大涡模拟在燃油喷雾过程及多孔介质发动机中应用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
精确预测燃料在发动机中的喷射雾化过程和喷雾结构是预测发动机燃烧过程、工作性能和排放特性的一个重要前提。作为一种先进的湍流模拟方法,大涡模拟(LES)近年来在许多学科领域和工程部门都得到了应用。但国内关于内燃机缸内流动及燃烧的大涡模拟迄今尚鲜有报道。作为该领域初步的探索,本文将大涡模拟湍流模型应用到定容弹和柴油发动机中的燃油喷射与雾化过程,同时对多孔介质发动机的湍流流动和燃烧过程进行多维模型的计算与分析。本文主要完成了以下工作。
     (1)通过在发动机通用CFD软件KIVA-3V中加入大涡模拟计算程序模块,对固定容器及发动机内的燃油喷雾和流场特性进行模拟研究,同时以实验结果作为参照,与RANS(RNG k-ε)模型进行了对比分析。分析了喷射压力对液相贯穿度,油滴平均直径、气相速度场和湍能分布,燃油蒸发率等参数的影响。研究表明采用大涡模拟方法可以捕捉到喷雾场中湍流涡团的随机性的三维复杂结构。同时提高喷射压力,可以显著增大喷雾贯穿度,减小液滴的平均索特直径,同时压力的提高也增大了气相湍动能,促进燃油的蒸发。
     (2)亚网格尺度模型是影响大涡模拟结果的一个关键因素。本文在K-方程亚网格湍动能模型的基础上,对其它比较常用的三种代数模型(Smagoringsky模型,动态Smagoringsky模型和WALE模型)在燃油喷雾中的适用性做了探讨。在定容弹中采用三个不同的燃油喷雾实验作为数值模拟的验证对象,分析了喷雾的演变过程。从本文的结果中可以看出,三个代数亚网格模型在蒸发和非蒸发过程中喷雾的演变过程基本与实验相符,液相贯穿距也与实验接近。
     (3)基于一方程亚网格湍动能模型的大涡模拟程序,对一台Capelliar 3401柴油发动机缸内燃油喷雾、混合及燃烧进行了数值模拟。计算结果与RANS(RNG k-ε)模型结果及实验进行了比较分析,同时讨论了LES结果对网格的敏感性。LES计算得到的液滴和蒸汽相贯穿长度大于RANS结果,亚网格湍动能和湍流粘性则明显小于RANS结果。并发现初始涡流比明显影响喷雾贯穿距和燃烧室中的蒸汽相分布。
     (4)应用大涡模拟方法和不同的雾化模型研究了亚网格尺度湍动能,特别是燃油喷雾所诱导的亚网格湍能源项对液滴运动和喷雾特性的影响,并进一步探讨了亚网格气相湍动能对液滴弥散速度乃至喷雾场的影响。计算结果表明,KH-RT破碎模型要优于MTAB模型,湍流弥散效应和亚网格湍动能喷雾源项对燃油喷雾有着重要的影响,其作用均是减少喷雾贯穿距,使模拟结果更接近于实验,其中湍流弥散效应的影响更为显著。
     (5)鉴于多孔介质燃烧技术是一项很有发展潜力和应用前景的新技术,本文采用多维CFD方法对多孔介质(PM)发动机的燃烧和工作过程机理进行了初步的探索,并对不同布局方案和参数下PM发动机的工作过程做了循环模拟。
     针对Ferrenberg所提出的回热式发动机模型,用二维模型探讨了在不同当量比和孔隙率条件下的燃烧和排放特性。结果表明,回热式多孔介质发动机在燃烧和排放方面较之常规发动机都有明显的优势。采用低当量比能有效地降低污染物的排放,而孔隙率的影响则与当量比有关。本文的分析证明,采用多孔介质回热器是发动机实现稀薄燃烧的一条可供选择的途径。
     对活塞顶置式(活塞顶凹坑燃烧室内嵌入多孔介质的)发动机的燃烧与排放特性进行了二维数值模拟,并与未加多孔介质的常规发动机进行了对比。着重讨论了多孔介质固体温度的变化规律及其影响。同时分析了发动机燃烧与排放的主要影响因素,如孔隙率,多孔介质热物性,发动机的转速和当量比等。
     对多孔介质发动机的燃烧特性采用大涡模拟进行了初步分析。首先计算了考虑多孔介质随机结构特性的定容燃烧室内气体燃料喷射过程,并与自由空间中的喷射过程进行了对比。多孔介质的存在增强了湍流涡团的小尺度结构,明显改变了燃料的空间分布,而采用LES方法得到的气体喷射流场较之RANS具有更强的不规则度。最后采用大涡模型对两种结构形式的多孔介质发动机的燃烧过程进行了初步的计算分析。
An important precondition for accurate simulating the combustion process as well as working and emissions characteristics of the internal combustion (IC) engine is correctly predicting the fuel-air mixture formation and spray structure in the engine. As an advanced method for turbulence modeling, the large eddy simulation (LES) has been applied to various disciplinary and engineering fields recently. However, little has been reported on the application of LES to the in-cylinder flow and combustion of IC engines, especially rarely in China. As a preliminary study on the LES approach, in this paper a LES model is applied to the numerical computation of fuel sprays in a constant volume vessel and a diesel engine. Meanwhile, computations and analysis of the turbulent flow and combustion process in porous media (PM) engines are performed with a multi-dimensional model. Research work completed in this thesis is as the following.
