海湾、近岸海域水交换研究的关联矩阵方法及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水交换是海湾、近岸海域的重要水动力学特性,是研究海湾、近岸海域环境容量的基础。目前,对水交换问题的研究主要有两类方法:一是在假定研究海域内水体充分混合的前提下,根据水量守恒和指标物质(通常为盐分)守恒,利用实测到的湾内外及湾口指标物质浓度差,计算海水交换率、交换时间,进而建立简单的水质预测模型,这类方法适用于小海湾。二是,直接用数值模拟方法模拟特定海域水体的运动过程,得出水交换时间尺度的分布。
     本文针对大型海湾、近岸海域水交换的特点,在数值模拟的基础上,提出了用关联矩阵研究水交换的方法。关联矩阵的概念是,将研究海域划分为多个海区,用关联矩阵中的元素表示一定时刻某海区中来自其它海区的海水权重,整个矩阵描述了研究区域各海区间的水体交换关系。关联矩阵可由数值模拟结果统计而得,是对数值模拟结果中水体交换特征的提炼和归纳。
     利用关联矩阵的矩阵运算可以预测在初始浓度或源项作用下的水质变化。利用矩阵运算预测水质变化是一种简单的水质预测模型,计算简单、速度较快,是对复杂数值模拟方法的一种补充。在进行水质预测的过程中,由于引入了交换浓度的概念,故放宽了对“海区内混合充分”假定的要求。
     应用关联矩阵将驻留时间概念扩展到矩阵形式,用以表示各海区海水相互影响的时间尺度。推导出了各时间尺度与关联矩阵之间的关系。指出驻留过程和更新过程分别是以拉格朗日观点和欧拉观点描述水交换特征。
     建立了用于模拟海湾、近岸海域水交换的水动力学数学模型和对流扩散数学模型,通过解析解和实测资料对本文所建立的数学模型进行了检验和验证。针对数值模拟中缓坡浅海海域宽阔潮间带上的动边界处理问题,提出了一种基于“预估水深”的新的干湿判断方法,并应用多个算例对所提出的干湿判断方法进行了验证。结果显示,本文的干湿判断方法无明显的数值振荡产生,且可以较准确的估计浅水处水体的蓄留能力。
     通过典型算例,对所提出的用关联矩阵研究水交换的方法进行了检验。并将其应用于渤海、渤海湾和天津近岸海域的水交换研究当中。
Water exchange is an important hydrodynamic character of sea bay and coastal water, and it is the basis to study the environmental capacity of the water body. There are two main approaches to the study of water exchange. Firstly, based on the assumption that the studied bay is mixing sufficiently, the whole exchange rate or time is calculated by the measured concentration in the bay, out of the bay and at the mouth of the bay, according to the conservation of the water body and the index substance (the salinity is used usually). This method is effective for the bay with small area. Secondly, the distribution of the character time scales of water exchange can be obtained by numerical simulation of water motion.
     In this dissertation, based on the numerical simulation, the relation matrix is introduced to study the water exchange of sea bay or coastal water with large area. With the study area divided into sub-areas, the element of relation matrix is used to represent the water weighting of certain sub-area contributed by another sub-area, while the relation matrix describe the water exchange relationship among sub-areas. This matrix can be calculated by the results of numerical simulation, and can be considered as the extraction and conclusion of the water exchange character.
     Variation of water quality due to initial field and source can be predicted by the operation of relation matrix. This method is a simplified model for water quality prediction with simply computation and rapid speed, so it is an effective complement to the complex numerical simulation. In the water quality prediction by relation matrix, the assumption of sufficient mixing is relaxed due to the introduction of the exchange concentration.
     The conception of residence time is extended from single value to the matrix form which is used to express the time scales of the interaction of water body in the sub-areas. The relation formula of the time scales and the relation matrix is educed. It is pointed out that the residence process and the flushing process characterize the water exchange in Lagrangian viewpoint and Eulerian viewpoint respectively.
