of lignocellulosic residues in a fluidized bed with commercial steam reforming catalysts.Ind.Eng.Chem.Res.199.3,32(1):1-10.
    [192]黄国胜,陈明强,王君等.生物质热转换制氢的研究进展.生物质化学工程.2008,42(3):39-44.
    [193]Delgado J,Aznar M P,Corella J.Biomass Gasification with Steam in Fluidized Bed:Effectiveness of CaO,MgO,and CaO-MgO for Hot Raw Gas Cleaning.Ind.Eng.Chem.Res.1997,36(5):1535-1543.
    [194]Simell P A,Lepp(a|¨)lahti J K,Kurkela E A.Tar-decomposing activity of carbonate rocks under high CO2 partial pressure.Fuel.1995,74(6):938-945.
    [195]V.V,G.T,K.Set al.Catalytic cracking of tar in biomass pyrolysis gas in the presence of calcined dolomite.Canadian Journal of Chemical Engineering.1992,70(5):1008-1013.
    [196]Myren C,H(o|¨)rnell C,Sj(o|¨)str(o|¨)m K et al.Catalytic Tar Cracking of Gas from Agricultural Residues and Biomass.(In):Pergamon PC.Biomass for Energy and Environment:Proceedings of the 9th European Bioenergy Conference,Banff,Canada 1996:1283-1288.
    [197]Alden H,Bj(o|¨)rkman E,Carlsson M et al.Catalytic Cracking of Naphthalene on Dolomite.(In):Bridgwater AV.Advances in Therrnochemical Biomass Conversion,London:Blackie Academic,1993:216-232.
    [198]Espen(a|¨)s B-G.The Kinetics of Conversion of Naphthalene into H2and CO Catalysed by Dolomite.(In):Chartier P.9~(th) European Bioenergy Conference & 1~(st) European Energy from Biomass Technology Exhibition,Copenhagen,Denmark:Pergamon,1996:270.
    [199]Garcia L,Salvador M L,Arauzo Aet al.CO2 gasification of pine sawdust.Effect of a coprecipitated Ni-A1 catalyst.(In):Kyritsis S,Beenackers AACM,Helm Pet al.Proceedings of 1 st World Conference on Biomass for Energy and Industry,Seville,Spain2000:1677-1680.
    [200]魏立纲.固体热载体法生物质催化气化制氢新工艺研究:大连理工大学.大连:大连理工大学,2006.
    [201]Kuhn J N,Zhao Z,Felix L G et al.Olivine catalysts for methane- and tar-steam reforming.Applied Catalysis B:Environmental.2008,81(1-2):14-26.
    [202]Mudge L K,Baker E G,Mitchell D H et al.Use of catalysts in biomass gasification.Solar Energy Eng.1985,107:89.
    [203]Encinar J M,Beltran F J,Ramiro A et al.Pyrolysis/gasification of agricultural residues by carbon dioxide in the presence of different additives:influence of variables.Fuel Processing Technology.1998,55(3):219-233.
    [204]Sada E,Kumazawa H,Kudsy M.Pyrolysis of lignins in molten salt media.Ind.Eng.Chem.Res.1992,31(2):612-616.
    [205]Perez P,Aznar P M,Caballero M Aet al.Hot Gas Cleaning and Upgrading with a Calcined Dolomite Located Downstream a Biomass Fluidized Bed Gasifier Operating with Steam-Oxygen Mixtures.Energy Fuels.1997,11(6):1194-1203.
    [206]Kinoshita C M,Wang Y,Zhou J.Effect of Reformer Conditions on Catalytic Reforming of Biomass-Gasification Tars.Ind.Eng.Chem.Res.1995,34(9):2949 -2954.
    [207]Aznar M P,Caballero M A,Corella Jet al.Hydrogen Production by Biomass Gasification with Steam-O2 Mixtures Followed by a Catalytic Steam Reformer and a CO-Shift System.Energy Fuels.2006,20(3):1305-1309.
    [208]曹小玲,蒋绍坚,吴创之 等.高温空气发生器热态实验研究.中国电机工程学报.2005,25(2):109一114.
    [209]Kunio Y.Gasification and Power Generation from Solid Fuels Using High Temperature AirProceeding of High Temperature Air Combustion Symposium,Beijing1999:48-68.
    [210]T.H,R.T.High temperature air combustion - revolution of combustion technology -(Part Ⅰ:New findings on high temperature air combustion) International Conference on Power Engineering-97,Tokyo,Japan1997.