     (1) The LES approach was implemented in the general engine CFD software KIVA-3V, which was employed for numerical computation of in-cylinder flows and fuel sprays in a constant volume vessel and in a Caterpillar 3400 series diesel engine. Computational results are compared with those obtained by a RANS (RNG k-ε) model as well as with experimental data. The influence of injection pressure was researched on relevant parameters, i.e. the spray penetration, the droplet SMD, the velocity and turbulent kinetic energy of the gas phase and the fuel evaporation rate. Computational results show that three dimensional, complex and stochastic turbulent eddy structures in the spray field can be captured by using the LES method, and that higher injection pressure can enhance prominently the spray penetration, reduce droplet sizes and accelerate fuel evaporation.
     (2) Sub-grid turbulence model is a key factor affecting LES computation results. Besides the one equation subgrid model (K-equation model), the applicability of three common algebraic subgrid models (Smagorinsky model, dynamic Smagorinsky model and WALE model) to fuel spray in IC engines were analyzed. Three different experiments on the evolution process of fuel sprays in constant volume vessels were used to validate the numerical simulations. The results show that the predicted evolution of the liquid and vapor phases in the spray by the three sub-grid models are generally in agreement with the experiment data, and the predicted penetrations are close to the measurement.
     (3) Based on the K-equation sub-grid turbulent kinetic energy model, the LES approach was employed for numerical computation of fuel sprays and combustion in a Caterpillar 3400 series diesel engine. Computational results are compared with those obtained by a RANS (RNG k-ε) model as well as with experimental data. The sensitivity of the LES results to mesh resolution is also discussed. The results show that LES generally provides flow and spray characteristics in better agreement with experimental data than RANS; and that small-scale random vortical structures of the in-cylinder turbulent spray field can be captured by LES. Furthermore, the penetrations of fuel droplets and vapors calculated by LES are larger than the RANS result, and the sub-grid turbulent kinetic energy and sub-grid turbulent viscosity provided by the LES model are evidently less than those calculated by the RANS model. Furthermore, it is found that the initial swirl significantly affects the spray penetration and the distribution of fuel vapor within the combustion chamber.
     (4) The LES approach and different breakup models were used to analyze sub-grid turbulent kinetic energy, especially the source term induced by the fuel spray, on the droplet movement and spray characteristics. Furthermore, the effects of the subgrid kinetic energy on the turbulent dispersion of droplets as well as on the fuel spray are examined. Computational results show that the KH-RT breakup model is superior to the MTAB model, and both the subgrid turbulent energy source term induced by the spray and the turbulent dispersion of the droplets have important effects on the fuel spray, resulting in decreased spray penetration. The effect of the turbulent dispersion is more prominent.
     (5) Since the porous media (PM) combustion technology is a promising and advanced combustion technique, in this thesis, a preliminary exploration of the combustion mechanism and working process in PM engine was carried out for different configurations and work parameters by a multi-dimensional simulation method.
     The characteristics of combustion and emission of the regenerative PM engine proposed by Ferrenberg were computed and analyzed using two dimension models under different equivalence ratios and porosities. Results show that the regenerative engine has advantages in both combustion efficiency and pollution emissions over conventional engines, and that using lower equivalence ratios can reduce emissions significantly, while the effect of the porosity is dependent on the equivalence ratio used. The regenerative PM engine is an effective alternative for realizing lean homogeneous combustion.
     A two-dimensional model for combustion and emission characteristics in the PM engine with a PM insert mounted onto the piston head is presented. Comparisons with the traditional engine without the PM insert were conducted. Temperature evolution of the PM and its effects are discussed with emphasis. Relevant influencing factors on combustion and emission of the PM engine, such as porosity, the initial PM temperature, engine speed and equivalence ratio, are analyzed.
     A preliminary LES Analysis of the the combustion characteristics of the PM engine was conducted. First, the gas fuel injection process in a constant volume vessel was computed by a PM model taking into account the random structure of porous media, and compared with that in the same vessel but without PM. It is demonstrated that the small-scale structure of turbulent eddies is enhanced and the fuel distribution is modified due to the presence of the porous media. Compared to the RANS model, the flow field due to gas injection obtained by LES is more irregular. Finally, a preliminary calculation and analysis of the combustion process in two PM engines with different configurations was performed by using the LES model.
引文
[1]Fuquan Z., Asmus T.N.,Assanis D.N. Homogeneous Charge Compression Ignition (HCCI) Engines: SAE International,2003.
    [2]解茂昭.内燃机计算燃烧学(第二版),大连:大连理工大学出版社,2005.
    [3]Reynolds W.C. Modelling of Fluid Motions in Engine-an Introductory Overview Combustion Modelling in Reciprocating Engine, New York:Plenum Press,1980.
    [4]Pope S.B. Turbulent flows, Cambridge:Cambridge University Press,2000.
    [5]戴正元.大涡模拟滤波网格尺度研究及其应用:(博士学位论文),上海:上海交通大学,2007.
    [6]Yakhot V.,Orszag S. Renormalization group analysis of turbulence. I. Basic theory, Journal of Scientific Computing,1986,1 (1):3-51.
    [7]Celik I., Yavuz I.,Smirnov A. Large eddy simulations of in-cylinder turbulence for internal combustion engines:a review, International Journal of Engine Research,2001,2 (2):119-148.
    [8]Rodi W. A new algebraic relation for calculating the Reynolds stresses, Z. Angew. Math. Mech.,1976, 56:219-221.
    [9]谷黎.柴油机燃油喷雾的大涡模拟数值模拟研究:(硕士学位论文),南昌:南昌大学,2008.