     The hydrodynamic model and the advection-diffusion model are set up to simulate the water exchange. The models are verified by cases with exact solutions and validated against the measured data. In the numerical simulation, a new wetting and drying method based on the“predicted water depth”is developed to deal with the moving boundary due to tidal waves at the tidal flat. In order to validate the new method, test cases are performed. The results show that the new method leads to no excessive numerical wiggles and results in effective estimation of retention volume in each cell with shallow water.
     The method of relation matrix is verified by a series of typical cases. And it is applied to the water exchange of the Bohai Sea, the Bohai Bay and the Tianjin Coastal Water.
引文
[1] 陈长胜, 2003. 海洋生态系统动力学与模型. 北京: 高等教育出版社.
    [2] 陈伟, 苏纪兰, 1999(a). 狭长海湾潮交换的分段模式 I. 模式的建立. 海洋环境科学, 18(2): 59~65.
    [3] 陈伟, 苏纪兰, 1999(b). 狭长海湾潮交换的分段模式 II. 在象山港的应用. 海洋环境科学, 18(3): 7~10.
    [4] 董礼先, 苏纪兰, 1999(a). 象山港水交换数值研究 I. 对流扩散型的水交换模式. 海洋与湖沼, 30(4): 410~415.
    [5] 董礼先, 苏纪兰, 1999(b). 象山港水交换数值研究 II. 模型应用和水交换研究. 海洋与湖沼, 30(5): 467~470.
    [6] 窦振兴, 张存智, 张砚峰, 1986. 渤海风海流污染物输运的数值模拟. 海洋与湖沼, 17(5): 412~419.
    [7] 管卫兵, 王丽娅, 潘建明, 董礼先, 2002. POM 模式在河口湾污染物质输运过程模拟中的应用. 海洋学报, 24(3): 9~17.
    [8] 何磊, 2004. 海湾水交换数值模拟方法研究. 硕士学位论文, 天津大学, 天津.
    [9] 胡建宇, 1998. 罗源湾海水与外海水的交换研究. 海洋环境科学, 17(3): 51~54.
    [10] 黄祖珂, 1991. 渤海的潮波系统及其变迁. 青岛海洋大学学报, 21(2):1~12.
    [11] 匡国瑞, 杨殿荣, 喻祖祥等, 1986. 海湾水交换的研究-海水交换率的计算方法. 海洋环境科学, 5(3): 44~48.
    [12] 匡国瑞, 1987. 海湾水交换的研究-乳山东湾环境容量初步探讨. 海洋环境科学, 6(1): 13~23.
    [13] 刘绿柳, 杨志峰, 沈珍瑶, 2003. 水体交换与传输的时间维特征. 自然资源学报, 18(1): 87~93.
    [14] 李孟国, 曹祖德, 1999. 海岸河口潮流数值模拟的研究与进展. 海洋学报, 21(1): 111~125.
    [15] 吕咸青, 方国洪, 2002. 渤海 M2 分潮的伴随模式数值试验. 海洋学报, 24(1): 17~24.
    [16] 宋志尧, 薛鸿超, 严以新, 2000. 线边界法在潮流模拟中的应用. 海洋工程, 18(4): 49~54.
    [17] 潘伟然, 1992. 湄江湾海水交换率和半更换期的计算. 厦门大学学报(自然科学版), 31(1): 64~68.
    [18] 秦曾灏, 1980. 关于海面风应力的计算问题. 海洋湖沼通报, 3: 1~8.
    [19] 孙涛, 2002. 波浪对渤海湾近岸海域污染物输移扩散规律影响的研究. 博士学位论文, 天津大学, 天津.
    [20] 孙文心, 1988. 环境流体力学模型. 山东海洋学院学报, 18(2): 12~24.
    [21] 孙英兰, 陈时俊, 王丽霞, 1989. 胶州湾环流和污染物扩散的数值模拟 V. 胶州湾变空间步长的嵌套模型. 青岛海洋大学学报, 19 (1): 1~18.
