神经甾体对氯胺酮所致发育期皮层神经元凋亡的影响及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全世界每年有150万婴幼儿因需进行外科手术或介入治疗等原因而接受全身麻醉,长期以来全身麻醉药是否影响婴幼儿的大脑发育一直是患儿家属及麻醉学者十分关注的问题。传统观念认为只要麻醉过程中不存在大脑缺氧等因素就不会影响婴幼儿大脑的发育,但近年来大量的动物实验研究表明全身麻醉药可对发育期大脑产生损伤,并引起远期学习记忆损伤。因此全身麻醉药的发育期神经毒性已引起了众多学者的关注。
     氯胺酮为N-甲基-D-天冬氨酸(N-methyl-D-aspartate, NMDA)受体拮抗剂,被广泛应用于婴幼儿手术的麻醉。NMDA受体是一种离子通道型谷氨酸能受体,具有许多不同变构调控位点并对Ca2+高度通透,在中枢神经系统主要分布在大脑皮层及海马。研究发现NMDA受体与中枢神经系统的发育密切相关,控制神经元的分化、迁移和存活,并在学习、记忆的形成和维持过程中发挥着重要作用。动物出生前后时间阶段是中枢神经系统生长发育的高峰期,有大量神经细胞增殖、大量树突生成和大量突触连接形成,进而形成复杂的神经网络。许多研究已证实在大脑发育的关键时期NMDA受体保持适度兴奋对大脑神经元的存活具有重要的意义,如果改变NMDA受体的活性可能会影响中枢神经系统的发育和功能。
     目前大量研究发现氯胺酮可引起发育期动物大脑广泛脑区神经元的凋亡,同时也发现氯胺酮可引起原代培养皮层神经元的大量凋亡。关于氯胺酮引起发育期大脑神经元凋亡与神经功能损害的确切机制目前还不清楚。既往研究表明在大鼠大脑快速发育期注射氯胺酮会导致皮层组织的NMDA受体表达上调,引起神经元兴奋性毒性增加。此外,氯胺酮作为NMDA受体的非竞争性拮抗剂,可以通过作用于NMDA受体PCP结合位点,阻断与NMDA受体耦联的钙通道,减少Ca2+内流,降低细胞内Ca2+浓度,从而拮抗谷氨酸、天冬氨酸等兴奋性氨基酸对神经系统发育的调节。目前有研究认为氯胺酮通过抑制神经元细胞内钙震荡而对发育期神经元产生神经毒性。
     针对全身麻醉药引起的发育期大脑损伤,NIH、FDA以及IARS要求研究学者不仅要研究其发生机制而且要寻找安全有效的措施来防治麻醉药所引起的发育期大脑损伤。近年来国内外学者对如何防治氯胺酮引起的发育期大脑损伤进行了一系列研究,结果表明维生素D3、锂剂、促红细胞生成素、肉毒碱、烟酰胺、可乐定等可对氯胺酮引起的发育期神经元损伤产生保护作用,但它们在婴幼儿时期应用的安全性还有待于进一步研究。
     神经甾体(neurosteroid)是一类由神经系统的神经元或神经胶质细胞合成、代谢产生的具有神经活性的甾体物质的总称,主要包括:孕烯醇酮(pregnenolone,PREG)、孕烯醇酮硫酸酯(pregnenolone sulfate,PREGS)、脱氢表雄酮(dehydroepiandrosterone,DHEA)、脱氢表雄酮硫酸酯(dehydroepiandrosterone sulfate,DHEAS)、孕酮(progesterone,PROG)、别孕烯醇酮(allopregnanolone,AP)以及雌二醇(estradiol,E2)等。大量研究表明神经甾体不仅参与调节神经系统的发育并对神经系统的功能产生广泛影响,对神经系统还具有营养保护以及促进神经发生和神经元存活的作用。
     雌二醇作为一种内源性神经甾体,在神经元发育过程中发挥重要的调节作用,促进神经元的存活以及功能维护。最近有研究表明氯胺酮可引起斑马鱼发育期17β雌二醇水平的下降,睾酮水平升高,同时还有研究表明氯胺酮对发育期斑马鱼具有神经损伤作用。PI3K-Akt信号通路是介导多种生长因子促进细胞存活的重要通路,有研究表明氯胺酮通过抑制NMDA受体的活性进而抑制pAkt的表达对原代培养的皮层神经元产生损伤。有研究表明17β雌二醇可通过激活PI3K-Akt信号通路对NMDA受体拮抗剂MK-801以及麻醉药咪达唑仑、笑气、异氟醚联合应用所引起的发育期大鼠大脑广泛脑区神经元凋亡产生保护作用。另外Ramezani等研究表明17β雌二醇可对酒精引起的发育期大鼠大脑神经损伤以及远期行为学异常产生保护作用。本实验室前期研究发现Aβ25-35对原代培养皮层神经元产生损伤时伴随神经甾体代谢通路的变化。氯胺酮引起发育期皮层神经元损伤的同时是否伴随神经甾体合成代谢的变化,以及神经活性甾体17β雌二醇是否通过PI3K-Akt信号通路对氯胺酮引起的皮层神经元损伤产生保护作用,国内外未见报道。
     本课题首先以原代培养的大鼠皮层神经元为研究对象采用不同浓度的氯胺酮建立氯胺酮体外诱导皮层神经元损伤的细胞模型。在该模型的基础上采用液液萃取结合高效液相色谱-质谱联用(HPLC-MS/MS)方法对氯胺酮引起皮层神经元损伤时主要神经甾体PREG、PROG以及17β雌二醇合成代谢水平进行了研究。随后以氯胺酮损伤皮层神经元时合成代谢水平明显降低的17β雌二醇进行外源性给药,从离体细胞和在体动物两方面研究17β雌二醇对氯胺酮诱导的原代培养皮层神经元损伤以及发育期大鼠皮层区神经细胞损伤的保护作用。最后应用原代培养皮层神经元进一步研究17β雌二醇是否通过PI3K-Akt信号通路保护发育期皮层神经元免受氯胺酮的损伤。本实验将为神经活性甾体17β雌二醇防治氯胺酮引起的发育期大脑损伤提供理论依据及实验基础。
     本研究采用的试验方法包括:
     1大鼠大脑皮层神经元的原代培养
     大鼠大脑皮层神经元进行原代培养7天用于实验。倒置显微镜下观察皮层神经元的形态学变化。
     2分组与药物处理
     ①观察氯胺酮对神经元的损伤作用时分为:不同浓度氯胺酮(0、1、10、100、1000μΜ)作用神经元24h100μΜ氯胺酮作用神经元不同时间(0、6、12、24、48h)
     ②观察氯胺酮对神经元神经甾体合成的影响分为:对照组、氯胺酮组、胆固醇组、氯胺酮+胆固醇组
     ③观察17β雌二醇对氯胺酮诱导皮层神经元凋亡的影响分为:对照组,氯胺酮组,17β雌二醇+氯胺酮组
     ④观察17β雌二醇对氯胺酮引起发育期大鼠大脑皮层区神经细胞凋亡和远期学习记忆损伤的影响分为:对照组,溶剂对照组,17β雌二醇组,氯胺酮组,17β雌二醇+氯胺酮组
     ⑤研究17β雌二醇保护原代培养皮层神经元免受氯胺酮损伤的机制分为:
     对照组,氯胺酮组,17β雌二醇+氯胺酮组,17β雌二醇+氯胺酮+LY294002组
     3细胞样品的收集与蛋白定量
     给予各种药物处理的皮层神经元,加入细胞裂解液,低温离心收集上清,应用多功能酶标仪测定蛋白质浓度。
     4MTT法测定皮层神经元的存活率
     5Hoechst33258核染色法检测神经元凋亡
     在荧光显微镜下,随机选取5个视野进行形态学观察和计数,计算凋亡率,凋亡率=(凋亡细胞数/细胞总数)×100%。
     6TUNEL法检测原代培养皮层神经元凋亡
     细胞爬片于倒置显微镜下任意选取5个视野观察阳性细胞并计数,计算神经元的凋亡率,凋亡率=(凋亡细胞数/细胞总数)×100%。
     7免疫组织化学染色分析大脑皮层区cleaved-caspase-3表达:
     以细胞中出现棕褐色浓染颗粒作为阳性细胞的判定标准。在光镜下观察皮层区的凋亡神经细胞,以个/0.01mm2计数。
     8Western-blot法检测p-Akt、Akt、cleaved-caspase-3、Bcl-2的蛋白表达
     9HPLC-MS/MS测定细胞培养液中主要神经甾体的浓度
     10Morris水迷宫行为学测试
     11统计学处理
     各组数据均以均数±标准差(±s)表示,应用SPSS13.0统计软件进行处理,水迷宫行为学测试中定位航行实验数据采用重复测量方差分析进行统计学处理,其他数据采用单因素方差分析(one way ANOVA)继以LSD post hoc test进行统计学处理,以P<0.05为差异有统计学意义。
     结果:
     1氯胺酮对原代培养皮层神经元的损伤作用
     1.1氯胺酮呈浓度和时间依赖性降低原代培养皮层神经元存活率
     不同浓度的氯胺酮作用于体外培养7天的皮层神经元24h后,神经元存活率下降,其中100、1000μΜ的氯胺酮使神经元存活率显著下降(P<0.01,P<0.01)。100μΜ氯胺酮作用于神经元不同时间后神经元存活率下降,其中作用24h及48h后,神经元存活率显著下降(P<0.05,P<0.01)。
     1.2氯胺酮损伤大鼠皮层神经元时的细胞形态变化
     倒置显微镜下观察刚种植的皮层神经元呈圆形,单个均匀分布,折光性强,胞体透亮,接种8h后细胞贴壁,24h后细胞贴壁牢固并可见短小的突起,胞体呈梭型或雏形,第三天后神经元胞体进一步增大,部分细胞突起延长,神经元培养至第7天,胞体进一步增大,多呈梭型或雏形,胞体饱满,部分神经元集聚成团,突起增多并延长,相互交织形成网络。培养7天的神经元经100μΜ氯胺酮处理24h后,神经元细胞数量较对照组明显减少,折光性差,胞体明显缩小,轴突断裂,部分神经元细胞膜破裂成细胞碎片。
     1.3氯胺酮对原代培养皮层神经元凋亡的影响
     TUNEL结果显示,对照组仅见少量的TUNEL阳性神经元,100μΜ氯胺酮组TUNEL阳性神经元较对照组显著增加(P<0.01)。Hoechst33258荧光染色结果显示,对照组细胞核内呈均匀分布的淡蓝色荧光,内有较深的蓝色颗粒,有少量凋亡细胞呈亮蓝色。100μΜ氯胺酮组皮层神经元染色质高度凝聚、边缘化,细胞核甚至裂解为碎块,有大量凋亡细胞呈亮蓝色(P<0.01)。
     2氯胺酮对原代培养皮层神经元神经甾体水平的影响
     2.1不同处理对皮层神经元存活率的影响
     MTT结果显示,与对照组比较,氯胺酮组皮层神经元的存活率显著下降(P<0.01),胆固醇单纯处理组神经元存活率未见显著改变(P>0.05)。与氯胺酮组比较,胆固醇与氯胺酮共处理组神经元存活率显著升高(P<0.01)。
     2.2不同处理对神经元凋亡的影响
     TUNEL结果显示,与对照组比较,胆固醇单纯处理组TUNEL阳性神经元未见显著变化(P>0.05),氯胺酮组TUNEL阳性神经元显著增加(P<0.01)。与氯胺酮比较,胆固醇与氯胺酮共处理组TUNEL阳性神经元显著降低(P<0.01);Hoechst33258荧光染色结果进一步证实了以上变化。
     2.3氯胺酮对皮层神经元神经甾体水平的影响
     对照组及氯胺酮处理组因未加入神经甾体合成所必需的底物胆固醇,均未测得各种神经甾体。与胆固醇单纯处理组相比,氯胺酮共处理后神经甾体PREG水平未见显著变化,而17β雌二醇水平显著下降(P<0.01),PROG水平显著升高(P>0.05)。
     317β雌二醇对氯胺酮诱导的发育期皮层神经元凋亡以及发育期大鼠远期学习记忆损伤的影响
     3.117β雌二醇对氯胺酮导致的原代培养皮层神经元损伤的影响
     MTT结果显示,与对照组比较,氯胺酮组原代培养皮层神经元存活率显著下降(P<0.01);与氯胺酮组比较,不同浓度(0.001、0.01、0.1、1μΜ)的17β雌二醇与氯胺酮共处理24h后神经元的存活率显著升高,其存活率分别为(54.8±5.1)%,(75.1±9.3)%,(88.3±8.5)%,(79.5±10.3)%,其中0.1μM的17β雌二醇保护效果最好。
     3.217β雌二醇减轻氯胺酮诱导的原代培养皮层神经元凋亡
     TUNEL结果显示,对照组可见少量的凋亡神经元,氯胺酮组神经元凋亡较对照组显著增加(P<0.01),0.1μM的17β雌二醇使氯胺酮导致的神经元凋亡显著降低(P<0.01)。Hoechst33258核染色法进一步证实了17β雌二醇减轻氯胺酮诱导的皮层神经元凋亡。对照组细胞核多呈弥散均匀分布的淡蓝色荧光,内有较深的蓝色颗粒,有少量的凋亡细胞呈亮蓝色。氯胺酮组凋亡细胞较对照组显著增加(P<0.01),17β雌二醇与氯胺酮共处理组神经元凋亡较氯胺酮组显著降低(P<0.01)。
     3.3不同处理对发育期大鼠大脑额叶皮层区cleaved-caspase-3表达的影响
     与对照组比较,溶剂对照组和17β雌二醇组cleaved-caspase-3阳性表达细胞数/0.01mm2未见统计学差异(均为P>0.05),氯胺酮组阳性表达显著增加(P<0.01)。与氯胺酮组比较,17β雌二醇与氯胺酮共处理组阳性表达显著降低(P<0.01)。
     3.4Morris水迷宫测试SD大鼠学习记忆能力
     SD幼鼠饲养至60天时,进行Morris水迷宫5天训练,一天四次。把SD大鼠逃逸潜伏期(s)和游泳距离(cm)作为学习能力的指标。在5天的训练期中,前2天实验各组逃逸潜伏期和游泳距离未见统计学差异。与对照组比较,氯胺酮组第3天、第4天、第5天逃逸潜伏期和游泳距离均显著增加(均为P<0.01),与氯胺酮组比较,17β雌二醇与氯胺酮共处理组逃逸潜伏期和游泳距离均显著降低(均为P<0.01);第6天撤去平台,进行60s空间探索试验作为对记忆能力的评估。与对照组比较,氯胺酮组穿越平台的次数和靶象限的时间比率均显著减少(均为P<0.01),与氯胺酮组比较,17β雌二醇与氯胺酮共处理组穿越平台的次数和靶象限的时间比率均显著增加(均为P<0.01)。
     417β雌二醇保护原代培养皮层神经元免受氯胺酮损伤的机制研究
     4.1不同处理对原代培养皮层神经元pAkt表达水平的影响
     结果显示,与0h相比,0.1μM的17β雌二醇单独处理皮层神经元0.5、1、2、4h, pAkt表达水平时间依赖性显著升高(P<0.01);17β雌二醇与氯胺酮共处理皮层神经元0.5、1、2、4h, pAkt表达水平随时间延长显著升高(P<0.01)。为了进一步证实17β雌二醇通过PI3K-Akt信号通路对氯胺酮引起的皮层神经元损伤产生保护作用。给予PI3K抑制剂LY294002,观察对皮层神经元pAkt表达水平的影响。与对照组比较,17β雌二醇培养皮层神经元2h引起pAkt表达水平的显著升高(P<0.01),氯胺酮培养皮层神经元2h引起pAkt表达水平的显著降低(P<0.01)。与氯胺酮组比较,17β雌二醇与氯胺酮共培养2h pAkt表达水平显著升高(P<0.01),加入PI3K抑制剂LY294002后培养2h,LY294002抑制了17β雌二醇对pAkt表达水平的上调作用(P<0.01)。