    [10]刘奕,郭印诚,张会强.大涡模拟及其在湍流燃烧中的应用,力学进展,2001,31(2):215-226.
    [11]Smagorinsky J. General circulation experiments with the primitive equations, Monthly weather review,1963,91 (3):99-164.
    [12]Deardorff J. A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers, J. Fluid Mech,1970,41 (2):453-480.
    [13]Galperin B.,Orszag S.A. Large Eddy Simulation of Complex Engineering and Geophysical Flows: Cambridge Univesiy Press,1993.
    [14]Piomelli U., Streett C.,Sarkar S. On the computation of sound by large-eddy simulations, Journal of Engineering Mathematics,1997,32 (2):217-236.
    [15]Piomelli U. Large-eddy simulation:present state and future directions, AIAA Paper,1998,98-0534.
    [16]Rodi W., Ferziger J., Breuer M., et al. Status of large eddy simulation:results of a workshop, Journal of Fluids Engineering,1997,119:248-263.
    [17]Mathew J., Lechner R., Foysi H., et al. An explicit filtering method for large eddy simulation of compressible flows, Physics of Fluids,2003,15 (8):2279-2289.
    [18]Stolz S., Adams N.A.,Kleiser L. An approximate deconvolution model for large-eddy simulation with application to incompressible wall-bounded flows, Physics of Fluids,2001,13 (4):997-1015.
    [19]Rizzetta D., Visbal M.,Blaisdell G. A time-implicit high-order compact differencing and filtering scheme for large-eddy simulation, International Journal for Numerical Methods in Fluids,2003,42 (6):665-693.
    [20]Kravchenko A.,Moin P. Numerical studies of flow over a circular cylinder at Re= 3900, Physics of Fluids,2000,12:403-417.
    [21]Martin M. Shock-capturing in LES of high-speed flows, Center for turbulence Research Annual Researce Briefs,2000.
    [22]Bardina J., Ferziger J.,Reynolds W. Improved subgrid-scale models for large-eddy simulation, AIAA Paper,1980-1357,1980.
    [23]Bardino J., Ferziger J.,Reynolds W. Improved turbulence models based on large eddy simulation of homogeneous, incompressible turbulent flows,Department of Mechanical Engineering, Stanford University, Report TF-19,1983.
    [24]Sandham N.,Reynolds W. Three-dimensional simulations of large eddies in the compressible mixing layer, Journal of Fluid Mechanics,1991,224:133-158.
    [25]Reynolds W. The potential and limitations of direct and large eddy simulations,Berlin Springer-Verlag,357:313-343 1990.
    [26]Pomraning E.,Rutland C. A dynamic one-equation non-viscosity LES model, AIAA journal,2002,40 (4):689-701.
    [27]Pomraning E. Dvelopment of Large Eddy Simulation Turbulence Models:(PHD),Madison: University of Wisconsin,2000.
    [28]Nicoud F.,Ducros F. Subgrid-scale stress modelling based on the square of the velocity gradient tensor, Flow, Turbulence and Combustion,1999,62 (3):183-200.
    [29]Galperin B., Orszag S.A.,Mason P. Large eddy simulation of complex engineering and geophysical flows:Cambridge University Press Cambridge, MA,1993.
    [30]Mare F.D., Jones W.P.,Menzies K.R. Large eddy simulation of a model gas turbine combustor, Combustion and Flame,2004,137 (3):278-294.
    [31]Grigoriadis D.G.E., Bartzis J.G.,Goulas A. Efficient treatment of complex geometries for large eddy simulations of turbulent flows, Computers& Fluids,2004,33 (2):201-222.
    [32]Germano M., Piomelli U., Moin P., et al. A dynamic subgrid-scale eddy viscosity model, Physics of Fluids A:Fluid Dynamics,1991,3 (7):1760-1765.
    [33]Moin P., Squires K., Cabot W., et al. A Dynamic Subgrid-Scale Model for Compressible Turbulence and Scalar Transport, Physics of Fluids a-Fluid Dynamics,1991,3 (11):2746-2757.
    [34]Kraichnan R. Models of intermittency in hydrodynamic turbulence, Physical Review Letters,1990, 65 (5):575-578.
    [35]Kobayashi T. Large Eddy simulation for engineering applications, Fluid Dynamics Research,2006, 38 (2-3):84-107.
    [36]Lilly D., K. A Proposed Modification of the Germano Subgrid-Scale Closure Model, Physics of Fluids,1992,4:633-635.
    [37]Kim W.,Menon S. Application of the localized dynamic subgrid-scale model to turbulent wall-bounded flows,Reno AIAA Paper,AIAA-97-0210,1997.
    [38]Sagaut P. Simulations of separated flows with subgrid models, La Recherche Aerospatiale,1996,(1):51-63.
    [39]Metais O.,Lesieur M. Spectral large-eddy simulation of isotropic and stably stratified turbulence, Journal of Fluid Mechanics,1992,239 (1):157-194.
    [40]Domaradzki J.A.,Loh K.C. The subgrid-scale estimation model in the physical space representation, Physics of Fluids,1999,11 (8):2330-2342.
    [41]张兆顺,崔桂香,徐春晓.湍流大涡数值模拟的理论和应用,北京:清华大学出版社,2008.
    [42]Fureby C.,Moller S. Large eddy simulation of reacting flows applied to bluff body stabilized flames, AIAA journal,1995,33 (12):2339-2347.
    [43]Pope S. PDF methods for turbulent reactive flows, Progress in Energy Combustion Science,1985,11 (2):119-192.