    [22] 孙英兰, 陈时俊, 俞光耀, 1988. 海湾物理自净能力分析和水质预测-胶州湾. 山东海洋学院学报,, 18(2): 60~65.
    [23] 孙英兰, 张越美, 2001. 胶州湾三维变动边界的潮流数值模拟. 海洋与湖沼, 32(4): 355~362.
    [24] 孙英兰, 张越美, 2003. 丁字湾物质输运及水交换能力研究. 青岛海洋大学学报, 33(1): 001~006.
    [25] 陶建华, 1984. 波浪在岸滩上的爬高和破碎的数学模拟. 海洋学报, 6(5): 692~700.
    [26] 陶建华, 2005. 水波的数值模拟. 天津: 天津大学出版社.
    [27] 王寿景, 1990. 厦门西港海水交换计算. 台湾海峡, 9(2): 108-111.
    [28] 王泽良, 1997. 海湾水质的数值模拟理论、方法和信息化研究. 博士学位论文, 天津: 天津大学.
    [29] 王泽良, 王日新, 陶建华, 1999. 渤海湾流场以及污染物分布的数值模拟研究. 海洋与湖沼, 30(2): 224~230.
    [30] 王宗山, 龚滨, 李繁华,邹娥梅, 徐伯昌, 1992. 黄渤海风海流的数值计算. 黄渤海海洋, 10(1): 12~18.
    [31] 魏皓, 田恬, 周峰, 赵亮, 2002. 渤海水交换的数值研究: 水质模型对半交换时间的模拟. 青岛海洋大学学报, 32(4): 519~525.
    [32] 吴德星, 万修全, 鲍献文, 牟林, 兰健, 2004. 渤海 1958 年和 2000 年夏季温盐场及环流结构的比较. 科学通报, 49(3): 2004.
    [33] 吴望一, 1982. 流体力学(上、下). 北京: 北京大学出版社.
    [34] 徐洪达, 王钟桾, 刘赞沛, 1984. 渤海潮混合数值模拟 III.渤海污染物潮扩散的数值计算. 海洋与湖沼, 15(2):137~145.
    [35] 许苏清, 潘伟然, 张国荣, 陈华, 2003. 浔江湾海水交换时间的计算. 厦门大学学报(自然科学版), 42(5): 629~632.
    [36] 严世强, 熊德琪, 2002. 潮流数值模拟研究进展. 浙江海洋学院学报(自然科学版), 21(3): 263~268.
    [37] 余常昭, 1992. 环境流体力学导论. 北京: 清华大学出版社.
    [38] 远航, 于定勇, 2004. 潮流与泥沙数值模拟回顾及展望. 海洋科学进展, 22(1): 97~106.
    [39] 张廷芳, 1992. 计算流体力学. 大连: 大连理工大学出版社.
    [40] 张越美, 孙英兰, 2002. 渤海湾三维变动边界潮流数值模拟. 青岛海洋大学学报, 32(3): 337~344.
    [41] 赵亮, 魏皓, 赵建中, 2002. 胶州湾水交换的数值研究. 海洋与湖沼, 33(1): 23~29.
    [42] 周光炯, 严宗毅, 许世雄, 章克本, 2000. 流体力学(上、下). 北京: 高等教育出版社.
    [43] 朱德军, 陈永灿, 刘昭伟, 2006. 处理二维浅水流动中动边界问题的淹没节点法. 水动力学研究与进展, 21(1): 102~106.
    [44] Abbott M.B., 1997. Range of tidal flow modeling. Journal of Hydraulic Engineering, 123(4): 257~277.
    [45] Adams E.E., Baptista A.M., 1987. Ocean Dispersion Modelling, Chapter 21 in Encyclopedia of Fluid Mechanics: Vol.6, Complex Flow Phenomena and Medelling, ed. Cheremisinoff, N.P., Gulf Publishing Co., Houston, Texas, 865~895.