    [211]N.Y,T.I,H.K et al.High efficiency power generation from coal and wastes utilizing high temperature air combustion technology:high temperature desulfurization using molten salt carbonateProceedings of the International Symposium on Advanced Energy Technology,Hokkaido University,Sapporo,Japan1998:463-470.
    [212]Kobayashi H,Yoshikawa K,Shioda S.Coal/wastes gasification power generation systems using high temperature air.Proceedings of the 2nd International High Temperature Air Combustion Symposium,,Energy & Resource Laboratories,Hsinchu,Taiwan 1999:E1.1-E1.7.
    [213]Pian C C P,Gannon R E,Norton O Pet al.Advanced gasifier design for low rank coals and waste-derived fuelsProceedings of the 2nd Intemational High Temperature Air Combustion Symposium,Energy & Resource Laboratories,Hsinchu,Taiwan1999:E.5.1-E.5.12.
    [214]Pian C C P,Yoshikawa K.Performance ofbiomass-fueled high-temperature air-blown gasification systemsProceedings of the Third CREST International Symposium on High-Temperature Air Combustion and Gasification,Tokyo Institute of Technology,Yokohama,Japan2000:A6-1-A6-12.
    [215]曹小玲,蒋绍坚,翁一武.生物质高温空气气化分析、现状及前景.节能技术.2004,22(1):47-49.
    [216]Young L,Pian C C P.High-temperature,air-blown gasification of dairy-farm wastes for energy production.Energy.2003,28(7):655-672.
    [217]曹小玲,苏明,刘永文等.高温空气发生器实验台的研制.太阳能学报.2005,26(3):391-395.
    [218]张灿,杨伟锋,岂斌等.木屑高温空气气化实验研究.能源工程.2006,(6):46-49.
    [219]罗玉和,楼波,马晓茜.高温空气发生器蓄热体换热性能的实验研究.工业炉.2005,27(6):9-12.
    [220]Belgiorno V,De Feo G,Della Rocca C et al.Energy from gasification of solid wastes.Waste Management.2003,23(1):1-15.
    [221]Chum H L,Overend R P.Biomass and renewable fuels.Fuel Processing Technology.2001,71(1-3):187-195.
    [222]李振宇,李智明,陈晓红.等离子体发生器内高温空气化学反应流场分析.热能动力工程.2003,18(4):402-406.
    [223]曹小玲,李远禄,翁一武.高温空气发生器的分析与探讨.工业炉.2004,26(2):6-9.
    [224]Sugiyama S,Suzuki N,Kato Y et al.Gasification performance of coals using high temperature air.Energy.2005,30(2-4):399-413.
    [225]Pedersen-Mjaanes H,Chan L,Mastorakos E.Hydrogen production from rich combustion in porous media.International Journal of Hydrogen Energy.2005,30(6):579-592.
    [226]Pian C C P,Yoshikawa K.Development of a high-temperature air-blown gasification system.Bioresource Technology 2001,79(3):231-241.
    [227]Bogdanovi B,Ritter A,Spliethoff B et al.A process steam generator based on the high temperature magnesium hydride/magnesium heat storage system.Hydrogen Energy.1995,20(10):811-822.
    [228]Yoshikawa.K.,Ootsuka.T.,Katsushima.H.et al.High temperature air coal combustion utilizing multi-staged enthalpy extraction technology.(In):L.K,A.C.Proceedings of the 1997 International Joint Power Generation Conference,New York,USA:The American Society of Mechanical Engineers.,1997:279-285.
    [229]姜正侯等.燃气燃烧与应用.北京:中国建筑工业出版社,2000.
    [230]李爱菊,张仁元,王毅.新型陶瓷换热器用蓄热材料的选择.耐火材料.2004,38(3):208-210.
    [231]曹小玲,李远逯,蒋绍坚.高温空气发生器研制过程中耐火材料的设计.工业炉.2003,25(3):4-7.
    [232]黄学章,周孑民,蒋绍坚等.高温空气发生器检测与控制研究.自动化仪表.2003,24(6):8-10.
    [233]许爹,王淑英.电器控制与PLC控制技术.北京:机械工业出版社,2005.
    [234]吴勤勤主编.控制仪表及装置.北京:化学工业出版社,2002
    [235]刘元扬,刘德溥.自动检测和过程控制.北京:冶金工业出版社,1997.
    [236]欧俭平,蒋绍坚,萧泽强.蜂窝型蓄热体传热过程热工特性的数值研究.耐火材料.2003,37(6):348-351.