    [44]Gao F.,OBrien E.E. A large eddy simulation scheme for turbulent reacting flows, Physics of Fluids A:Fluid Dynamics,1993,5 (6):1282-1289.
    [45]Kerstein A. A linear-eddy model of turbulent scalar transport and mixing, Combustion Science and Technology,1988,60 (4-6):391-421.
    [46]Kerstein A. Linear-eddy modelling of turbulent transport. Part 6. Microstructure of diffusive scalar mixing fields, J. Fluid Mech,1991,231:361-394.
    [47]Kerstein A. Linear eddy modeling of turbulent transport. Part V:Geometry of scalar interfaces, Physics of Fluids A:Fluid Dynamics,1991,3:1110-1114.
    [48]Kim W., Menon S.,Mongia H. Large-eddy simulation of a gas turbine combustor flow, Combustion Science and Technology,1999,143 (1-6):25-62.
    [49]Bushe W.,Steiner H. Conditional moment closure for large eddy simulation of nonpremixed turbulent reacting flows, Physics of Fluids,1999,11 (7):1896-1906.
    [50]苏铭德.大涡模拟--研究湍流的一种新手段,力学进展,1984,25(4):440-451.
    [51]苑明顺.高雷诺数圆柱绕流的二维大涡模拟,水动力学研究与进展:A辑,1992,7(A12):614-622.
    [52]王兵,张会强,王希麟.后台阶流动再附着过程的大涡模拟研究,应用力学学报,2004,21(003):17-20.
    [53]王兵,张会强.不同亚格子模式后台阶湍流流动大涡模拟中的应用,工程热物理学报,2003,24(001):157-160.
    [54]向屏,郭印诚.二维槽道湍流拟序结构的大涡模拟,工程热物理学报,2002,23(005):657-660.
    [55]胡璨元,罗永浩,周力行.两种亚网格湍流模型的旋流扩散火焰大涡模拟,清华大学学报(自然科学版),2007,47(5):742-745.
    [56]周力行,胡砾元,王方.湍流燃烧大涡模拟的最近研究进展,工程热物理学报,2006,27(002):331-334.
    [57]Zhou L.X., Hu L.Y.,Wang F. Large-eddy simulation of turbulent combustion using different combustion models, Fuel,2008,87 (13-14):3123-3131.
    [58]刘阳,许春晓,周力行等.气固流动大涡模拟和两相湍流模型的评价,清华大学学报(自然科学版),2009,49(2):297-300.
    [59]崔桂香,许春晓,张兆顺.湍流大涡数值模拟进展,空气动力学学报,2004,22(002):121-129.
    [60]崔桂香,周海兵,张兆顺等.新型大涡数值模拟亚格子模型及应用,计算物理,2004,21(003):289-293.
    [61]Jakob H.,KALTENBACH H.J. Large-eddy simulation of flow around an airfoil on a structured mesh, Center for turbulence Research Annual Researce Briefs,1995:51-60.
    [62]Sankaran V., Genin F.,Menonz S.413Conference Paper413 "A Sub-grid Mixing Model for Large Eddy Simulation of Supersonic Combustion," AIAA Paper 2004-0801,2004
    [63]Menon S., McMurtry P.,Kerstein A. A linear eddy mixing model for large eddy simulation of turbulent combustion, London:Cambridge University Press,1993.
    [64]Sankaran V.,Menon S. Les of scalar mixing in supersonic shear layers, Proceedings of the Combustion Institute,2004,30:2835-2842.
    [65]Sone K., Patel N.,Menon S. large eddy simulation of fuel air mixing in an internal combustion engine, AIAA paper, AIAA-2001-0635,2001.
    [66]Fureby C. LES of a Multi-burner Annular Gas Turbine Combustor, Flow, Turbulence and Combustion,2009:1-22.
    [67]颜应文,赵坚行,张靖周等.三维贴体坐标系下燃烧室热态流场的大涡模拟,推进技术,2005,26(003):219-222.
    [68]颜应文,赵坚行.加力燃烧室污染特性的大涡模拟,燃烧科学与技术,2005,11(001):68-72.
    [69]赵坚行,颜应文.加力燃烧室热态流场的大涡模拟,工程热物理学报,2004,25:237-239.
    [70]李强,何国强,刘佩进等.模型固体火箭发动机内涡脱落过程的大涡模拟,推进技术,2005,26(006):481-484.
    [71]樊洪明,何钟怡.洁净室流场大涡模拟,空气动力学学报,2001,19(003):302-309.
    [72]Naitoh K.,Kuwahara K. Large eddy simulation and direct simulation of compressible turbulence and combusting flows in engines based on the BI-SCALES method, Fluid Dynamics Research,1992, 10:299-325.
    [73]Haworth D. Large-eddy simulation of in-cylinder flows, Oil& Gas Science and Technology,1999, 54(2):175-185.
    [74]O'Rourke P.J.,Sahota M.S. A variable explicit/implicit numerical method for calculating advection on unstructured meshes, Journal Computre Physics,1998,143:312-345.
    [75]Morse A.P., Whitelaw J.H.,Yianneskis M. Turbulent Flow Measurement by Laser Doppler Anemometry in a Motored Reciprocating Engine,Imperial College Dept. Mech., Report FS/78/24,1978.
    [76]Reuss D., Kuo T., Khalighi B., et al. Particle image velocimetry measurements in a high-swirl engine used for evaluation of computational fluid dynamics calculations, SAE International,952381, 1995.
    [77]Celik I., Yavuz I., Smirnov A., et al. Prediction of in-cylinder turbulence for IC engines, Combustion Science and Technology,2000,153:339-368.