    [46] Aubrey D.G., McSherry T.R., Eliet P.P., 1993. Effects of multiple inlet morphology on tidal exchange: Waquoit Bay, Massachussetts. In Aubrey D.G., Guese G.S.(Eds.), Formation and Evolution of Multiple Tidal Inlets. Coastal and Estuarine Studies. American Geophysical Union, Washington D.C., pp213~235.
    [47] Barber R.W., Wearing M.J., 2004. A simplified model for predicting the pollution exchange coefficient of small tidal embayments. Water, Air, and Soil Pollution: Focus, 4: 87~100.
    [48] Balzano A., 1996. A semi-implicit model for 2D tidal flow currents. InternalReport, CRS4.
    [49] Balzano A., 1998. Evaluation of methods for numerical simulation of wetting and drying in shallow water flow models. Coastal Engineering. 34(1-2): 83~107.
    [50] Bao Xian-wen, Gao Guo-ping, Yan Ju, 2000. Three dimensional simulation of tide and tidal current characteristics. Oceanologica ACTA, 24(2): 135~149.
    [51] Benque J.P., Cunge J.A., Feuillet J., Hauguel A., e Holly F.M. Jr., 1982. New method for tidal current computation. Journal of Waterways, Port, Coastal and Ocean Division (ASCE), 108: 396~417.
    [52] Bilgili A., Proehl J.A., Lynch D.R., Smith K.W., Swift M.R., 2005. Estuary/ocean exchange and tidal mixing in a Gulf of Maine Estuary: A Lagrangian modeling study. Estuarine Coastal and Shelf Science, 65: 607~624.
    [53] Bolin B., Rodhe H., 1973. A note on the concept of age distribution and transit time in natural reservoirs, Tellus, 25: 58-63.
    [54] Bowden K.F., 1981. Turbulent mixing in estuaries. Ocean Manage. 6:117~35.
    [55] Bowden K.F., 1982. Theoretical and practical approaches to studies of turbulent mixing processes in estuaries. Presented at NERC Workshop on Estuarine Processes, Univ. East Anglia, September.
    [56] Brooks D.A., Baca M.W., Lo Y.-T., 1999. Tidal circulation and residence time in a macrotidal estuary: Cobscook Bay, Maine. Estuarine, Coastal and Shelf Science, 49: 647~665.
    [57] Casulli V., 1990. Semi-implicit finite difference method for the two-dimentional shallow water equations. Journal of Computational Physics, 86(1): 56~74.
    [58] Casulli V., Cheng R.T., 1993. Semi-implicit finite difference methods for three-dimensional shallow water flow. International Journal for Numerical Methods in Fluids, 15(6): 629~648.
    [59] Chatwin P.C., Allen C.M., 1985. Mathematical models of dispersion in rivers and estuaries. Annual Review of Fluid Mechanics, 17:119~149.
    [60] Chen Yi-ping, Falconer R.A.1991. Modified forms of the third-order convection, second-order diffusion scheme for the advection-diffusion equation. Advance in Water Resources, 17(3): 147~170.
    [61] Chen Yi-ping, 1992. Numerical modelling of solute transport processes using higher order accurate finite difference schemes. Ph.D. Thesis, University of Bradford, England.
    [62] Davies A.M., Jones J.E., Xing J., 1997, Review of recent developments in tidalhydrodynamic modeling, I: Spectral models. Journal of Hydraulic Engineering, 123(4): 278~292.
    [63] Davies A.M., Jones J.E., Xing J., 1997, Review of recent developments in tidal hydrodynamic modeling, II: Turbulence energy models. Journal of Hydraulic Engineering, 123(4): 293~302.
    [64] David L.T., Kjerfve B., 1998. Tides and currents in a two-inlet coastal lagoon: Laguna de Terminos, Mexico. Continental Shelf Research, 18: 1057~1079.
    [65] Deleersnijder E., Campin J.-M., Delhez E.J.M, 2001. The conception of age in marine modelling I. Theory and preliminary model results. Journal of Marine Systems, 28: 229~267.