    [237]马世平,贾力.陶瓷蓄热式换热器高温空气燃烧的实验研究.热科学与技术.2005,4(1):72-76.
    [238]曹小玲,蒋绍坚,吴创之等.高温空气发生器热态实验研究.中国电机工程学报.2005,25(2):109-113.
    [239]温良英,白晨光,陈登福等.高效蓄热室的传热数值模拟及实验分析.重庆大学学报.2006,29(2):68-71.
    [240]张先珍,戴德彦.换向时间对蓄热式燃烧的影响.冶金能源.2005,24(4):30-32.
    [241]Turns S R.An introduction to combustion.McGraw-Hill Companies,2000.
    [242]贾力,毛莹,杨立新.蓄热换热的温度分布与热饱和时间的数值模拟研究.应用基础与工程科学学报.2006,14(2):282-290.
    [243]罗海兵,陈维汉.蓄热式换热器传热过程的数值模拟.化工装备技术.2004,25(4):14-19.
    [244]欧阳德刚,肖坤伟.蜂窝陶瓷辐射体非稳态传热特性研究.钢铁研究.1997,95(2):44-49.
    [245]Park P,Cho H C,Shin H D.Unsteady thermal flow analysis in a heat regenerator with spherical particles.Int J.Energy Res.2003,27:161-172.
    [246]Viskanta X F R,Gore J P.Measurement and correlation of volumetric heat transfer coefficients of cellular ceramics.Experimental Thermal and Fluid Science.1998,17(4):285-293.
    [247]傅维标,卫景彬.燃烧物理学基础.北京:机械工业出版社,1984.
    [248]陶文铨.数值传热学.西安:西安交通大学,2004.
    [249]Sathe S,Bpeek R E,Tong T W.A Numerieal Analysis of Heat Transfer and Combustion in Porous Radiant Burners.Intemational Joumal of Heat and Mass Transfer.1990,33(1331-1338).
    [250]帕坦卡S V.传热于流动的数值计算.北京:科学出版社,1989.
    [251]P.F H,D M R.The Neeessity of Using Detailed Kineties in Mode for Combustion within Porous Media.Combustion and Flame.1993,93:457-466.
    [252]陶文铨.计算传热学的近代进展.北京:科学出版社,2000.
    [253]Jand N,Foscolo P U.Decomposition of Wood Particles in Fluidized Beds.Ind.Eng.Chem.Res.2005,44(14):5079-5089.
    [254]孙学信.燃煤锅炉燃烧试验技术与方法.北京:中国电力出版社,1999.
    [255]胡荣祖,史启祯.热分析动力学.北京:科学出版社,2001.
    [256]李余增.热分析.北京:清华大学出版社,1987.
    [257]程世庆,尚琳琳,张海清.生物质的热解过程及其动力学规律.煤炭学报.2006,31(4):501-505.
    [258]杜洪双,常建民,王鹏起.木质生物质快速热解生物油产率影响因素分析.林业机械与木工设备.2007,35(3):16-20.
    [259]Wang G,Li W,Li B et al.TG study on pyrolysis of biomass and its three components under syngas.Fuel.2008,87(4-5):552-558.
    [260]刘荣厚,牛卫生,张大雷.生物质热化学转换技术.北京:化学工业出版社,2005.
    [261]G M,C K,A L.Pyrolysis,a promising route for biomass utilization.42.1992,Bioresource Technology:219-231.
    [262]曾凡阳,刘朝,王文钊等.生物质热重实验及动力学分析.工业加热.2008,37(9).
    [263]Liou T-H.Kinetics study of thermal decomposition of electronic packaging material.Chemical Engineering Journal.2004,98:39-51.
    [264]Vogt J.Thermal analysis of epoxy-resins:Identification of decomposition products.Thermochimica Acta.1985,85:411-414.
    [265]Bilbao R,Mastral J F,Aldea M E et al.Kinetic study for the thermal decomposition of cellulose and pine sawdust in an air atmosphere.Journal of Analytical and Applied Pyrolysis.1997,39(1):53-64.
    [266]Richard J R,Monties B.Energy from Biomass.London:Applied Science Publishers,1981.
    [267]伊晓路,刘贞先,郭东彦等.生物质颗粒度对燃烧特性影响.现代化工.2006,26(增刊(2)):230-233.
    [268]温俊明.城市生活垃圾热解特性试验研究及预测模型.杭州:浙江大学,2006.