    [78]Smirnov A., Yavuz I.,Celik I. Diesel combustion and LES of in-cylinder turbulence for IC-engines, in ASME Fall Technical Conference on In-Cylinder Flows modeand Combustion Processes,Paper 99-ICE-247:119-127 1999.
    [79]Yavuz I. Refined turbulence models for simulation of IC engine cylinder flows:(PHD),West Virginia University,2000.
    [80]Auriemma M., Corcione F., Macchioni R., et al. Interpretation of air motion in reentrant bowl in-piston engine by estimating Reynolds stresses, SAE Paper,980482,1998.
    [81]Moureau V., Barton L., Angelberger C., et al. Towards Large Eddy Simulation in Internal-Combustion Engines:Simulation of a Compressed Tumble Flow, SAE Paper,2004-01-1995, 2004.
    [82]Dugue V., Veynante D.,Gauchet N. Applicability of Large Eddy Simulation to the Fluid Mechanics in a Real Engine Configuration by Means of an Industrial Code, SAE Paper,2006-01-1194,2006.
    [83]Vermorel O., Richard S., Colin O., et al. Multi-Cycle LES Simulations of Flow and Combustion in a PFI SI 4-Valve Production Engine, SAE Paper,2007-01-0151,2007.
    [84]Huijnen V., Somers L.M.T., Baert R.S.G., et al. Study of turbulent flow structures of a practical-steady engine head flow using large-eddy simulations, Journal of Fluids Engineering-Transactions of the Asme,2006,128 (6):1181-1191.
    [85]杨萍.内燃机进气过程缸内湍流流动特性的大涡模拟:(硕士论文),大连:大连理工大学,2008.
    [86]Maozhao X.,Ping Y. large eddy simulation of in-cylinder turbulent flow field during intake stroke of an IC engine,Taipei Seventh Asua-Pacific Confence On Combustion,2009.
    [87]刘斌,欧阳光耀.影响柴油机喷雾数值模拟精度的若干因素分析,海军工程大学学报,2006,18(1):108-112.
    [88]Computational Comustion Laboratory:http://www. ccl. gatech.edu,2006
    [89]Stone C.,Menon S. Les of partially-premixed unsteady combustion, AIAA Paper 2003-310, 2003.
    [90]Menon S.,Patel N. Subgrid modeling for simulation of spray combustion in large-scale combustors, AIAA journal,2006,44 (4):709-723.
    [91]Tajiri K.,Menon S. Simulations of Combustion Dynamics in Pulse Combustor, Atlanta, Report TR-01-010,2001.
    [92]Stone C.,Menon S. Large-Eddy Simulations on a Cluster of SMP Machines: http://heron.ae.gatech.edu/ccl,2001
    [93]Menon S., Stone C.,Patel N. Multi-Scale Modeling for LES of Engineering Designs of Large-Scale Combustors, AIAA Paper,2004-0157,2004.
    [94]Menon S., Stone C.,Patel N. Multi-Scale Modeling for LES of Engineering Designs of Large-Scale Combustors AIAA paper,AIAA-2004-157 2004.
    [95]Chakravarthy V.,Menon S. Subgrid modeling of turbulent premixed flames in the flamelet regime, Flow, Turbulence and Combustion,2000,65 (2):133-161.
    [96]Sone K.,Menon S. Effect of subgrid modeling on the in-cylinder unsteady mixing process in a direct injection engine, Journal of Engineering for Gas Turbines and Power-Transactions of the Asme,2003,125 (2):435-443.
    [97]Sone K., Patel N.V.,Menon S. KIVALES:Large-Eddy Simulations of Internal Combustion Engines.Part 1:KIVALES User's Manual,Technical Report CCL-00-008,Part 2:KIVALES User's Manual,Technical Report CCL-00-009,Georigia Institute of Technology, http://www.ccl.gatech.edu/home_html,2000.
    [98]Hori T., Senda J., Kuge T., et al. Large Eddy Simulation of Non-Evaporative and Evaporative Diesel Spray in Constant Volume Vessel by Use of KIVALES, SAE Paper,2006-01-3334,2006.
    [99]Hori T., Kuge T., Senda J., et al. Large Eddy Simulation of Diesel Spray Combustion with Eddy-Dissipation Model and CIP Method by Use of KIVALES, SAE Paper,2007-01-0247,2007.
    [100]Fujimoto H., Senda J., Yamashita T., et al. Effect of Operational Condition on PM in Exhausted Gas through CI Engine, SAE Paper,2007-01-4077,2007.
    [101]Hori T., Kuge T., Senda J., et al. Effect of Convective Schemes on LES of Fuel Spray by Use of KIVALES, SAE Paper,2008-01-0930,2008.
    [102]Bharadwaj N., Rutland C.,Chang S. Large eddy simulation modelling of spray-induced turbulence effects, International Journal of Engine Research,2009,10 (2):97-119.
    [103]Jagus K., Jiang X., Dober G., et al. Assessment of largeeddy simulation feasibility in modelling the unsteady diesel fuel injection and mixing in a highspeed directinjection engine, Proceedings of the Institution of Mechanical Engineers, Part D:Journal of Automobile Engineering,2009,223 (8):1033-1048.
    [104]Bini M.,Jones W.P. Large Eddy Simulation of an evaporating acetone spray, International Journal of Heat and Fluid Flow,2009,30 (3):471-480.
    [105]Patel N.,S M. Simulation of spray-turbulence-flame interactions in a lean direct injection combustion, Combustion and Flame,2008,153:228-257.