     4.217β雌二醇对原代培养皮层神经元Bcl-2表达水平的影响
     Bcl-2作为一种抗凋亡分子,对多种损伤产生保护作用。Akt可通过激活CREB磷酸化,提高Bcl-2的表达水平,从而对各种应激提供神经保护作用。为了探讨17β雌二醇是否有可能通过PI3K-Akt信号通路影响Bcl-2的表达水平对氯胺酮引起的神经元损伤产生保护作用,我们将皮层神经元给予100μM氯胺酮和(或)0.1μM的17β雌二醇以及10μMLY294002处理24h,结果显示与对照组比较,氯胺酮组Bcl-2表达水平显著下降(P<0.01);与氯胺酮组比较,17β雌二醇与氯胺酮共处理组Bcl-2表达水平显著增加(P<0.01);与17β雌二醇与氯胺酮共处理组比较,LY294002预处理组Bcl-2表达水平显著下降(P<0.01)。
     4.317β雌二醇对原代培养皮层神经元cleaved-caspase-3表达水平的影响
     Caspase-3是各种细胞凋亡通路的最终执行者。为了探讨17β雌二醇是否有可能通过PI3K-Akt信号通路影响cleaved-caspase-3的表达水平对氯胺酮引起的神经元损伤产生保护作用,我们将皮层神经元给予100μM氯胺酮和(或)0.1μM的17β雌二醇以及10μM LY294002处理24h,结果显示与对照组比较,氯胺酮组cleaved-caspase-3表达水平显著增加(P<0.01);与氯胺酮组比较,17β雌二醇与氯胺酮共处理组cleaved-caspase-3表达水平显著下降(P<0.01);与17β雌二醇与氯胺酮共处理组比较,LY294002预处理组cleaved-caspase-3表达水平显著增加(P<0.01)。
     4.4LY294002对17β雌二醇神经保护作用的影响
     MTT结果显示,与对照组比较,氯胺酮组皮层神经元存活率显著降低(P<0.01),与氯胺酮组比较,17β雌二醇与氯胺酮共处理组神经元存活率显著增加(P<0.01),与17β雌二醇与氯胺酮共处理组比较,LY294002预处理组皮层神经元存活率显著降低(P<0.01)。TUNEL结果显示对照组可见少量的凋亡神经元,与对照组比较,氯胺酮组神经元凋亡显著增加(P<0.01),与氯胺酮组比较,17β雌二醇与氯胺酮共处理组神经元凋亡显著降低(P<0.01),与17β雌二醇与氯胺酮共处理组比较,LY294002预处理组神经元凋亡显著增加(P<0.01)。Hoechst33258核染色法进一步证实了TUNEL试验所见。
     结论:
     1氯胺酮能浓度和时间依赖性的引起原代培养皮层神经元损伤。
     2氯胺酮在导致原代培养皮层神经元损伤的同时伴随某些神经甾体水平的变化,其中PROG水平显著升高,17β雌二醇水平显著降低。
     317β雌二醇对氯胺酮引起的原代培养皮层神经元损伤具有保护作用。
     4外源系统性给予17β雌二醇对氯胺酮引起的发育期大鼠皮层区神经细胞凋亡以及成年后学习记忆损伤产生保护作用。
     5激活PI3K-Akt信号通路,促进抗凋亡分子Bcl-2的表达,抑制促凋亡分子cleaved-caspase-3的表达可能是17β雌二醇对氯胺酮引起的皮层神经元损伤产生保护作用的机制之一。
Globally, there were about1.5million infants and young childrenundergoing general anesthesia because of various reasons such as surgery orinterventional therapy each year. For a long time, whether or not generalanesthesia would affect the development of infant's brain has been the focus ofattention of family members and anesthesiologists. The conventional belief isthat, as long as there was no cerebral hypoxia or other relevant consequencesduring the anesthesia, it would not affect the brain development of infants andyoung children. However, neuronal cell death after general anesthesia hasrecently been demonstrated in neonatal animal models. The possibility ofanesthesia-induced neurotoxicity in human neonates or infants has led toserious questions about the safety of pediatric anesthesia.
     Ketamine, an N-methyl-D-aspartate (NMDA) receptor antagonist, iswidely used in surgical anesthesia of infants and young children now. TheNMDA receptor is a kind of central nervous system excitatory amino acidionotropic receptors, with many different allosteric regulatory sites and Ca2+high degree of permeability. In the central nervous system, NMDA receptorsare mainly distributed in the cerebral cortex and hippocampus. Studies havefound that the NMDA receptor is closely related to the development of centralnervous system, controlling neuronal differentiation, migration and survival,and playing an important role in the formation and maintenance of learningand memory. Recent studies have found that developing neurons can beinduced to activate pathways resulting in cell death at the peak of the centralnervous system growth and development, when their synaptic development,dendritic branching, and remodeling activities are interfered with. Manystudies have confirmed that it is of great significance for the NMDA receptorto maintain moderate excitement for the survival of neurons in the critical period of brain development. If the activity of NMDA receptors was changed,it would affect the development and function of the central nervous system.
     An increasing number of animal studies have suggested that ketaminecauses neurodegeneration during early development. Studies in vitro have alsoshown that ketamine administration induces apoptosis in cultured neurons.The exact mechanism triggering ketamine-induced apoptosis has not yet beenfully elucidated by now. Previous studies have shown that injection ofketamine could cause up-regulation of the NMDA receptor in the rat brainduring its developmental stages, resulting in a wide range of dose-dependentapoptosis. In addition, as a noncompetitive antagonist of the NMDA receptor,ketamine can act on PCP binding sites of the NMDA receptor, blocking theNMDA receptor coupled calcium channels, reducing calcium influx, andreducing the concentration of intracellular calcium. This can antagonize theregulation of nervous system development by glutamate, aspartate and otherexcitatory amino acids. Recent studies showed that ketamine inducedneuroapoptosis by inhibiting Ca2+oscillations in neurons.
     With respect to anesthesia-induced brain injury in neonates, the NIH, theFDA, and the International Anesthesiology Research Society (IARS) haveurged researchers not only to define the scope of the problem but also todevelop therapeutic strategies that target prevention. Although many strategies,including the use of activity-dependent neuroprotective protein peptidefragment NAPVSIPQ (NAP), vitamin D, lithium, erythropoietin, L-carnitine,nicotinamide, and Clonidine, are known to have neuroprotective effectsagainst ketamine-induced apoptosis both in vivo and in vitro, their efficacyand safety need to be further verified for uses targeting the developing brain.
     Steroids hormones and their metabolites within the central nervous system(CNS) are commonly defined as neuroactive steroids or neurosteroids. Theycan be synthesized de novo in the CNS by glial cells and neurons. Neuroactivesteroids mainly include pregnenolone (PREG), dehydroepiandrosterone(DHEA), their sulfate derivatives pregnenolone sulfate (PREGS) anddehydroepiandrosterone sulfate (DHEAS), and progesterone (PROG), 5α-dihydroprogesterone (5α-DHP),3α,5α-tetrahydroprogesterone(allopregnanolone/AP), deoxycorticosterone (DOC),tetrahydrodeoxycorticosterone (THDOC), estradiol (E2), etc. The studyshowed that neurosteroids played an important role as endogenous modulatorsin the development of CNS and exerted neuroprotection.