    [66] Delhez E.J.M., Deleersnijder E., 2002. The conception of age in marine modelling II. Concentration distribution function in the English Channel and the North Sea. Journal of Marine Systems, 31: 279~297.
    [67] DiLorenzo J.L., Ram R.V., Huang Po-shu, Najarian T.O., 1994. Pollution susceptibility of well-mixed tidal basins. Journal of Waterway, Port, Coastal, and Ocean Engineering, 120(4): 404~422.
    [68] Elder J.W., 1959. The dispersion of marked fluid in turbulent shear flow. Journal of Fluid Mechanics, 5: 644~560.
    [69] Falconer R.A. 1977. Mathematical Modeling of Jet-Forced Circulation in Reservoirs and Harbours, Ph.D. Thesis, University of London, London, England, pp237.
    [70] Falconer R.A., 1980. Numerical modeling of tidal circulation in harbors. Journal of Waterway, Port, Coastal and Ocean Division, ASCE, 106(WW1): 31~48.
    [71] Falconer R.A., 1984. Temperature distributions in a tidal flow field. Journal of Environmental Engineering, 110(6): 1099~1116.
    [72] Falconer R.A., Wolanski E., Mardapitta-Hadjipandeli, L., 1986. Modeling tidal circulation in an island’s wake. Journal of Waterway, Port, Coastal and Ocean Engineering Division, ASCE, 112(2): 234~254.
    [73] Falconer R.A., 1986. A water quality simulation study of a natural harbor. Journal of Waterway, Port, Coastal and Ocean Engineering, 112(1): 15~34.
    [74] Falconer R.A., Owens P.H., 1987. Numerical simulation of flooding and drying in a depth-averaged tidal flow model. Proceedings of the Institution of Civil Engineers (London), 83(2): 161~180.
    [75] Falconer R.A., Chen Y.P., 1991. An improved representation of flooding and drying and wind stress effects in a 2-D numerical model. Proceedings of the Institution of Civil Engineers, 91(2): 659~687.
    [76] Falconer R.A., Liu Sui-qing, 1995. Mathematical modeling of water quality processes using higher-order accurate schemes. Environment International, 21(2): 111~122.
    [77] Falconer R.A., Lin B., Wu Y., Harries E., 1999. “DIVAST Model: Reference Manual”. Environmental Water Management Research Centre, School of Engineering, Cardiff University.
    [78] Fischer H.B., 1976. Mixing and dispersion in estuaries. Annual Review of Fluid Mechanics, 8: 107~133.
    [79] Fischer H.B., List E.J. Koh R.C.Y. Imberge J., Brooks N.H., 1979. Mixing in Inland and Coastal Waters. Academic Press, New York.
    [80] Fletcher C.A., 1991. Computational Techniques for Fluid Dynamics. Vol.II: Specific Techniques for Different Flow Categories, 2nd ed, Springer Verlag, Berlin.
    [81] Guo Q., Lordi G.P., 2000. Method for quantifying and freshwater input and flushing time in the estuaries, Journal of Environmental Engineeing, 126(7): 675~683.
    [82] Guyondet T., Koutitonsky V.G., Roy S., 2005. Effects of renewal estimates on the oyster aquaculture potential of an inshore area. Journal of Marine System, 58: 35~51.
    [83] Hainbucher D., Wei Hao, Pohlmann T., Sundermann J., Feng Shi-zuo, 2004. Variability of the Bohai Sea circulation based on model calculations. Journal of Marine Systems, 44: 153~174.
    [84] Henderson F.M., 1966. “Open Channel Flow”. Macmillan Co. Ltd, 522p.
    [85] Holly F.M. Jr., Usseglio-Polatera J.M., 1984. Dispersion simulation in two-dimensional tidal Flow. ASCE Journal of Hydraulic Engineering, 110: 905~926.
    [86] James A., 1984. An Introduction to Water Quality Modeling, A. Wiley-Interscience.
    [87] Jerome P.-Y. Maa, 1990. An efficient horizontal two-dimensional hydrodynamic model. Coastal Engineering, 14:1~18.