    [106]Apte S.V., Mahesh K.,Moin P. Large-eddy simulation of evaporating spray in a coaxial combustor, Proceedings of the Combustion Institute,2009,32:2247-2256.
    [107]Senoner J.M., Sanjose M., Lederlin T., et al. Eulerian and Lagrangian Large-Eddy Simulations of an evaporating two-phase flow, Comptes Rendus Mecanique,2009,337 (6-7):458-468.
    [108]Vuorinen V., Larmi M.,Fuchs L. Large-Eddy Simulation on the Effect of Droplet Size Distribution on Mixing of Passive Scalar in a Spray, SAE Paper,2008-01-0933,2008.
    [109]Goryntsev D., Sadiki A., Klein M., et al. Large eddy simulation based analysis of the effects of cycle-to-cycle variations on air-fuel mixing in realistic DISI IC-engines, Proceedings of the Combustion Institute,2009,32:2759-2766.
    [110]Jiang X., Siamas G.A.,Jagus K. Physical modelling and advanced simulations of gas-liquid two-phase jet flows in atomization and sprays, Progress in Energy and Combustion Science,2009, doi:10.1016/j.pecs.2009.09.002.
    [111]虞育松,李国岫.基于气液两相流大涡模拟研究柴油喷雾的雾化过程,内燃机工程,2009,30:39-44.
    [112]Thobois L. Using LES to Investigate Reacting Flow Physics in Engine Design Process, SAE Paper,2007-01-0166,2007.
    [113]Li Y.,Kong S. Diesel combustion modelling using LES turbulence model with detailed chemistry, Combustion theory and modelling,2008,12 (2):205-219.
    [114]Rixin Y.,Xue-Song B. Effect of Turbulence and Initial Temperature Inhomogeneity on Homogeneous Charge Compression Ignition Combustion, SAE Paper,2006-01-3318,2006.
    [115]Daniel L. Incorporating advanced combustion models to study power density in diesel engines: (PHD),Madison:University of Wisconsin,1999.
    [116]Lee D., Pomraning E.,Rutland C.J. Les Modelling of Diesel Engines, SAE Paper,2002-01-2779, 2002.
    [117]Jhavar R.,Rutland C.J. Using large eddy simulations to study mixng effects in early injection diesel engine combustion SAE Paper,2006-01-0871,2006.
    [118]Hu B.,Rutland C.J. Flamelet modeling with LES for diesel engine simulations, SAE Paper,2006-01-0058,2006.
    [119]Hu B., Jhavar R.,Satbir S. Combustion modeling of diesel combustion with partially premixed conditions, SAE Paper,2007-01-0163,2007.
    [120]Hu B.,Rutland C.J. Combustion modeling of conventional diesle-type and HCCI-type diesel combustion with large eddy simulation, SAE Paper,2008-01-0958,2008.
    [121]Weinberg F. Combustion temperatures:the future?, Nature,1971,233:239-241.
    [122]Hanamura K., Echigo R.,Zhdanok S. Superadiabatic combustion in a porous medium, International Journal of Heat and Mass Transfer,1993,36 (13):3201-3209.
    [123]Durst F.,Weclas M. A new type of internal combustion engine based on the porous-medium combustion technique, Proceedings of the Institution of Mechanical Engineers, Part D:Journal of Automobile Engineering,2001,215 (1):63-81.
    [124]Weclas M. Potential of porous medium combustion technology as applied to internal combustion engines:Georg-Simon-Ohm-Fachhochsch.,2005.
    [125]解茂昭,杜礼明.多孔介质中往复流动下超绝热燃烧技术的进展与前景,燃烧科学与技术,2002,8(006):520-524.
    [126]Xie M.Z., Shi J.R., Deng Y.B., et al. Experimental and numerical investigation on performance of a porous medium burner with reciprocating flow, Fuel,2009,88 (1):206-213.
    [127]Mujeebu M.A., Abdullah M.Z., Abu Bakar M.Z., et al. Applications of porous media combustion technology-A review, Applied Energy,2009,86 (9):1365-1375.
    [128]Weclas M., Ates B.,Vlachovic V. Basic aspects of interaction between a high velocity Diesel jet and a highly porous medium (PM),9th Int. Conference on Liquid Atomization and Spray Systems ICLASS, 2003.
    [129]Durst F.,Weclas M. A new concept of IC engine with homogeneous combustion in a porous medium,Nagoya, Japan,2001.
    [130]Martynenko V., Echigo R.,Yoshida H. Mathematical model of self-sustaining combustion in inert porous medium with phase change under complex heat transfer, International Journal of Heat and Mass Transfer,1998,41 (1):117-126.
    [131]Ruiz F.,Sepka S. New Experiments and Computations on the Regenerative Engine, SAE International,930063,1993.
    [132]Ferrenberg A. The single cylinder regenerated internal combustion engine, SAE International,900911,1990.
    [133]Ferrenberg A.,Webber W.; U.S Patents:1988.
    [134]Ferrenberg A. Low Heat Rejection Regenerated Engines--A Superior Alternative to Turbocompounding, SAE International,940946,1994.
    [135]Park C.,Kaviany M. Evaporation-Combustion affected by in-cylinder, reciprocating porous regenerator, Transactions of the ASME,124 (2):184-194.
    [136]Park C. Modeling thermal regeneration in reciprocating, reacting streams with applications in thermoelectric power generation and in internal combustion engines:(PHD),The University of Michigan, 2000.
    [137]Serna P. The regenerative engine, theory:Mechanical, Materials&Aerospace Engineering,2002.