     Estradiol is a kind of neurosteroids, which has the potential for promotingsurvival and function of neurons. Recently, Trickler et al reported thatketamine attenuated17β-estradiol level and increased testosterone level andketamine had been shown to be neurotoxic in early life stages of zebrafish.PI3K-Akt signaling is very important for promoting neuronal survival.Ketamine induces apoptosis by blocking NMDA receptor activity anddecreasing levels of p-AKT. Previous studies reported that estradiol treatmentof neonatal rats inhibited neuroapoptosis induced by the NMDAR antagonistMK-801and anesthetic cocktails including midazolam, isoflurane, and nitrousoxide. More recently, Ramezani and colleagues suggested that17β-estradiolcould protect the developing rat cerebellum from ethanol-inducedneurotoxicity and improve behavioral deficits. The results from our laboratoryhave shown that Aβ25-35induces apoptosis in primary cultured cortical neuronsaccompanying the change of the methabolism of neurosteroids. However,whether ketamine induces apoptosis in primary cultured cortical neuronsaccompanied by the change of the methabolism of neurosteroids and whether17β-estradiol can protect rat cortical neurons from ketamine-induced apoptosisremain relatively elusive. In our study, an in vitro ketamine-induced cellapoptosis model was established based the primary cultured rat corticalneurons. Based on this model, the HPLC-MS/MS assay was applied toinvestigate the changes of chief neurosteroids, PREG, PROG and17β-estradiol levels in cultured neurons induced by ketamine cytotoxicity.Afterwards,17β-estradiol, whose level found obviously decreased byketamine treatment, was chosen as intervening substances to investigateitsprotective effects against ketamine-induced neuroapoptosis. Then whetherPI3K-Akt signaling takes part in neuroptotection of17β-estradiol against ketamine-induced neuroapoptosis was studied. The study is to add valuableefforts for the protective effects of17β-estradiol against ketamine-inducedneuroapoptosis.
     The following methods were applied in this thesis:
     1Cortical neurons of newborn SD rat were cultured.Cortical neurons were grown for7days before experimentation. Invertedmicroscope was used to observe morphological changes of cultured neurons.
     2Grouping and drug treatments
     ①Ketamine induces injuries in primary cultured cortical neurons:different concentrations of ketamine treatment for24h100μM ketamine treatment for different time
     ②Effect of ketamine on neurosteroidogenesis in primary rat corticalneurons:control, ketamine, cholesterol, cholesterol+ketamine
     ③Effects of17β-estradiol treatment on neuroapoptosis induced byketamine exposure:control, ketamine,17β-estradiol+ketamine
     ④17β-estradiol exerts neuroprotective effects against ketamine-inducedneuroapoptosis and long-term behaviour deficts in developing brain:control, veichle-control,17β-estradiol, ketamine,17β-estradiol+ketamine
     ⑤Study on the mechanism of17β-estradiol against ketamine-inducedneuroapoptosis of the developing cortical neurons:control, ketamine,17β-estradiol+ketamine,17β-estradiol+ketamine+LY294002
     3Sampling and quantitation
     Treated neurons were collected, after cell lysis, supernatant proteinconcentrations were quantitatived by multifunctional enzyme markinstrument.
     4Neuron viability assay
     5Apopyosis of neurons indentified by Hoechst233258dying
     Apoptosis were identified by nuclear morphometry under fluorescencemicroscope. The apoptosis was calculated by5randomly selected eye fields.
     6Apoptotic neurons were detected using the TUNEL assay
     Apoptotic neurons were identified by TUNEL assay under invertedicroscopy. The apoptosis was calculated by5randomly selected eye fields.
     7Immunohistochemical Staining for cleaved caspase-3
     Apoptotic cells were identified by immunohistochemical Staining forcleaved caspase-3under inverted icroscopy. The apoptotic cells (per0.01mm2)in the prefrontal cortex were counted
     8Western Blot Analysis for p-Akt, Akt, cleaved-caspase-3, Bcl-2expression
     9Determination of the concentrations of neurosteroids in culture mediausing HPLC-MS/MS assay
     10Morris water maze test
     11Statistical Analysis
     The data were expressed as mean±standard deviation (SD). The meanescape latency of the Morris water maze behavioral tests collected during thetraining days were analyzed by repeated-measure analysis of variance(ANOVA). Other data were statistically analyzed by one-way ANOVA,followed by between-group comparisons using LSD post hoc test. Statisticalsignificance was concluded with a value of P<0.05for all analyses. Dataanalyses were performed with the SPSS software version13.0
     Results:
     1Ketamine induces injuries in primary cultured cortical neurons
     1.1Ketamine decreased neuron viability dose and time dependently
     The MTT assay was used to evaluate the viability of neurons. Ketaminedecreased cell viability dose and time dependently. Compared withvehicle-control group, the neuron viability of ketamine treated group (24h)significantly (P<0.01for ketamine100μM and1000μM) decreased.Compared with control group, the neuron viability of100μM ketaminesignificantly decreased (P<0.05for24h, P<0.01for48h).
     1.2Morphoolgical alteration of neurons
     The newly inoculated cortical neurons were round, small, translucent,and in a single suspension uniform distribution. After8h, the cells started toadhere to the culture plates, and most of neurons had adhered in24h. Theirmorphologies were fusiform, triangular, with different length of slenderprotrusions. On the3rd day, the cells were well-rounded and full, and theprominences were elongated and enlarged more significantly and connected tothe network, sparse connections had come into being. Cortical neuronscultured for7days, were generally bipolar or multipolar cells under invertedmicroscopy, most of them with triangular soma,and usually aggregated withtheir branching dendrites interconnected as network. Compared with controlgroup,24h after100μM ketamine treatment, numbers of neurons decreasedobviously, with reduced refraction, axons break, and granuliform pieces.
     1.3Ketamine influences on neuroapoptosis identified by TUNEL assay andHoechst33258staining.
     Compared with control group, ketamine treatment increased neuronsapoptosis signficantly (P<0.01).
     2Effect of ketamine on neurosteroidogenesis in primary rat cortical neurons
     2.1Influence on neurons viability
     Compared with control group, neuron viability decreased significantly inketamine-treated group (P<0.01), while cholesterol treatment made nodifference with controls (P>0.05). But, in ketamine+cholesterol group, neuronviability was obviously higher than ketamine treatment alone (P<0.01)
     2.2Influence on neuron apoptosis
     We use TUNEL assay and Hoechst33258staining to identified neuronapoptosis in different treatment group. Compared with control group,apoptosis rate increased significantly in ketamine-treated group (P<0.01),while cholesterol treatment made no difference with controls (P>0.05). But, inketamine+cholesterol group, apoptosis rate was obviously lower thanketamine treatment alone (P<0.01).
     2.3Influence on neurosteroidgenesis
     Absence of the necessary substance, cholesterol, no neurosteroids found in control and ketamine alone groups. Compared with cholesterol treatmentalone, no changes in PREG level were observed after treatment with ketamine,while PROG increased significantly (P<0.05) and17β-estradiol decreasedgreatly (P<0.01).
     3Effects of17β-estradiol treatment on neuroapoptosis induced by ketamineexposure
     3.1Protective effects of17β-estradiol against ketamine-induced cell death incultured cortical neurons.
     We used the MTT assay to assess the changes in neuron viability.Compared with the control group, neurons exposed to100μM ketamine for24h exhibited a significant decrease in neuron viability (P<0.01). Toinvestigate the possible neuroprotective effects of17β-estradiol againstketamine-induced cell death, we used an MTT assay to study the changes inviability after the neurons were co-incubated with ketamine and differentconcentrations (0.001,0.01,0.1and1μM) of17β-estradiol for24h.Co-incubation with17β-estradiol resulted in a significant andconcentration-dependent enhancement of survival. The maximal rescueoccurred at a17β-estradiol concentration of0.1μM.
     3.217β-estradiol treatment reduces neuroapoptosis induced by exposure toketamine.
     To determine the amount of apoptosis that occurs after differenttreatments, we carried out TUNEL assays, in the control group, only a fewapoptotic cells were seen, but the number of apoptotic cells increased afterexposure to100μM ketamine for24h (P<0.01). This increase was preventedby the addition of17β-estradiol (P<0.01). To further investigate theantiapoptotic effect of17β-estradiol, we used Hoechst33258staining todetermine the amount of neuron apoptosis, and similar results were obtained.
     3.317β-estradiol exerts neuroprotective effects against ketamine-inducedneuroapoptosis in brain PFC.
     We use immunohistochemical staining for cleaved caspase-3toinvestigate the neuroprotective effects of17β-estradiol against ketamine-induced neuroapoptosis in PFC. Compared to control group, arobust degenerative reaction was detected in PFC of ketamine-treatedgroup(P<0.01). Administration of17β-estradiol only had no influence on theamount of ongoing physiological apoptosis. However, when17β-estradiol wascoadministered with ketamine, it significantly amelioratedneuroapoptosis-induced by ketamine exposure (P<0.01).
     3.417β-estradiol improved long-term behavioral deficits in Morris water mazetest
     At60day of age, all rats were trained in the Morris water maze to testlearning and memory abilities. Briefly, rats received four training trials dailyfor five consecutive days. All animals showed a progressive decline in theescape latency and path length with training. The escape latency and pathlength of ketamine treatment group were more than the vehicle controls on thethird, fourth and fifth training days (P<0.01), while those of the17β-estradiolin combination with ketamine treatment group were significantly lower thanketamine treatment group (P<0.01). On test day6, rats were subjected to aprobe trial, ratio of time spent in the target quadrant and the number ofcrossings over previous platform locations in ketamine group were fewer thanveichle-control group (P<0.01), while those of17β-estradiol in combinationwith ketamine treatment group were more than ketamine treatment group(P<0.01).
     4Study on the mechanism of17β-estradiol against ketamine-inducedneuroapoptosis of the developing cortical neurons
     4.1Effects of different treatments on pAkt expression
     We measured the changes in pAkt in neurons exposed to17β-estradiolalone, pAkt level remained elevated for at least4h when only17β-estradiolwas added to the culture.When17β-estradiol and ketamine were added tocultures simultaneously, p-Akt level remained elevated for at least4h.Wesuspect that17β-estradiol can attenuate the ketamine-induced down-regulationof pAkt by activating the PI3K pathway. To ascertain this, we treated cellswith10μM LY294002, a PI3K inhibitor. Compared with control group, pAkt level decreased when neurons were exposed to ketamine alone for2h(P<0.01). Compared with ketamine-treated group, pAkt increasedsignificantly in cells treated with both ketamine and17β-estradiol for2h(P<0.01), while a1-hr pre-treatment with LY294002abolished the17β-estradiolinduced up-regulation of p-Akt (P<0.01).
     4.217β-estradiol enhances Bcl-2expression through the PI3K/Akt pathway
     Western blot analysis detected decreased Bcl-2expression in neurons ofthe ketamine group compared with those in the control group (P<0.01).However, Bcl-2expression increased in cortical neurons treated with17β-estradiol after24hr of ketamine exposure (P<0.01). The effect of17β-estradiol treatment was inhibited by LY294002pre-treatment (P<0.01).