    [269]明赵,吴文权,玫卢等.稻草热裂解动力学研究.农业工程学报.2002,18(1):107-110.
    [270]Aiman S,Stubington J F.The pyrolysis kinetics of bagasse at low heating rates.Biomass and Bioenergy.1993,5(2):113-120.
    [271]Porteiro J,Miguez J L,Granada E et al.Mathematical modelling of the combustion of a single wood particle.Fuel Processing Technology.2006,87(2):169-175.
    [272]Mermoud F,Salvador S,Van de Steene-L et al.Influence of the pyrolysis heating rate on the steam gasification rate of large wood char particles.Fuel.2006,85(10-11):1473-1482.
    [273]Erlich C,Bj6mbom E,Bolado D et al.Pyrolysis and gasification of pellets from sugar cane bagasse and wood.Fuel.2006,85(10-11):1535-1540.
    [274]Dogru M,Howarth C R,Akay Get al.Gasification of hazelnut shells in a downdraft gasifier.Energy.2002,27(5):415-427.
    [275]马隆龙,吴创之,孙立.生物质气化技术及其应用.北京:化学工业出版社,2003.
    [276]邱钟明,陈砺.生物质气化技术研究现状及发展前景.可再生能源.2002,16-19(4).
    [277]裴爱霞,郭烈锦,金辉.超临界水中花生壳气化制氢的实验及机理研究.西安交通大学学报.2006,40(11):1263-1267.
    [278]吕友军,张西民,冀承猛等.玉米芯在超临界水中气化制氢实验研究.太阳能学报.2006,27(4):335-339.
    [279]毛肖岸,郝小红,郭烈锦等.超临界水中纤维素气化制氢的实验研究.工程热物理学报.2003,24(3):388-390.
    [280]廖强,朱跃钊.林木废弃物固定床气化试验研究.农机化研究.2008,(6):149.152.
    [281]谢玉荣,沈来宏,肖军等.生物质催化气化重整制取富氢气体的实验研究.西安交通大学学报.2008 42(5).
    [282]赵先国,常杰,吕鹏梅等.生物质富氧.水蒸气气化制氢特性研究.太阳能学报.2006,27(7):677-681.
    [283]Saxena R C,Seal D,Kumar Set al.Thermo-chemical routes for hydrogen rich gas from biomass:A review.Renewable and Sustainable Energy Reviews.2008,12(7):1909-1927.
    [284]傅献彩,陈瑞华.物理化学(上册)北京:人民教育出版社,1979.
    [285]吴创之,马隆龙.生物质能现代化利用技术.北京:化学工业出版社,2003.
    [286]孙云娟,蒋剑春.生物质热解气化行为的研究.林产化学与工业.2007,27(3):16-20.
    [287]杨国来,陈汉平,米铁等.不同因素对生物质气化产出气特性的影响.可再生能源.2007,25(3):34-38.
    [288]吕鹏梅,熊祖鸿,王铁军等.生物质流化床气化制取富氢燃气的研究.太阳能学报.2003,24(6):758-764.
    [289]傅献彩,陈瑞华.物理化学(下册).北京:人民教育出版社,1979.
    [290]Li S,Xu S i.Fast pyrolysis of biomass in free-fall reactor for hydrogen-rich gas.Fuel Processing Technology.2004,85(8-10):1201-1211.
    [291]李水清,李爱民,严建华等.生物质废弃物在回转窑内热解研究--Ⅰ.热解条件对热解产物分布的影响.太阳能学报.2000,21(4):333-340.
    [292]张晓东,周劲松,骆仲泱..生物质热解煤气中焦油含量的影响因素.燃烧科学与技术.2003,9(4):229-234.
    [293]Mininni G,Braguglia C M,Marani D.Partitioning of Cr,Cu,Pb and Zn in sewages sludge incineration by rotary kiln and fluidized bed furnaces.Waste Science and Technology.2000,41:61-68.
    [294]M L P,J C,H X Z.Biomass Air - Steam Gasification in a Fluidized Bed to Produce Hydrogen - Rich Gas.Energy &Fuels.2003,17(3):677-682.
    [295]Koufopanos C A,Papayannkaos N,Maschio G.Modelling of the pyrolysis ofbiomass particles.Studies on kinetics,thermal and heat transfer effects.Can.J.Chem.Eng.1991,69:907-951.
    [296]Chaudhari S T,Dalai A K,Bakhshi N N.Production of Hydrogen and/or Syngas(H2 +CO) via Steam Gasification of Biomass-Derived Chars.Energy Fuels.2003,17(4):1062-1067.