    [138]Hanamura Miyairi Y.,Echigo R. Reciprocating heat engine with superadiabatic combustion in porous media, JSME (B),1995,61 (586):2349-2356.
    [139]Polasek M.,Macek J. Homogenization of Combustion in Cylinder of Ci Engine Using Porous Medium, SAE Paper,2003-01-1085,2003.
    [140]Zhao Z.G., Wang C.H.,Me M.Z. Numerical study on the realization of compression ignition in a type of porous medium engine fueled with Isooctane, Fuel,2009,88 (11):2291-2296.
    [141]Zhao Z.G.,Xie M.Z. Numerical study on the compression ignition of a porous medium engine, Science in China Series E-Technological Sciences,2008,51 (3):277-287.
    [142]Liu H.S., Xie M.Z.,Wu D. Thermodynamic analysis of the heat regenerative cycle in porous medium engine, Energy Conversion and Management,2009,50 (2):297-303.
    [143]赵治国,解茂昭.多孔介质发动机燃烧过程的多维数值研究,内燃机学报,2007,25(004):339-345.
    [144]刘宏升,解茂昭,陈石.多孔介质发动机的双区燃烧模型,内燃机学报,2007,25(6):505-512.
    [145]Weclas M.,Faltermeier R. Diesel jet impingement on small cylindrical obstacles for mixture homogenization by late injection strategy, International Journal of Engine Research,2007,8 (5):399-413.
    [146]Weclas M.,Maschinenbau F. Strategy for intelligent Internal Combustion engine with homogeneous combustion in cylinder, Sonderdruck Schriftenreihe University of Applied Sciences in Nuernberg,2004, 26:1-14.
    [147]Chien L.D., Chae J.O.,Hwan K.Y. Improving surface characteristics of Porous medium reactor in diesel engine by Plasma technology: http://www.fisita.com/students/congress/sc06papers/f2006sc27.pdf.,2006
    [148]Pedras M.,de Lemos M. Macroscopic turbulence modeling for incompressible flow through undeformable porous media, International Journal of Heat and Mass Transfer,2001,44 (6):1081-1093.
    [149]Masuoka T.,Takatsu Y. Turbulence model for flow through porous media, International Journal of Heat and Mass Transfer,1996,39 (13):2803-2810.
    [150]Alvarez G., Bournet P.E.,Flick D. Two-dimensional simulation of turbulent flow and transfer through stacked spheres, International Journal of Heat and Mass Transfer,2003,46 (13):2459-2469.
    [151]Antohe B.V.,Lage J.L. A general two-equation macroscopic turbulence model for incompressible flow in porous media, International Journal of Heat and Mass Transfer,1997,40 (13):3013-3024.
    [152]Getachew D., Minkowycz W.,Lage J. A modified form of the model for turbulent flows of an incompressible fluid in porous media, International Journal of Heat and Mass Transfer,2000,43 (16):2909-2915.
    [153]Nakayama A.,Kuwahara F. A macroscopic turbulence model for flow in a porous medium, Journal of Fluids Engineering-Transactions of the Asme,1999,121 (2):427-433.
    [154]Pedras M.H.J.,de Lemos M.J.S. On the definition of turbulent kinetic energy for flow in porous media, International Communications in Heat and Mass Transfer,2000,27 (2):211-220.
    [155]Kuwahara F., Yamane I.,Nakayama A. Large eddy simulation of turbulent flow in porous media, International Communications in Heat and Mass Transfer,2006,33 (4):411-418.
    [156]Erlebacher G., Hussaini M., Speziale C.G., et al. Toward the large-eddy simulation of compressible turbulent flows, Journal of Fluid Mechanics,1992,238:155-185.
    [157]Kim W., Menon S.,Mongia H. Numerical simulations of reacting flows in a gas turbine combustor, Combustion Science and Technology,1999,143:25-62.
    [158]James S., Zhu J.,Anand M. Large-Eddy Simulations of Gas Turbine Combustors, AIAA Paper,2005-552.
    [159]Lenormand E., Sagaut P., Phuoc L., et al. Subgrid-scale models for large-eddy simulations of compressible wall bounded flows, AIAA journal,2000,38 (8):1340-1350.
    [160]Menon S., Yeung P.,Kim W. Effect of subgrid models on the computed interscale energy transfer in isotropic turbulence, Computers& Fluids,1996,25 (2):165-180.
    [161]Kim W.,Menon S. A new incompressible solver for large-eddy simulations, International Journal of Numerical Fluid Mechanics,1999,31:983-1017.
    [162]Menon S. Subgrid combustion modelling for large-eddy simulations, International Journal of Engine Research,2000,1 (2):209-227.
    [163]Pao Y.H. Structure of turbulent velocity and scalar fields at large wave numbers, Physics of Fluids,1965,8:1063-1070.
    [164]Chakravarthy V.,Menon S. Large-eddy simulations of turbulent premixed flames in the flamelet regime, Combustion Science and Technology,2001,162:175-222.
    [165]Menon S.,Calhoon W. Subgrid mixing and molecular transport modeling for large-eddy simulations of turbulent reacting flows, Proceedings of the Combustion Institute,1996,26:59-66.
    [166]Pannala S.,Menon S. On large eddy simulations of reacting two-phase flows, Atlanta, Technical Report CCL-00-006,2000.
    [167]Williams F. Spray combustion and atomization, Physical and Fluid 1985,1:541-545.
    [168]Borman G.,Johnson J. Unsteady vaporization history and trajectories of fuel drops injected into swirling air, SAE paper,620271.