     4.317β-estradiol prevents apoptosis in ketamine-treated neurons by activatingthe PI3K pathway and blocking caspase-3activity
     Compared with control group, the expression of cleaveded caspase-3incells exposed to ketamine for24h increased significantly (P<0.01).Co-incubation of cells with both17β-estradiol and ketamine significantlydecreased the up-regulation of cleaved caspase-3induced by exposure toketamine alone (P<0.01). Consistent with the critical role of PI3K inmediating17β-estradiol induced neuroprotection, the addition of LY294002tothe medium reversed the effect of17β-estradiol on cleaved caspase-3expression in neurons (P<0.01).
     4.4Effect of LY294002on neuroprotection of17β-estradiol
     Compared with control group, neuron viability decreased significantly inketamine-treated group (P<0.01), while only LY294002treatment made nodifference with controls (P>0.05). But, in ketamine+17β-estradiol group,neuron viability was obviously higher than ketamine treatment alone (P<0.01),the addition of LY294002to the medium reversed the effect of17β-estradiolon neuron viability (P<0.01).We used TUNEL assay and Hoechst33258staining to identified neuron apoptosis in different treatment groups.Compared with control group, apoptosis rate increased significantly inketamine-treated group (P<0.01), while ketamine+17β-estradiol treatment group, apoptosis rate was obviously lower than ketamine treatmentalone(P<0.01). The addition of LY294002to the medium reversed the effectof17β-estradiol on neuron apoptosis (P<0.01).
     Conclusions
     1The inhibitions of ketamine to the immature cortical neurons areconcentration-and time-dependent.
     2Ketamine-induced neuron apoptosis is accompanied by increasedlevel of PROG and decreased level of17β-estradiol.
     317β-estradiol protects primary cultured rat cortical neurons fromketamine-induced apoptosis.
     417β-estradiol attenuates ketamine-induced neuroapoptosis and long-term behavioral deficits in developing rats.
     517β-estradiol protects primary cultured rat cortical neurons fromketamine-induced apoptosis, in part through the PI3K/Akt/signalling pathway,with the increase of Bcl-2expression and the decrease of cleaved-caspase-3expression.
引文
1Forder JP, Tymianski M. Postsynaptic mechanisms ofexcitotoxicity:Involvement of postsynaptic density proteins, radicals, andoxidant molecules. Neuroscience,2009,158(1):293-300
    2Scheetz AL, Nairn AC, Constantine Paton. NMDA receptor-mediatedcontrol of protein synthesis at developing synapses. Nature Neurosci,2000,3(3):211-216
    3Komuro H, Rakic P. Modulation of neuronal migration by NMDAreceptors. Science,1993,260(5104):95-97
    4Gomes LM, Garcia JB, Ribamar JS Jr,et al. Neurotoxicity of subarachnoidpreservative-free S(+)-ketamine in dogs. Pain Physician,2011,14(1):83-90
    5Paule MG, Li M, Allen RR, et al. Ketamine anesthesia during the firstweek of life can cause long-lasting cognitive deficits in rhesus monkeys.Neurotoxicol Teratol,2011,33(2):220-230
    6Huang L, Liu Y, Jin W, et al. Ketamine potentiates hippocampalneurodegeneration and persistent learning and memory impairmentthrough the PKCγ–ERK signaling pathway in the developing brain. Brainresearch,2012,147:164-171
    7Zou X, Patterson TA, Divine RL, et al. Prolonged exposure to ketamineincreases neurodegeneration in the developingmonkey brain. Int J DevNeurosci,2009,27(7):727-731
    8Brambrink AM, Evers AS, Avidan MS, et al.Ketamine-inducedneuroapoptosis in the fetal and neonatal rhesus macaquebrain. Anesthesiology,2012,116(2):372-384
    9Campbell LL, Tyson JA, Stackpole EE, et al. Assessment of generalanaesthetic cytotoxicity inmurine cortical neurones in dissociated culture.Toxicology,2011,283(1):1-7
    10Liu F, Patterson TA, Sadovova N, et al. Ketamine-Induced NeuronalDamage and Altered N-methyl-D-aspartate (NMDA) Receptor Functionin Rat Primary Forebrain Culture. Toxicological Sciences,2013,131(2):548-557
    11Soriano SG, Liu Q, Li J, et al. Ketamine Activates Cell Cycle Signalingand Apoptosis in the Neonatal Rat Brain. Anesthesiology,2010,112(5):1155-63
    12Takadera T, Ishida A, Ohyashiki T. Ketamine-induced apoptosis incultured rat cortical neurons. Toxicol Appl Pharmacol,2006,210(1-2):100-107
    13Wang C, Sadovova N, Fu X, et al. The role of the N-methyl-D-aspartatereceptor in ketamine-induced apoptosis in rat forebrain culture.Neuroscience,2005,132(4):967-977
    14Flick RP, Katusic SK, Colligan RC, et al. Cognitive and behavioraloutcomes after early exposure to anesthesia and surgery. Pediatrics,2011,128(5): e1053-1061
    15Kalkman CJ, Peelen L, Moons KG, et al. Behavior and development inchildren and age at the time of first anesthetic exposure. Anesthesiology,2009,110(4):805-812
    16Sprung J, Flick RP, Katusic SK, et al. Attentiondeficit/hyperactivitydisorder after early exposure to procedures requiring general anesthesia.Mayo Clin Proc,2012,87(2):120-129
    17Wilder RT, Flick RP, Sprung J, et al. Early exposure to anesthesia andlearning disabilities in a population-based birth cohort. Anesthesiology,2009,110(4):796-804
    18Ikonomidou C, Bosch F, Miksa M, et al. Blockade of NMDA receptorsand apoptotic neurodegeneration in the developing brain. Science,1999,283(5398):70-74
    19杨胜,刘振伟,万勤等.大鼠海马神经元膜离子通道随培养时间变化的特点.中国应用生理学杂志,2004,20(2):151-155
    20Shang Y, Wu Y, Yao S, et al. Protective effect of erythropoietin againstketamine-induced apoptosis in cultured rat cortical neurons: Involvementof PI3K/Akt and GSK-3beta pathway. Apoptosis,2007,12(12):2187-2195
    21Vutskits L, Gascon E, Tassonyi E, et al. Effect of ketamine ondendriticarbor development and survival of immature GABAergic neuronsin vitro. Toxicological sciences:an official journal of the Society ofToxicology,2006,91(2):540-549
    22Jacobson I, Hamberger A, Richards CD. Ketamine and MK801attenuatepaired pulse inhibition in the olfactory bulb of the rat. Experimental brainresearch Experimentelle Hirnforschung Experimentation cerebrale,1990,80(2):409-414
    23Cohen ML, Chan SL, Way WL, et al. Distribution in the brain andmetabolism of ketamine in the rat after intravenous administration.Anesthesiology,1973,39(4):370-376
    24Oppenheim RW. Cell death during development of the nervous system.Annual review of neuroscience,1991,14:453-501Cha budao
    25Kuan CY, Roth KA, Flavell RA, et al. Mechanisms of programmed celldeath in the developing brain. Trends in neurosciences,2000,23(7):291-297
    26Wei H. The role of calcium dysregulation in anesthetic-mediatedneurotoxicity. AnesthAnalg,2011,113(5):972-974
    27Sinner B, Friedrich O, Zink W, et al. Ketamine stereoselectively inhibitsspontaneous Ca2+-oscillations in cultured hippocampal neurons.Anesthesia and analgesia,2005,100(6):1660-1666
    28Huang L, Liu Y, Zhang P, et al. In vitro dose-dependent inhibition of theintracellular spontaneous calcium oscillations in developing hippocampalneurons by ketamine. PLoS One,2013,8(3):e59804
    29Bai X, Yan Y, Canfield S, et al. Ketamine enhances human neural stem cellproliferation and induces neuronal apoptosis via reactive oxygenspecies-mediated mitochondrial pathway. Anesth Analg,2013,116(4):869-880
    30Ibla JC, Hayashi H, Bajic D, et al. Prolonged exposure to ketamineincreases brain derived neurotrophic factor levels in developing rat brains.Curr Drug Saf,2009,4(1):11-16
    1Tsutsui K. Neurosteroids in the Purkinje cell: biosynthesis, mode of actionand functional significance. Mol Neurobiol,2008,37(2-3):116-125
    2Vaudry H, Do Rego JL, Burel D, et al. Neurosteroid biosynthesis in thebrain of amphibians. Front Endocrinol (Lausanne),2011,2:79
    3Mellon SH, Griffin LD. Neurosteroids: biochemistry and clinicalsignificance. Trends Endocrinol Metab,2002,13(1):35-43
    4Corpéchot C, Synguelakis M, Talha S, et al. Pregnenolone and its sulfateester in the rat brain. Brain Res,1983,270(1):119-125
    5Kawato S, Yamada M, Kimoto T. Brain neurosteroids are4thgenerationneuromessengers in the brain:cell biophysical analysis of steroidsignaltransduction. Adv Biophy,2001,37(1):1-48
    6Brambrink AM, Evers AS, Avidan MS, et al. Ketamine-inducedneuroapoptosis in the fetal and neonatal rhesus macaque brain.Anesthesiology,2012,116(2):372-384
    7Paule MG, Li M, Allen RR, et al. Ketamine anesthesia during the firstweek of life can cause long-lasting cognitive deficits in rhesus monkeys.Neurotoxicol Teratol,2011,33(2):220-230
    8Kong F, Xu L, He D, et al. Effects of gestational isoflurane exposure onpostnatal memory and learning in rats. Eur J Pharmacol,2011,670(1):168-174
    9Huang L, Liu Y, Jin W, et al. Ketamine potentiates hippocampalneurodegeneration and persistent learning and memory impairmentthrough the PKCγ–ERK signaling pathway in the developing brain. Brainresearch,2012,147:164-171
    10Campbell LL, Tyson JA, Stackpole EE, et al. Assessment of generalanaesthetic cytotoxicity inmurine cortical neurones in dissociated culture.Toxicology,2011,283(1):1-7
    11Liu F, Patterson TA, Sadovova N, et al. Ketamine-Induced NeuronalDamage and Altered N-methyl-D-aspartate (NMDA) Receptor Function inRat Primary Forebrain Culture. Toxicological Sciences,2013,131(2):548-557
    12Soriano SG, Liu Q, Li J, et al. Ketamine Activates Cell Cycle Signalingand Apoptosis in the Neonatal Rat Brain. Anesthesiology,2010,112(5):1155-1163
    13Takadera T, Ishida A, Ohyashiki T. Ketamine-induced apoptosis incultured rat cortical neurons. Toxicol Appl Pharmacol,2006,210(1-2):100-107
    14于洋,薛改,吴红海等. Aβ25-35对大鼠大脑皮层皮质神经元神经甾体水平的影响.中国药理学通报,2010,26(6):783-786
    15Lee CJ, Do BR, Kim JK, et al. Pentobarbital and ketamine suppress serumconcentrations of sex hormones in the female rat. J Anesth,2000,14(4):187-190