    [88] Kashiwai M. (柏井 诚), 1984. The conception of tidal exchange and the tidal exchange ratio, Journal of the Oceanographical Society of Japan, 40:135~147. (in Japanese)
    [89] Kashiwai M. (柏井 诚), 1977. 潮汐による海水交换率について,その 1 海水交换の概念と海水交换率. 1977 年度日本海洋学会春节大会讲演要旨, pp:96~97. (in Japanese)
    [90] Kantardgi I., Mairanovsky F., Sapova N., 1995. Water exchange and water quality in the coastal zone in the presence of structures. Coastal Engineering, 26: 207~223.
    [91] Ketchum B.H., 1988. The flushing of tidal estuaries. Sewage and Industrial Wastes, 23: 198~208.
    [92] Kitheka J.U., 1997. Coastal tidally-driven circulation and the role of water exchange in the linkage between tropical coastal ecosystems. Estuarine, Coastal and Shelf Science, 45: 177~187.
    [93] Kjerfve B., Schettini C.A.F., Knoppers B., Lessa G., Ferreira H.O., 1996. Hydrology and salt balance in a large, hypersaline coastal lagoon: Lagoa de Araruama, Brazil. Estuarine, Coastal and Shelf Science, 42: 701~725.
    [94] Leendertse J.J., 1970. A water-quality simulation model for well-mixed estuaries and coastal seas, Vol. 1, Principles of Computation[R]. The Rand Corporation, Santa Monica, Feb., Report No: RM-6230-RC.
    [95] Leendertse J.J., 1987. Aspects of SIMSYS, A system for two-dimensional flow computations. RAND Publication R-3572-USGS, Feburay.
    [96] Lin B., Falconer R.A., 1997. Three-dimensional layer-integrated modelling of estuarine flows with Flooding and Drying. Estuarine, Coastal and Shelf Science, 44(6): 737~751.
    [97] Liu Zhe, Wei Hao, Liu Guang-shan, Zhang Jing. 2004. Simulation of water exchange in Jiaozhou Bay by average residence time approach. Estuarine, Coastal and Shelf Science, 61: 25~35.
    [98] Luff R., Pohlmann T., 1996. Calculation of water exchange times in the ICES-boxes with a eulerian dispersion model using a half-life time approach. Dtsch Hydrogr Z, 1996, 47(4): 287~299.
    [99] Lynch D.R., Gray W.G., 1978. Analytic solutions for computer flow model testing. Journal of the Hydraulics Division, 104: 1409~1428.
    [100] Markatos H.B., 1986. The mathematical modelling of turbulent flows. Applied Matematical Modelling, 10: 190~220.
    [101] Mitchell A.R., Griffiths D.F., 1980. The finite difference method in Partical Differential Equations, John Wiley & Sons, Chichester.
    [102] Molinaro P., Di Filippo A., Ferrari F., 1994. Modelling of flood wave propagation over flat dry areas of complex topography in presence of different infrastructures. In: Proc. Specialty Conference on Modelling of Flood Propagation Over Initially Dry Areas (ASCE), 209~228.
    [103] Nakatsuji K., Yamanaka R., Liang S., Sun Z., 2004. Seasonal changes of baroclinic circulation an water exchanges in the Bohai Sea. 8th International Conference on Estuarine and Coastal Modeling, ASCE, November 3-5, 2003, pp852~870.
    [104] Oey L.Y., 2005. A wetting and drying scheme for POM. Ocean Modelling, 9(2): 133~150.
    [105] Owens P.H., 1987. Numerical simulation of tidal flow and sediment transport. PhD Thesis, University of Birmingham, England, 200p.
    [106] Parker D.S., Norris D.P., Nelson A.W., 1972. Tidal exchange at Golden Gate, Journal of Sanit. Engineering Division, ASCE, (98)2: 305~323.
    [107] Ponce V.M., Yabusaki S.B., 1981. Modelling Circulation in Depth-averaged Flow, Journal of Hydraulics Division ASCE, 107: 1501~1518.