    [297]Kimura T,Miyazawa T,Nishikawa J et al.Development of Ni catalysts for tar removal by steam gasification of biomass.Applied Catalysis B:Environmental.2006,68(3-4):160-170.
    [298]Swierczynski D,Libs S,Courson C et al.Steam reforming of tar from a biomass gasification process over Ni/olivine catalyst using toluene as a model compound.Applied Catalysis B:Environmental.2007,74(3-4):211-222.
    [299]Laihong S,Yang G,Jun X.Simulation of hydrogen production from biomass gasification in interconnected fluidized beds.Biomass and Bioenergy.2008,32(2):120-127.
    [300]Furusawa T,Sato T,Sugito H et al.Hydrogen production from the gasification of lignin with nickel catalysts in supercritical water.International Journal of Hydrogen Energy,2007,32(6):699-704.
    [301]Wiltowski T,Mondal K,Campen Aet al.Reaction swing approach for hydrogen production from carbonaceous fuels.International Journal of Hydrogen Energy.2008,33(1):293-302.
    [302]Zhu Z H,Lu G Q,Yang R T.New Insights into Alkali-Catalyzed Gasification Reactions of Carbon:Comparison of N20 Reduction with Carbon over Na and K Catalysts.Journal of Catalysis.2000,192(1):77-87.
    [303]Cerfontain M B,Agalianos D,Moulijn J A.CO2 step-response experiments during alkali catalyzed carbon gasification;evaluation of the so-called CO overshoot.Carbon.1987,25(3):351-359.
    [304]Alarc6n N,Garcia X,Centeno M A et al.New effects during steam gasification of naphthalene:the synergy between CaO and MgO during the catalytic reaction.Applied Catalysis A:General.2004,267(1-2):251-265.
    [305]Takenaka S,Tomikubo Y,Kato E et al.Sequential production of H2 and CO over supported Ni catalysts.Fuel.2004,83(1):47-57.
    [306]Ersolmaz C,Falconer J L.Catalysed carbon gasification with Ba~(13)CO_3.Fuel.1986,65(3):400-406.
    [307]Wang Y,Kinoshita C M.Experimental analysis of biomass gasification with steam and oxygen.Solar Energy.1992,49(3):153-158.
    [308] Morita H, Yoshiba F, Woudstra N et al. Feasibility study of wood biomass gasification/molten carbonate fuel cell power system - Comparative characterization of fuel cell and gas turbine systems. Journal of Power Sources. 2004,138(1-2):31-40.
    [309] Zainal Z A, Ali R, Lean C H et al. Prediction of performance of a downdraft gasifier using equilibrium modeling for different biomass materials. Energy Conversion and Management. 2001,42(12):1499-1515.
    [310] Melgar A, Perez J F, Laget H et al. Thermochemical equilibrium modelling of a gasifying process. Energy Conversion and Management. 2007,48(1):59-67.
    [311] Babu B V, Sheth P N. Modeling and simulation of reduction zone of downdraft biomass gasifier: Effect of char reactivity factor. Energy Conversion and Management.2006,47(15-16):2602-2611.
    [312] Giltrap D L, McKibbin R, Barnes G R G. A steady state model of gas-char reactions in a downdraft biomass gasifier. Solar Energy. 2003, 74(1):85-91.
    [313] V.K.Srivastava, Sushil, R.K.Jalan. Prediction of concentration in the pyrolysis of biomass material-II. Energy Conversion and Management. 1996, 37(4):473-483.
    [314] A.Koufopanos C, Maschio G, Lucchesi A. Kinetic Modelling of the Pyrolysis of Biomass and Biomass Components. The Canadian Journal of Chemical Engineering.1989,67(l):75-84.
    [315] Babu B V, Chaurasia A S. Modeling, simulation and estimation of optimum parameters in pyrolysis of biomass. Energy Conversion and Management. 2003,44(13):2135-2158.
    [316] Wang Y, Kinoshita C M. Kinetic model of biomass gasification. Solar Energy. 1993,51(1):19-25.
    
    [317] Mountouris A, Voutsas E, Tassios D. Solid waste plasma gasification: Equilibrium model development and exergy analysis. Energy Conversion and Management. 2006,47(13-14): 1723-1737.
    [318] Senelwa K. The air gasification of woody biomass from short rotation forests: Massey University New Zealand, 1997.
    [319] Chee C S. The air gasification of wood chips in a downdraft gasifier: Kansas State University, 1987.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700