    16Yoder KM, Lu K, Vicario DS. Blocking estradiol synthesis affectsmemory for songs in auditory forebrain of male zebra finches.Neuroreport,2012,23(16):922-926
    17Trickler WJ, Guo X, Cuevas E, et al. Ketamine attenuates cytochromep450aromatase gene expression and estradiol-17β levels in zebrafish earlylife stages. J Appl Toxicol,2013May20. doi:10.1002/jat.2888
    18Kanungo J, Cuevas, Ali SF, et al. Ketamine induces motor neurontoxicity and alters neurogenic and proneural gene expression in zebrafish.Appl Toxicol,2013,33(6):410-417
    19Luchetti S, Huitinga I, Swaab DF. Neurosteroid and GABA-A receptoralterations in Alzheimer's disease, Parkinson's disease and multiplesclerosis. Neuroscience,2011,191:6-21
    20Lapchak PA. The neurosteroid3-alpha-ol-5-beta-pregnan-20-onehemisuccinate, a selective NMDA receptor antagonist improves behavioralperformance following spinal cord ischemia. Brain Res,2004,997(2):152-158
    21Roglio I, Bianchi R, Gotti S, et al. Neuroprotective effects ofdihydroprogesterone and progesterone in an experimental model of nervecrush injury. Neuroscience,2008,155(3):673-685
    22Caldeira JC, Wu Y, Mameli M, et al. Fetal alcohol exposure altersneurosteroid levels in the developing rat brain. J Neurochem,2004,90(6):1530-15399
    23张翠欣,侯艳宁. NMDA受体对乙醇、乙醛调控大脑皮质神经元神经甾体水平的影响.中国药学杂志,2008,43(11):824-828
    24Taherianfard M, Davazdahemamy M, Shojaeifard M, et al. Acute andchronic exposure of chick embryo to ethanol alters brain neurosteroidlevel. J Physiol Biochem,2013,69(1):141-145
    25de Olmos S, Bueno A, Bender C, et al. Sex differences and influence ofgonadal hormones on MK801-induced neuronal degeneration in thegranular retrosplenial cortex of the rat. Brain Struct Funct,2008,213(1-2):229-238
    26Fester L, Zhou L, Bütow A, et al. Cholesterol-promoted synaptogenesisrequires the conversion of cholesterol to estradiol in the hippocampus.Hippocampus,2009,19(8):692-705
    27谭来勋,孙圣刚,张双国.不同发育时期大鼠脑海马区胆固醇对发育与成熟的意义.中国临床康复,2005,9(36):157-159
    28Li L, Xiao N, Yang X, et al. A high cholesterol diet ameliorateshippocampus-related cognitive and pathological deficits in ovariectomizedmice. Behav Brain Res,2012,230(1):251-258
    29Yamazaki T, Yamamoto M, Ishihara Y, et al. De novo synthesized estradiolprotects against methylmercury-induced neurotoxicity in cultured rathippocampal slices. PLoS One,2013,8(2):e55559
    30Hohsfield LA, Ehrlich D, Humpel C. Cholesterol diet counteracts repeatedanesthesia/infusion-induced cognitive deficits in male Brown Norway rats.Neurobiol Learn Mem,2013,106:154-162
    31Luchetti S, Bossers K, Van de Bilt S, et al. Neurosteroid biosyntheticpathways changes in prefrontal cortex in Alzheimer’s disease. NeurobioAgeing,2011,32(11):1964-1976
    32Chen G, Li HM, Chen YR, et al. Decreased estradiol release fromastrocytes contributes to the neurodegeneration in a mouse model ofNiemann-Pick disease type C. Glia,2007,55(15):1509-1518
    33Mellon SH, Griffin LD, Compagnone NA. Biosynthesis and action ofneurosteroids. Brain Res Rev,2001,37(1-3):1-12
    34Leskiewicz M, Budziszewska B, Basta-Kaim A, et al. Effects ofneurosteroids on neuronal survival.Molecular basis and clinicalperspectives. Acta Neurobiol Exp,2006,66(4):359-367
    35Braun S, Gaza N, Werdehausen R, et al.Ketamine induces apoptosis viathe mitochondrial pathway in human lymphocytes and neuronal cells. Br JAnaesth,2010,105(3):347-354
    36Asimiadou S, Bittigau P, Felderhoff-Mueser U, et al. Protection withEstradiol in Developmental Models of Apoptotic Neurodegeneration.Ann Neurol,2005,58(2):266-276
    37Lu LX, Yon JH, Carter LB. General anesthesia activates BDNF-dependentneuroapoptosis in the developing rat brain. Apoptosis,2006,11(9):1603-1615
    38Ramezani, Goudarzi I, Lashkarbolouki T, et al. Neuroprotective effects ofthe17beta-estradiol against ethanol-induced neurotoxicity and oxidativestress in the developing male rat cerebellum:biochemical,histological andbehavioral changes. Pharmacol Biochem Behav,2011,100(1):144-151
    1Kawato S, Yamada M, Kimoto T. Brain neurosteroids are4thgenerationeuromessengers in the brain:cell biophysical analysis of steroid signalransduction. Adv Biophy,2001,37(1):1-48
    2宋亚琼,赵平.雌激素与神经保护的研究进展.国际眼科杂志,2010,10(3):523-526
    3Melcangi RC, Panzica G, Garcia-Segura LM. Neuroactive steroids:focuson human brain. Neuroscience,2011,191:1-5
    4Bucolo C, Drago F. Neuroactive steroids protect retinal tissue throughsigma1receptors. Basic Clin Pharmacol Toxicol,2007,100(3):214-216
    5Tang XL, Liu XJ, Tian Q, et al. Dynamic oxidative stress and DNAdamage induced by oestrogen deficiency and protective effects of puerarinand17beta-oestradiol in ovariectomized rats. Basic Clin PharmacolToxicol,2012,111(2):87-91
    6Huang L, Liu Y, Jin W, et al. Ketamine potentiates hippocampalneurodegeneration and persistent learning and memory impairmentthrough the PKCγ–ERK signaling pathway in the developing brain. Brainresearch,2012,147:164-171
    7Paule MG, Li M, Allen RR, et al. Ketamine anesthesia during the firstweek of life can cause long-lasting cognitive deficits in rhesus monkeys.Neurotoxicol Teratol,2011,33(2):220-230
    8Zou X, Patterson TA, Divine RL, et al. Prolonged exposure to ketamineincreases neurodegeneration in the developingmonkey brain. Int J DevNeurosci,2009,27(7):727-731
    9Turner CP, Gutierrez S, Liu C, et al. Strategies to defeat ketamine-inducedneonatal brain injury. Neuroscience,2012,210:384-392
    10Straiko MM, Young C, Cattano D, et al. Lithium protects againstanesthesia-induced developmental neuroapoptosis. Anesthesiology,2009,110(4):862-868
    11Shang Y, Wu Y, Yao S, et al. Protective effect of erythropoietin againstketamine-induced apoptosis in cultured rat cortical neurons: involvementof PI3K/Akt and GSK-3beta pathway. Apoptosis,2007,12(12):2187-2195
    12Ullah N, Ullah I, Lee HY, et al. Protective function of nicotinamideagainst ketamine-induced apoptotic neurodegeneration in the infant ratbrain. J Mol Neurosci,2012,47(1):67-75
    13Ponten E, Viberg H, Gordh T, et al. Clonidine abolishes the adverse effectson apoptosis and behaviour after neonatal ketamine exposure in mice.Acta Anaesthesiol Scand,2012,56(8):1058-1065
    14Nilsen J, Chen S, Irwin RW, et al. Estrogen protects neuronal cells fromamyloid beta-induced apoptosis via regulation of mitochondrial proteinsand function. BMC Neurosci,2006,7(3):74-85
    15Chen S, Nilsen J, Brinton RD. Dose and temporal pattern of estrogenexposure determines neuroprotective outcome in hippocampal neurons:therapeutic implications. Endocrinology,2006,147(11):5303-5313
    16Arevalo MA, Ruiz-Palmero I, Scerbo MJ, et al. Molecular mechanismsinvolved in the regulation of neuritogenesis by estradiol: Recent advances.J Steroid Biochem Mol Biol,2012,131(1-2):52-56
    17Hsu HK, Yang RC, Shih HC, et al. Prenatal exposure of testosteroneprevents SDN-POA neurons of postnatal male rats from apoptosis throughNMDA receptor. J Neurophysiol,2001,86(5):2374-2380
    18Cui J, Wang Y, Dong Q, et al. Morphine protects against intracellularamyloid toxicity by inducing estradiol release and upregulation of Hsp70.J Neurosci,2011,31(45):16227-16240
    19Asimiadou S, Bittigau P, Felderhoff-Mueser U, et al. Protection withEstradiol in Developmental Models of Apoptotic Neurodegeneration. AnnNeurol,2005,58(2):266-276
    20Lu LX, Yon JH, Carter LB. General anesthesia activates BDNF-dependent neuroapoptosis in the developing rat brain. Apoptosis,2006,11(9):1603-1615
    21D ugosz A, Pruss A, Lembas-Bogaczyk J. Role of estradiol in reducingethanol toxicity. Acta Pol Pharm,2010,67(6):713-716
    22Ramezani, Goudarzi I, Lashkarbolouki T, et al.Neuroprotective effects ofthe17beta-estradiol against ethanol-induced neurotoxicity and oxidativestress in the developing male rat cerebellum:biochemical,histological andbehavioral changes.Pharmacol Biochem Behav,2011,100(1):144-151
    23Yamazaki T, Yamamoto M, Ishihara Y, et al. De novo synthesized estradiolprotects against methylmercury-induced neurotoxicity in cultured rathippocampal slices. PLoS One,2013,8(2):e55559
    24Trotter A, Maier L, Grill HJ, et al. Effects of postnatal estradiol andprogesterone replacement in extremely preterm infants. J Clin EndocrinolMetab,1999,84(12):4531–4535
    25Trotter A, Maier L, Pohlandt F. Management of the extremely preterminfant: is the replacement of estradiol and progesterone beneficial?Paediatr Drugs,2001,3(9):629-637
    26Yang HQ, Zang WZ, Xu J. Akt activation mediates estrogen-inducedneuroprotection against beta amyloid. Zhonghua Yi Xue ZaZhi,2008,88(25):1783-1786
    27Kajta M, Trotter A, Lasoń W, et al. Impact of17beta-estradiol oncytokine-mediated apoptotic effects in primary hippocampal andneocortical cell cultures. Brain Res,2006,1116(1):64-74
    28Yu X, Rajala RV, McGinnis JF, et al. Involvement of insulin/phosphoinositide3-kinase/Akt signal pathway in17beta-estradiol-mediated neuroprotection. J Biol Chem,2004,279(13):13086-13094
    29Lobner D, Hjelmhaug J, Salous AK. Concentration dependent effects ofestrogen and progestins on cell death in cortical cultures.J Cereb BloodFlow Metab,2005,25:S440
    30Ikonomidou C, Bosch F, Miksa M, et al. Blockade of NMDA receptorsand apoptotic neurodegeneration in the developing brain. Science,1999,283(5398):70-74
    31Waterman AE, Livingston A. Effects of age and sex on ketamineanaesthesia in the rat. British journal of anaesthesia,1978,50(9):885-889
    32Kuan CY, Roth KA, Flavell RA, et al. Mechanisms of programmed celldeath in the developing brain. Trends in neurosciences,2000,23(7):291-297