    [108] Preissman A., 1976. Use of mathematical methods (critical remarks, the future outlook). Proc. of the International Sym. on Unsteady Flow in Open Channels, 3: 23~28.
    [109] Preston R.W., 1985. Representation of dispersion in two-dimensional water flow. Report No. TPRD/L/2783/N84, Central Electricity Research Laboratories, Leatherhead, England, 1-13.
    [110] Roache P.J., 1976. Computational Fluid Dynamics, Hermosa Publisher, Albuquerque, New Mexico.
    [111] Roger L., Rohlmann T., 1995. Calculation of water exchange and times in the ICES-Boxes with a Eulerian Model using a half-life time approach. Dtsch Hydrogr Z, 47(4): 287~299.
    [112] Ranasinghe R., Pattiaratchi C., 1998. Flushing characteristics of a seasonally open tidal inlet: a numerical study. Journal of Coastal Research, 14(4), 1405~1421.
    [113] Shen J., Haas L., 2004. Calculating age and residence time in the tidal York River using three-dimensional model experiments. Estuary Coastal and Shelf Science, 61: 449~461.
    [114] Singnell R.P., Butman B., 1992. Modeling tidal exchange and dispersion in Bostan Harbor, Journal of Geophysical Research, 97(C10): 15591~15606.
    [115] Stelling G.S., 1984. On the construction of computational methods for shallow water equations. Rijkswaterstaat communication, No. 35/1984.
    [116] Stelling G.S., Wiersma A.K., Willemse J.B.T.M., 1986. Practical aspects of accurate tidal computations. Journal of Hydraulic Engineering (ASCE), 112(9): 802-817.
    [117] Takeoka H., 1984. Fundamental concepts of exchange and transport time scales in a coastal sea. Continental Shelf Research, 3(3): 311-326.
    [118] Tao Jian-hua., Li Qing-xue, Falconer R.A., Lin, B., 2001. Modelling and assessment of water quality in a semi-enclosed shallow bay. Journal of Hydraulic Research, 39(6): 611~617.
    [119] Thompson K.R., Dowd M., Shen Y., Greenberg D.A., 2002. Probabilistic characterization of tidal mixing in a coastal embayment: a Markov Chain approach. Continental Shelf Research, 22: 1603~1614.
    [120] Thacker W.C., 1981. Some exact solutions to the nonlinear shallow-water wave equations. Journal of Fluid Mechanics, 107: 499~508.
    [121] Taylor G. L., 1919. Tidal friction in the Irish Sea. Phil. Trans. Roy. Soc. A, CCXX, pp1~99.
    [122] Weare T.J., 1976. Instability in tidal flow computational schemes. Journal of Hydraulics Division ASCE, 102: 569~580.
    [123] Yamanaka R., Nakatsuji K., 2002. Tide and wind-induced currents in Bohai Sea. Second International Workshop on Coastal Eutrophication, Tianjin China, 142~150.
    [124] Zimmerman J.T.F., 1976. Mixing and flushing of tidal embayments in the Western Dutch Wadden Sea, Part I: Distribution of salinity and calculation of mixing time scales, Netherlands Journal of Sea Research, 10: 149-191.
    [125] Zimmerman J.T.F., 1988. Estuarine residence time. In: Kjerfve, B.(Ed.), Hydrodynamics of Estuaries, CRC Press, (1)75~84.
    [126] Zhang Q.Y., Gin K.Y.H., 2000. Three-dimensional numerical simulation for tidal motion in Singapore’s coastal waters. Coastal Engineering, 39:71~92.
    [127] 中村武弘, 富樫宏由, 1980(a). 海水交换率による大村湾の水质污染预测に関する研究. 第 27 回海岸工学讲演会论文集, pp:487~491. (in Japanese)
    [128] 中村武弘, 富樫宏由, 1980(b). On tidal exchange of bay water. 第 24 回水理讲演会论文集, pp:487~491. (in Japanese)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700