    [169]Dukowicz J. Partical-fluid numerical model for liquid sprays, COMPUT.PHYS,1980,35:229-253.
    [170]Sankaran V. Sub-grid combustion modeling for compressible:(PHD),Georgia,2003.
    [171]Sirignano W.A. Fuel droplet vaporization and spray combustion, Progress in Energy Combustion Science,1983,9:291-322.
    [172]Faeth G.M. Spray combustion phenomena, Proceedings of the Combustion Institute,1996, 26:1593-1612.
    [173]Crowe C., Sommerfeld M.,Tssuji Y. Multiphsase flows with droplets and particles:CRC Press, 1997.
    [174]Faeth G. Mixing, transport and combustion in sprays, Progress in Energy and Combustion Science,1987,13:293-345.
    [175]Nordin N. The KIVA Jumpstation:http://www.tfd.chalmers.se/-nordin/KJS/,
    [176]Senda J. Experimental study on diesel fuel spray:Doshisha University,1984.
    [177]Reitz R. Modeling Atomization Processes in High-Pressure Vaporizing Spray, Atomization and Spray Technology,1987,3:309-337.
    [178]Beale J.,Reitz R. Modeling spray atomization with the Kelvin-Helmholtz/Rayleigh-Taylor hybrid model, Atomization and sprays,1999,9 (6):623-650.
    [179]Bellman R,H. P.R. Effects of surface tension and viscosity on Taylor instability, Quarterly of Applied Mathematics,1953,12:151-162.
    [180]Lee C.S.,Park S.W. An experimental and numerical study on fuel atomization characteristics of high-pressure diesel injection sprays, Fuel,2002,81 (18):2417-2423.
    [181]Allocca L., Belardini P., Bertoli C., et al. Experimental and Numerical Analysis of a Diesel Spray, SAE Paper,920576,1992.
    [182]Konig G.,Blessing M.408Conference Paper408 "Database on spray characteristics," I-LEVEL Confidential report DaimlerChrysler 2003,AG.
    [183]Fujimoto H., Dan T., Takagishi S., et al. Effect of Ambient Gas Properties for Characteristics of Non-Reacting Diesel Fuel Spray, SAE Paper,970352,1997.
    [184]Lyle M.P.,Sanghoon K. Transient Liquid Penetration of Early-Injection Diesel Sprays, SAE Paper,09010839,2009.
    [185]Montgomery D.,Reitz R. Six Mode Cycle Evaluation of the Effect of EGR and Multiple Injections on Particulae and NO Emissions from a D.I. Diesel Engine, SAE Paper,960316,1996.
    [186]Bellan J. Perspectives on Large Eddy Simulations for Sprays:Issues and Solutions, Atomization and sprays,2000,10 (3-5):409-426.
    [187]Moin P.,Apte S. Large-Eddy Simulation of Realistic Gas Turbine-Combustors, AIAA journal,2006, 44 (4):698-708.
    [188]Amsden A.A. KIVA-II:a computer program for chemically reactive flows with sprays,Los Alamos National Laboratory, LA-11560-MS,1989.
    [189]Myong K.J.,S H. Evaporation characteristics of multi-component fuel, Fuel,2006,85:2632-2639.
    [190]Lyle M.P.,Sanghoon K. Visualization of Diesel Spray Penetration, Cool-Flame, Ignition, High-Temperature Combustion, and Soot Formation Using High-Speed Imaging, SAE Paper,090100658, 2009.
    [191]Gao J., Nishida K., Moon S., et al. Characteristics of Evaporating Diesel Spray:A comparison of laser measurements and empirical/theoretical predictions, SAE Paper,2009-01-0854,2009.
    [192]Liu.A.B, Mather.D,Reitz R. Modeling the Effects of Drop Drag and Breakup on Fuel Sprays,930072,1993.
    [193]Howell J.R., Hall M.J.,Ellzey J.L. Combustion of hydrocarbon fuels within porous inert media, Progress in Energy and Combustion Science,1996,22 (2):121-145.
    [194]Younis L.B.,Viskanta R. Experimental-Determination of the Volumetric Heat-Transfer Coefficient between Stream of Air and Ceramic Foam, International Journal of Heat and Mass Transfer,1993,36 (6):1425-1434.
    [195]Henneke M.R.,Ellzey J.L. Modeling of filtration combustion in a packed bed, Combustion and Flame,1999,117 (4):832-840.
    [196]Ergun S. Fluid Flow through Packed Columns, Chemical Engineering Progress,1952,48 (2):89-94.
    [197]Fu X., Viskanta R.,Gore J.P. Measurement and correlation of volumetric heat transfer coefficients of cellular ceramics, Experimental Thermal and Fluid Science,1998,17 (4):285-293.
    [198]Siegel R.,Howell.J. Thermal radiation heat transfer, Washington:Hemisphere,1992.
    [199]吕兆华.泡沫型多孔介质等效导热系数的计算,南京理工大学学报,2001,25(3):257-261.
    [200]Apoorva A.,N. A.D. Multi-Dimensional Modeling of Ignition, Combustion and Nitric Oxide Formation in Direct Injection Natural Gas Engines, SAE Paper,2000-01-1839,2000.
    [201]Papageorgakis G.,Assanis D.N. Optimizing Gaseous Fuel-Air Mixing in Direct-Injection Engines Using An Rng-Based K-Ge Model, SAE Paper,980135,1998.
    [202]冯立岩.基于柴油预混和压燃的碰撞喷雾及燃烧数值模拟:(PHD),大连:大连理工大学,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700