    33Liu F, Patterson TA, Sadovova N, et al. Ketamine-Induced NeuronalDamage and Altered N-methyl-D-aspartate (NMDA) Receptor Functionin Rat Primary Forebrain Culture. Toxicological Sciences,2013,131(2):548-557
    34徐颖,田玉科.氯胺酮和咪哒唑仑联合使用对乳鼠神经细胞凋亡的影.华中科技大学学报(医学版),2004,33(6):752-755
    35Gorter JA, de Bruin JP. Chronic neonatal MK-801treatment results in animpairment of spatial learning in the adult rat. Brain research,1992,580(1-2):12-17
    36Jevtovic-Todorovic V, Hartman RE, Izumi Y, et al. Early exposure tocommon anesthetic agents causes widespread neurodegeneration in thedeveloping rat brain and persistent learning deficits. The Journal ofneuroscience:the official journal of the Society for Neuroscience,2003,23(3):876-882
    37Viberg H, Ponten E, Eriksson P, et al. Neonatal ketamine exposure resultsin changes in biochemical substrates of neuronal growth andsynaptogenesis, and alters adult behavior irreversibly. Toxicology,2008,249(2-3):153-159
    38Paule MG, Li M, Allen RR, et al. Ketamine anesthesia during the firstweek of life can cause long-lasting cognitive deficits in rhesus monkeys.Neurotoxicology and teratology,2011,33(2):220-230
    39Durham JL, Jordan KA, Devos MJ, et al. Estradiol protects againsthippocampal damage and impairments in fear conditioning resulting fromtransient global ischemia in mice. Brain Res,2012,1443:64-74
    40Caceres LG, Uran SL, Zorrilla Zubilete MA, et al. An early treatment with17β-estradiol is neuroprotective against the long-term effects of neonatalionizing radiation exposure. J Neurochem,2011,118(4):626-635
    41Zhang X, Wang J, Xing Y, et al. Effects of ginsenoside Rg1or17β-estradiol on a cognitively impaired, ovariectomized rat model ofAlzheimer's disease. Neuroscience,2012,220:191-200
    42Vedder LC, Smith CC, Flannigan AE, et al. Estradiol-induced increase innovel object recognition requires hippocampal NR2B-containing NMDAreceptors. Hippocampus,2013,23(1):108-115
    43Fortress AM, Fan L, Orr PT, et al. Estradiol-induced object recognitionmemory consolidation is dependent on activation of mTOR signaling inthe dorsal hippocampus. Learn Mem,2013,20(3):147-155
    44Sutcliffe JS, Rhaman F, Marshall KM, et al. Oestradiol attenuates thecognitive deficit induced by acute phencyclidine treatment in maturefemale hooded-Lister rats. J Psychopharmacol,2008,22(8):918-922
    1Takadera T, Ishida A, Ohyashiki T. Ketamine-induced apoptosis incultured rat cortical neurons. Toxicol Appl Pharmacol,2006,210(1-2):100-107
    2Shang Y, Wu Y, Yao S, et al. Protective effect of erythropoietin againstketamine-induced apoptosis in cultured rat cortical neurons: involvementof PI3K/Akt and GSK-3beta pathway. Apoptosis,2007,12(12):2187-2195
    3Yang HQ, Zang WZ, Xu J. Akt activation mediates estrogen-inducedneuroprotection against beta amyloid. Zhonghua Yi Xue Za Zhi,2008,88(25):1783-1786
    4Asimiadou S, Bittigau P, Felderhoff-Mueser U, et al. Protection withEstradiol in Developmental Models of Apoptotic Neurodegeneration. AnnNeurol,2005,58(2):266-276
    5Lu LX, Yon JH, Carter LB. General anesthesia activates BDNF-dependentneuroapoptosis in the developing rat brain. Apoptosis,2006,11(9):1603-1615
    6Kim D, Chung J. AKT:versatile mediator of cell survival and beyond. JBioehem Mol Biol,2001,35,106-115
    7Abbott JJ, Howlett DR, FrancisPT, et al. Aβ1-42modulation of AKTPhosPhorylation via α7nAChR and NMDA recePtors. NeurobiolAging,2008,29(7):992-1001
    8Watson K, Fan GH. MacroPhage inflammatory Protein2inhibitsbeta-amyloid Peptide(1-42)-mediated hipPocamPal neuronal apoptosisthrough activation of mitogen-activated Protein kinase andPhosPhatidylinositol3-kinase signaling Pathways. Mol Pharmacol,2005,67(3):757-765
    9Lee HK, Kumar P, Fu Q, et al. The insulin/AKT signaling Pathway istargeted by intraeellular beta-amyloid. Mol Biol Cell,2009,20(5):1533-1544
    10Song G, Ouyang G, Bao S. The activation of AKT/PKB signaling Pathwayand Cell survival. J Cell Mol Med,2005,9(1):59-71
    11Ma R, Xiong N, Huang C, et al. Erythropoietin Proteets PC12cell frombeta-amyloid(25-35)-induced apoptosis via PI3K/AKT signaling Pathway.NeuroPharinacology,2009,56(6-7):1027-1034
    12Garcia-Segura LM, Sanz A, Mendez P. Cross-talk between IGF-I andestradiol in the brain: focus on neuroprotection. Neuroendocrinology,2006,84(4):275-279
    13Sutton G, Chandler LJ. Activity-dependent NMDA receptor-mediatedactivation of protein kinase B/Akt in cortical neuronal cultures. JNeurochem,2002,82(5):1097-1105
    14Straiko MM, Young C, Cattano D, et al. Lithium protects againstanesthesia-induced developmental neuroapoptosis. Anesthesiology,2009,110(4):862-868
    15O’Lone R, Frith MC, Karlsson EK, et al. Genomic targets of nuclearestrogen receptors. Mol Endocrinol,2004,18(8):1859-1875
    16Fiocchetti M, Ascenzi P, Marino M. Neuroprotective effects of17beta-estradiol rely on estrogen receptor membrane initiated signals.Front Physiol,2012,3:73
    17Ruiz-Palmero I, Hernando M, Garcia-Segura LM, et al. G protein-coupledreceptor is required for the neuritogenic mechanism of17β-estradiol indeveloping hippocampal neurons. Mol Cell Endocrinol,2013,372(1-2):105-115
    18Zhang L, Rubinow DR, Xaing G, et al. Estrogen protects againstbeta-amyloid-induced neurotoxicity in rat hippocampal neurons byactivation of Akt. Neuroreport,2001,12(9):1919-1923
    19Honda K, Shimohama S, Sawada H, et al. Nongenomic AntiapoptoticSignal Transduction by Estrogen in Cultured Cortical Neurons. Journal ofNeuroscience Research,2001,64(5):466-475
    20Takada-Takatori Y, Kume T, Sugimoto M, et al. Acetylcholinesteraseinhibitors used in treatment of Alzheimer’s disease prevent glutamateneurotoxicity via nicotinic acetylcholine receptors andphosphatidylinositol3-kinase cascade. Neuropharmacology,2006,51(3):474-486
    21Cory S, Huang DC, Adams JM. The Bcl-2family: roles in cell survivaland oncogenesis. Oncogene,2003,22(53):8590-8607
    22Huang L, Liu Y, Jin W, et al. Ketamine potentiates hippocampalneurodegeneration and persistent learning and memory impairmentthrough the PKCγ–ERK signaling pathway in the developing brain.Brainresearch,2012,147:164-171
    23Liu SB, Han J, Zhang N, et al. Neuroprotective effects of oestrogenagainst oxidative toxicity through activation of G-protein-coupled receptor
    30receptor. Clin Exp Pharmacol Physiol,2011,38(9):577-885
    24Jellinger KA. Cell death mechanisms in Parkinson’s disease. J NeuralTransm,2000,107(1):1-29
    25Yon JH, Daniel-Johnson J, Carter LB, et al. Anesthesia induces neuronalcell death in the developing rat brain via the intrinsic and extrinsicapoptotic pathways. Neuroscience,2005,135(3):815-827
    26Mo MS, Li HB, Wang BY,et al. PI3K/Akt and NF-κB activation followingintravitreal administration of17β-estradiol: neuroprotection of the ratretina from light-induced apoptosis. Neuroscience,2013,228:1-12wu
    27Müller MM, Middelanis J, Meier C, et al.17β-estradiol protects7-day oldrats from acute brain injury and reduces the number of apoptotic cells.Reprod Sci,2013,20(3):253-261
    28Napolitano M, Costa L, Piacentini R, et al.17β-Estradiol protectscerebellar granule cells against β-amyloid-induced toxicity via theapoptotic mitochondrial pathway. Neurosci Lett,2013Nov25. pii:S0304-3940(13)01040-9
    1Stratmann G, May LD, Sall JW, et al. Effect of hypercarbia and isofluraneon brain cell death and neurocognitive dysfunction in7-day old rats.Anesthesiology,2009,110(4):849-861
    2Huang L, Liu Y, Jin W, et al. Ketamine potentiates hippocampalneurodegeneration and persistent learning and memory impairmentthrough the PKCγ–ERK signaling pathway in the developing brain. Brainresearch,2012,147:164-171
    3Fredriksson A, Ponten E, Gordh T, et al. Neonatal exposure to acombination of N–methyl-D-aspartate and gamma–aminobutyric acidtype A receptor anesthetic agents potentiates apoptotic neurodegenerationand persistent havioural deficits. Anesthesiology,2007,107(3):427-436
    4Young C, Jevtovic-Todorovic V, Qin YQ, et al. Potential of ketamine andmidazolam,individually or in combination,to induce apoptoticneurodegeneration in the infant mouse brain. Br J Pharmacol,2005,146(2):189-197
    5Liu F, Paule MG, Ali S, et al. Ketamine-induced neurotoxicity andchanges in gene expression in the developing rat brain. CurrNeuropharmacol,2011,9(1):256-261.
    6Creeley C, Dikranian K, Dissen G, et al. Propofol-induced apoptosis ofneurones and oligodendrocytes in fetal and neonatal rhesus macaque brain.Br J Anaesth,2013,110, Suppl1:i29-38.
    7Byrnes ML, Reynolds JN, Brien JF. Effect of prenatal ethanol exposureduring the brain growth spurt of the guinea pig. Neurotoxicol Teratol,2001,23(4):355-364
    8OPPenheim RW. Cell death during development of the nervous system.Annu Rev Neurosci,1991,14:453-501
    9Rakic S, Zeeevic N. Programmed cell death in the developing humantelence Phalon. Eur J Neurosei,2000,12(8):2721-2734
    10Ikonomidou C, Bosch F, Miksa M, et al. Blockade of NMDA receptorsand apoptotic neurodegeneration in the developing brain. Science,1999,283(5398):70-74
    11Rudin M, Ben-Abraham R, Gazit V, et al. Single-dose ketamineadministration induces aPoPtosis in neonatal mouse brain. J Basic ClinPhysiol Pharmacol,2005,16(4):231-233
    12Slikker WJr, Zou X, Hotchkiss CE, et al. Ketamine-induced neuronal celldeath in the Perinatal rhesuS monkey. ToxieolSci2007,98(1):145-158
    13Scallet AC, Schmued LC, Slikker WJr, et al. Developmental neurotoxicityof ketamine: morphometric confirmation, exposure parameters, andmultiple fluorescent labeling of apoptotic neurons. Toxicol Sci,2004,81(2):364-70
    14Rudin M, Ben-Abraham R, Gazit V, et al. Single-dose ketamineadministration induces apoptosis in neonatal mouse brain. J Basic ClinPhysiol Pharmacol,2005,16(4):231-243.
    15Zou X, Patterson TA, Divine RL, et al. Prolonged exposure to ketamineincreases neurodegeneration in the developingmonkey brain.Int J DevNeurosci,2009,27(7):727-731
    16Brambrink AM, Evers AS, Avidan MS, et al. Ketamine-inducedneuroapoptosis in the fetal and neonatal rhesus macaque brain.Anesthesiology,2012,116(2):372-384
    17Soriano SG, Liu Q, Li J, et al. Ketamine Activates Cell Cycle Signalingand Apoptosis in the Neonatal Rat Brain. Anesthesiology,2010,112(5):1155-1163
    18Wang C, Sadovova N, Fu X, et al. The role of the N-methyl-D-aspartatereceptor in ketamine-induced apoptosis in rat forebrain culture.Neuroscience,2005,132(4):967-977
    19Wang C, Sadovova N, Hotchkiss C, et al. Blockade of N-methyl-D-asPartate receptors by ketamine Produces loss of Postnatal day3Monkeyfrontal cortical neurons in culture. Toxicological Sciences:an officialjournal of the Society of Toxicology,2006,91(1):192-201
    20Campbell LL, Tyson JA, Stackpole EE, et al. Assessment of generalanaesthetic cytotoxicity inmurine cortical neurones in dissociated culture.Toxicology,2011,283(1):1-7
    21Liu F, Patterson TA, Sadovova N, et al. Ketamine-Induced NeuronalDamage and Altered N-methyl-D-aspartate (NMDA) Receptor Functionin Rat Primary Forebrain Culture. Toxicological Sciences,2013,131(2):548-557
    22Soriano SG, Liu Q, Li J, et al. Ketamine Activates Cell Cycle Signalingand Apoptosis in the Neonatal Rat Brain. Anesthesiology,2010,112(5):1155-1163
    23Takadera T, Ishida A, Ohyashiki T. Ketamine-induced apoptosis incultured rat cortical neurons. Toxicol Appl Pharmacol,2006,210(1-2):100-107
    24Reeker W, Werner C, Mollenberg O, et al. High dose ketamine imProvesneurological outcome following incomPlete cerebral ischemia in rats. CanJ Anaesth,2000,47(6):572-578
    25Green SM, Clark R, Hostetler MA, et al. Inadvertent ketamine overdose Inchildren:clinical manlfesta tions and outeome. Ann Emerg Med,1999,34(4):492-497
    26Han LC, Yao LN, Wu SX, et al. The effect of ketamine on N-Methyl-D-aspartate receptor subunit expression in neonatal rats. Eur J Anaesthesiol,2010,27(2):181-186
    27Forder JP, Tymianski M. Postsynaptic mechanisms ofexcitotoxicity:Involvement of postsynaptic density proteins, radicals, andoxidant molecules. Neuroscience,2009,158(1):293-300
    28Scheetz AJ, Nairn AC, Constantine-Paton M. NMDA receptor-mediatedcontrol of protein synthesis at developing synapses. Nature Neurosci,2000,3(3):211-216
    29Sinner B, Friedrich O, Zink W, et al. Ketamine stereoselectively inhibitsspontaneous Ca2+-oscillations in cultured hippocampal neurons.Anesthesia and analgesia,2005,100(6):1660-1666
    30Huang L, Liu Y, Zhang P, et al. In vitro dose-dependent inhibition of theintracellular spontaneous calcium oscillations in developing hippocampalneurons by ketamine. PLoS One,2013,8(3):e59804
    31Straiko MM, Young C, Cattano D, et al. Lithium protects againstanesthesia-induced developmental neuroapoptosis. Anesthesiology,2009,110(4):862-868
    32Ibla JC, Hayashi H, Bajic D, et al. Prolonged exposure to ketamineincreases brain derived neurotrophic factor levels in developing rat brains.Curr Drug Saf,2009,4(1):11-16
    33Shang Y, Wu Y, Yao S, et al. Protective effect of erythropoietin againstketamine-induced apoptosis in cultured rat cortical neurons: involvementof PI3K/Akt and GSK-3beta pathway. Apoptosis,2007,12(12):2187-2195
    34Liu JR, Baek C, Han XH, et al. Role of glycogen synthase kinase-3β inketamine-induced developmental neuroapoptosis in rats. Br J Anaesth,2013,110Suppl1:i3-9
    35谭蕾,罗爱林,赵已林等.氯胺酮对新生大鼠海马CREB磷酸化水平的影响.中华麻醉学杂志,2010,30(3):317-319
    36Bai X, Yan Y, Canfield S, et al. Ketamine enhances human neural stemcell proliferation and induces neuronal apoptosis via reactive oxygenspecies-mediated mitochondrial pathway. Anesth Analg,2013,116(4):869-880
    37Hudson AE, Hemmings HC Jr. Are anaesthetics toxic to the brain? BritishJournal of Anaesthesia,2011,107(1):30-37
    38Cattano D, Young C, Straiko MM, et al. Subanesthetic doses of propofolinduce neuroapoptosis in the infant mouse. brain. AnesthAnalg,2008,106(6):1712-1714
    39Spahr-Schopfer I, Vutskits L, Toni N, et al. Differential neurotoxic effeetsof propofol on dissociated cortical cell and organotypic hippocampalcultures. Anesthesiology,2000,92(5):1408-1417
    40Vutskits L, Gaseon E, Tassonyi E, et al. Clinically relevant concentrationsof propofol but not midazolam alter in vitro dendritic development ofisolated gamma-aminobutyrieaeid-positive interneurons. Anesthesiology,2005,102(5):970-976
    41Cattano D, Young C, Straiko MM, et al. Subanesthetic doses of propofolinduce neuroapoptosis in the infant mouse brain. Anesth Analg,2008,106(6):1712-1714
    42Fredriksson A, Pontén E, Gordh T, et al. Neonatal exposure to acombination of N-methyl-D-aspartate and gamma-aminobutyric acid typeA receptor anesthetic agents potentiates apoptotic neurodegeneration andpersistent behavioral deficits. Anesthesiology,2007,107(3):427-436
    43张曙,谢海辉,唐兴宁.丙泊酚引起长时间的逆行性遗忘2例报告.麻醉与监护论坛,2009,16(1):70-71
    44Meyer P, Langlois C, So te S, et al. Unexpected neurological sequelaefollowing propofol anesthesia in infants: Three case reports. Brain Dev,2010,32(10):872-878
    45Popic J, Pesic V, Milanovic D, et al. Propofol-induced changes inneurotrophic signaling in the developing nervous system in vivo. PLoSOne,2012,7(4):e34396
    46Pesi V, Milanovi D, Tani N, et al. Potential mechanism of cell death inthe developing rat brain induced by propofol anesthesia. Int J DevNeurosci,2009,27(3):279-287
    47Zou WW, Xiao HP, Gu MN, et al. Propofol induces rat embryonic neuralstem cell apoptosis by activating both extrinsic and intrinsic pathways.Mol Med Rep,2013,7(4):1123-1128
    48Bj rnstr m K, Eintrei C. The difference between sleep and anaesthesia isin the intracellular signal: propofol and GABA use different subtypes ofthe GABA(A) receptor beta subunit and vary in their interaction with actin.Acta Anaesthesiol Scand,2003,47(2):157-164
    49Oscarsson A, Massoumi R, Sj lander A, et al. Reorganization of actin inneurons after propofol exposure.Acta Anaesthesiol Scand,2001,45(10):1215-1220
    50Wise-Faberowski L, Zhang H, Ing R, et al. Isoflurane-induced neuronaldegeneration:an evaluation in organotpic hippocampal slice cultures.Anesth Analg,2005,101(3):651-657
    51Sall JW, Stratmann G, Leong J, et al. Isoflurane inhibits growth but doesnot cause cell death in hippocal neural Prceursor cells grown in culture.Anesthesiology,2009,110(4):826-833
    52Lunardi N, Hucklenbruch C, Latham JR, et al. Isoflurane impairsimmature astroglia development in vitro: the role of actin cytoskeleton. JNeuropathol Exp Neurol,2011,70(4):281-291
    53施庆余,罗爱林,李世勇.异氟烷对发育期大鼠海马IL-1βmRNA、IL-6mRNA和TNF-αmRNA表达的影响.中华麻醉学杂志,2010,30(3):324-326
    54Stratmann G, Sall JW, May LD, et al. Isoflurane differentially affectsneurogenesis and long-term neurocognitive function in60-day-old and7-day-old rats. Anesthesiology,2009,110(4):834-848
    55Lu Y, Wu X, Dong Y, et al. Anesthetic sevoflurane causes neurotoxicitydifferently in neonatal naive and Alzheimer disease transgenic mice.Anesthesiology,2010,112(6):1404-1416
    56Jevtovie-Todorovie V, Benshoff N, Olney JW. Ketamine PotentiatesCerebrocortical damage induced by the common anaesthetic agent nitrousoxide In adult rats. Br J Pharmacol,2000,130(7):1692-1698.
    57Young C, Jevtovie-Todorovie V, Qin YQ, et al. Potential of ketamine andmidazolam,individually or incombination to induce apoptoticNeurodegeneration in the infant mouse brain. Br J Phannacol,2005,146(2):189-197
    58徐颖,田玉科.氯胺酮和咪哒唑仑联合使用对乳鼠神经细胞凋亡的影响.华中科技大学学报(医学版),2004,33(6):752-755
    59Istaphanous GK, LoePke AW.General anesthctics and the developingbrain. Curr Opin Anaesthesiol,2009,22(3):368-373.
    60Reiter RJ, Tan DX, Sainz RM, et al. Melatonin:reducing the toxicity andincreasing the efficacy of drugs. J Pharm Pharmacol,2002,54(10):1299-1321
    61Yoo YM, Yim SV, Kim SS, et al. Melatonin suppresses NO-inducedapoptosis via induction of Bcl-2expression in PGT-beta immortalizedpineal cells. J Pineal Res,2002,33(3):146-150
    62Kaur C, Ling EA. Antioxidants and neuroprotection in the adult anddeveloping central nervous system. Curr Med Chem,2008,15(29):3068-3080
    63Yon JH, Carter LB, Reiter RJ, et al. Melatonin reduces the severity ofanesthesia-induced apoptotic neurodegeneration in the developing rat brain.Neurobiol Dis,2006,21(3):522-530
    64Young W. Review of lithium effects on brain and blood. Cell Transplant,2009,18(9):951-975
    65施庆余,罗爱林,李世勇.米诺环素对异氟醚诱导的发育期大鼠神经元毒性的保护作用.临床麻醉学杂志,2011,27(9):909-911
    66Ma D, Wilhelm S, Maze M, et al. Neuroprotective and neurotoxicproperties o f the “inert “gas xenon. Br J Anaesth,2002,89(5):739-746
    67Nagata A, Nakao S, Nishizawa N, et al. Xenon inhibits but N2O enhancesketamin induced c-Fos expression in the rat posteriorc ingulate andretroplenial cortices. Anesth Analg,2001,92(2):362-368
    68Ma D, Williamson P, Januszewski A, et al. Xenon mitigatesisoflurane-induced neuronal apoptosis in the developing rodent brain.Anesthesiology,2007,106(4):746-753
    69宋亚琼,赵平.雌激素与神经保护的研究进展.国际眼科杂志,2010,10(3):523-526
    70Asimiadou S, Bittigau P, Felderhoff-Mueser U, et al. Protection withEstradiol in Developmental Models of Apoptotic Neurodegeneration. AnnNeurol,2005,58(2):266–276
    71Lu LX, Yon JH, Carter LB.General anesthesia activates BDNF-dependentneuroapoptosis in the developing rat brain. Apoptosis,2006,11(9):1603-1615
    72Ramezani, Goudarzi I, Lashkarbolouki T, et al. Neuroprotective effects ofthe17beta-estradiol against ethanol-induced neurotoxicity and oxidativestress in the developing male rat cerebellum:biochemical,histological andbehavioral changes. Pharmacol Biochem Behav,2011,100(1):144-151
    73Zou X, Sadovova N, Patterson TA, et al. The effects of L-carnitine on thecombination of, inhalation anesthetic-induced developmental, neuronalapoptosis in the rat frontal cortex. Neuroscience,2008,151(4):1053-1065
    74Sanders RD, Sun P, Patel S, et al. Dexmedetomidine provides corticalneuroprotection: impact on anaesthetic-induced neuroapoptosis in the ratdeveloping brain. Acta Anaesthesiol Scand,2010,54(6):710-716
    75扈俊华,梁羽冰,覃怡等.右美托咪定预处理对丙泊酚孵育的大鼠海马神经元细胞活力的影响.临床麻醉学志,2013,29(5):488-490
    76Turner CP, Gutierrez S, Liu C, et al. Strategies to defeat ketamine-inducedneonatal brain injury. Neuroscience,2012,210:384-92
    77Lemkuil BP, Head BP, Pearn ML, et al. Isoflurane neurotoxicity ismediated by p75NTR-RhoA activation and actin depolymerization.Anesthesiology,2011,114(1):49-57
    78Domoki F, Olah O, Zimmermaxm A, et al. Hydrogen is neuroprotectiveand preserves cerebrovascular reactivity in asphyxiated newborn pigs.Pediatr Res,2010,68(5):387-392
    79Loepke AW, Istaphanous GK, McAuliffe JJ, et al. The effects of neonatalisoflurane exposure in mice on brain cell viability?adult behavior,learning,and memory. Anesth Analg,2009,5108(1):90-104
    1Tsutsui K. Neurosteroids in the Purkinje cell: biosynthesis, mode of actionand functional significance. Mol Neurobiol,2008,37(2-3):116-125
    2Vaudry H, Do Rego JL, Burel D, et al. Neurosteroid biosynthesis in thebrain of amphibians. Front Endocrinol (Lausanne),2011,2:79
    3Mellon SH, Griffin LD. Neurosteroids: biochemistry and clinicalsignificance. Trends Endocrinol Metab,2002,13(1):35-43
    4Corpéchot C, Synguelakis M, Talha S, et al. Pregnenolone and its sulfateester in the rat brain. Brain Res,1983,270(1):119-125
    5Kawato S, Yamada M, Kimoto T. Brain neurosteroids are4th generationneuromessengers in the brain:cell biophysical analysis of steroid signaltransduction. Adv Biophy,2001,37(1):1-48
    6Mellon SH. Neurosteroid regulation of central nervous systemdevelopment. Pharmacol Ther,2007,116(1):107-124
    7涂丽莉,徐胜春.雌激素受体-β在中枢神经系统的分布及作用的研究进展.解剖学研究,2004,26(3):222-225
    8Arevalo MA, Ruiz-Palmero I, Scerbo MJ, et al. Molecular mechanismsinvolved in the regulation of neuritogenesis by estradiol: recent advances.J Steroid Biochem Mol Biol,2012,131(1-2):52-56
    9Gruber CJ, Gruber DM, Grube IM, et al. Anatomy of the estrogenresponse element. Trends Endocrinol Metab,2004,15(2):73-78
    10Kushner PJ, Agard DA, Greene GL, et al. Estrogen receptor pathways toAP-1. J Steroid Biochem Mol Biol,2000,74(5):311-317
    11Kelly MJ, Ronekleiv OK. Control of CNS neuronal excitability byestrogens via membrane-initiated signaling. Mol Cell Endocrinol,2009,308(1-2):17-25
    12Micevych P, Dominguez R. Membrane estradiol signaling in the brain,Front. Neuroendocrinol,2009,30(3):315-327
    13Marin R, Díaz M, Alonso R, et al. Role of estrogen receptor alpha inmembrane-initiated signaling in neural cells:interaction with IGF-1receptor. J Steroid Biochem Mol Biol,2009,114(1-2):2-7
    14Simpkins JW, Yi KD, Yang SH. Role of protein phosphatases andmitochondria in the neuroprotective effects of estrogens. FrontNeuroendocrinol,2009,30(2):93-105
    15Haraguchi S, Sasahara K, Shikimi H, et al. Estradiol promotes purkinjedendritic growth, spinogenesis, and synaptogenesis during neonatal life byinducing the expression of BDNF. Cerebellum,2012,11(2):416-417
    16Sato K, Akaishi T, Matsuki N, et al. beta-Estradiol induces synaptogenesisin the hippocampus by enhancing brain-derived neurotrophic factor releasefrom dentate gyrus granule cells. Brain Res,2007,1150:108-120
    17Ruiz-Palmero I, Simon-Areces J, Garcia-Segura LM, et al.Notch/neurogenin3signalling is involved in the neuritogenic actions ofoestradiol in developing hippocampal neurones. J Neuroendocrinol,2011,23(4):355-364
    18Arevalo MA, Ruiz-Palmero I, Simon-Areces J, et al. Estradiol meets notchsignaling in developing neurons. Front Endocrinol (Lausanne),2011,2:21
    19张吉强,蔡文琴.雌激素Beta受体在成年雄性大鼠脑内的免疫组化定位研究.第三军医大学学报,2001,23(8):895-897
    20Brannvall K, Korhonen L, Llindholm D. Estrogen-receptor-dependentregulation o f neura l stem ce ll pro lifera tion and differentiation. Mol CellNeurosci,2002,21(3):512-520
    21马路,张吉强,姚青.雌激素合成酶与雌激素受体在神经干细胞及其分化后细胞内的表达.重庆医学,2005,34(4):560-562
    22Ruiz-Palmero I, Hernando M, Garcia-Segura LM, et al. G protein-coupledestrogen receptor is required for the neuritogenic mechanism of17β-estradiol in developing hippocampal neurons. Mol Cell Endocrinol,2013,372(1-2):105-115
    23谭宁,姬志娟,艾厚喜等.App17肽防治去卵巢大鼠海马神经细胞的凋亡.中国病理生理杂志,2004,20(8):1364-1367
    24许耘,刘胜洪,王小丽等.雌激素受体在发育不同时期大鼠大脑的表达.解剖学报,2006,37(1):106-109
    25Sehara Y, Sawicka K, Hwang JY, et al. Survivin is a transcriptional targetof STAT3critical to estradiol neuroprotection in global ischemia. JNeurosci,2013,33(30):12364-12374
    26Jover-Mengual T, Miyawaki T, Latuszek A, et al. Acute estradiol protectsCA1neurons from ischemia-induced apoptotic cell death via the PI3K/Aktpathway. Brain Res,2010,1321:1-12
    27张水堂,刘仲熊.17β雌二醇对缺氧缺血性脑病新生大鼠脑细胞凋亡的影响.中国新生儿科杂志,2006,21(2):85-86
    28Gerstner B, Lee J, DeSilva TM, et al.17beta-estradiol protects againsthypoxic/ischemic white matter damage in the neonatal rat brain. JNeurosci Res,2009,87(9):2078-2086
    29Lebesgue D, Chevaleyre V, Zukin RS, et al. Estradiol rescues neuronsfrom global ischemia-induced cell death: multiple cellular pathways ofneuroprotection. Steroids,2009,74(7):555-561
    30Raval AP, Saul I, Dave KR, et al. Pretreatment with a singleestradiol-17beta bolus activates cyclic-AMP response element bindingprotein and protects CA1neurons against global cerebral ischemia.Neuroscience,2009,160(2):307-318
    31韩笑,吕广明,吴辉群等.雌激素对坐骨神经损伤后脊髓脂质过氧化反应的影响.交通医学,2007,21(5):481-484
    32王迅,刘兴波,王泓杰.17β雌二醇对大鼠坐骨神经损伤的保护.中国临床康复,2006,10(26):101-103
    33Yune TY, Kim SJ, Lee SM, et al. Systemic administration of17beta-estradiol reduces apoptotic cell death and improves functionalrecovery following traumatic spinal cord injury in rats. J Neurotrauma,2004,21(3):293-306
    34Rong W, Wang J, Liu X, et al.17β-estradiol attenuates neural cellapoptosis through inhibition of JNK phosphorylation in SCI rats andexcitotoxicity induced by glutamate in vitro. Int J Neurosci,2012,122(7):381-387
    35周开锋,蒋赞利,茅祖斌等.17β雌二醇对大鼠脊髓损伤后神经保护作用的研究.中国脊柱脊髓杂志,2007,17(8):623-627
    36Hu R, Sun H, Zhang Q, et al. G-protein coupled estrogen receptor1mediated estrogenic neuroprotection against spinal cord injury. Crit CareMed,2012,40(12):3230-3237
    37Chapman PF, Falinska AM, Knevett SG, et al.Genes models andAlzheimer,s disease. Trends Genet,2001,17(5):254-261
    38Hardy JA, Higgins DA. Alzheimer,s disease:the amyloid cascadehypothesis. Science,1992,256(5054):184-185
    39Chen Y, Su Y, Run X, et al. Pretreatment of PC12cells with17β-estradiolprevents Aβ-induced down-regulation of CREB phosphorylation andprolongs inhibition of GSK-3β. J Mol Neurosci,2013,50(3):394-401
    40Yao M, Nguyen TV, Pike CJ. Estrogen regulates Bcl-w and Bimexpression: role in protection against beta-amyloid peptide-inducedneuronal death. J Neurosci,2007,27(6):1422-1433
    41Xian YF, Lin ZX, Mao QQ, et al. Isorhynchophylline Protects PC12CellsAgainst Beta-Amyloid-Induced Apoptosis via PI3K/Akt SignalingPathway. Evid Based Complement Alternat Med,2013:163057.doi:10.1155/2013/163057
    42Mateos L, Persson T, Katoozi S, et al. Estrogen protects against amyloid-βtoxicity by estrogen receptor α-mediated inhibition of Daxx translocation.Neurosci Lett,2012,506(2):245-250
    43Napolitano M, Costa L, Piacentini R, et al.17β-Estradiol protectscerebellar granule cells against β-amyloid-induced toxicity via theapoptotic mitochondrial pathway. Neurosci Lett,2013, pii:S0304-3940(13)01040-9
    44Bernal-Mondragon C, Rivas-Arancibia S, Kendrick KM, et al. Estradiolprevents olfactory dysfunction induced by Aβ25-35injection inhippocampus. BMC Neurosci,2013,14:104
    45Lin EP, Soriano SG, Loepke AW. Anesthetic Neurotoxicity. AnesthesiolClin,2014,32(1):133-155
    46Asimiadou S, Bittigau P, Felderhoff-Mueser U, et al.Protection withEstradiol in Developmental Models of Apoptotic Neurodegeneration. AnnNeurol,2005,58(2):266–276
    47Lu LX, Yon JH, Carter LB. General anesthesia activates BDNF-dependentneuroapoptosis in the developing rat brain. Apoptosis,2006,11(9):1603-1615
    48Caldeira JC, Wu Y, Mameli M, et al. Fetal alcohol exposure altersneurosteroid levels in the developing rat brain. J Neurochem,2004,90(6):1530-1539
    49Ramezani, Goudarzi I, Lashkarbolouki T, et al. Neuroprotective effects ofthe17beta-estradiol against ethanol-induced neurotoxicity and oxidativestress in the developing male rat cerebellum:biochemical,histological andbehavioral changes. Pharmacol Biochem Behav,2011,100(1):144-151
    50Mannella P, Brinton RD. Estrogen receptor protein interaction withphosphatidylinositol3-kinase leads to activationof phosphorylated Akt andextracellular signal-regulatedkinase1/2in the same population of corticalneurons: aunified mechanism of estrogen action. J Neurosci,2006,26(37):9439-9447
    51Roof RL, Hall ED. Estrogen-related gender difference in survival rateandcortical blood flow a fter mi pact-acceleration head injury in rats. JNeurotrauma,2000,17(12):1155-1169
    52Garcia-Estrada J, Luquin S, Fernandez AM, et al.Dehydroepiandrosterone,pregnenolone and sex stero ids down-regulatereactive astroglia in them alerat bra in after a penetra ting brain in jury. IntJ Dev Neurosci,1999,17(2):145-151
    53Gatson JW, Liu MM, Abdelfattah K, et al. Estrone is neuroprotective in
    rats after traumatic brain injury. J Neurotrauma,2012,29(12):2209-2219

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700