三模重叠双间隙耦合腔型输出回路的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
宽频带、高功率、高效率是速调管放大器发展的趋势。随着速调管在宽频带雷达上的广泛应用,它的瞬时带宽要求越来越高,研制超宽频带速调管的任务越来越迫切。速调管输出回路是进行能量输出的部件,与速调管的带宽、效率有着极其密切的关系,它的频带特性决定了速调管的频带特性。因此很有必要研究超宽带速调管输出回路。本论文就是研究采用三模重叠双间隙耦合腔来展宽输出回路频带。本论文基于三维计算的场分析法,采用软件模拟计算以及与等效电路法对比的方法对三模重叠双间隙耦合腔型输出回路做了较为详细的研究。应用数值模拟方法计算了这种输出回路的间隙阻抗特性,并分析了一些输出回路结构参数对谐振腔谐振频率和间隙阻抗特性的影响。该项研究对研制超宽频带速调管输出回路,是有指导意义的。
     本论文的主要工作如下:
     一、采用等效电路法进一步分析了双间隙耦合腔的模式重叠理论,说明了实现三模重叠的可能性;结合传输线理论,以中心频率为3GHz的输出回路为例,计算了三模重叠双间隙耦合腔型输出回路的间隙阻抗特性,3dB带宽达480MHz;而加载滤波器的输出回路1dB带宽达570MHz,相对带宽达19%。
     二、在基于有限积分法(FIT)数值计算软件CSTMWS环境下,以一个中心频率f_0=3GHz,带宽Δf=450MHz的三模重叠双间隙耦合腔型输出回路为例,详细说明了这种输出回路设计计算的过程,在实际结构和尺寸的基础上,验证了这种输出回路的宽频特性,为冷测加工提供了尺寸参考,并为后期尺寸调整指明了方向,这是本文的主要创新点。
The trend of development for klystron amplifer is broad bandwidth, highpower and high efficiency. As the wide application in radar, require of instantaneousbandwidth of klystron is becoming stricter. The output circuit of klystron, which hassomething to do with the bandwidth and efficiency of klystron, is the core in theenergy output part, and its bandwidth determines the bandwidth of whole klystron.So it is necessary to research output circuit of hyper-broad bandwidth klystron. Inthis dissertation, how to enhance output bandwidth using three-mode overlappedtwo-gap cavity is researched. Based on 3-D field analysis method, three-modeoverlapped two-gap coupled cavity type output circuit is researched in detail bynumerical software simulation and equivalent circuit method. The gap impedancecharacter of this kind of output circuit is simulated numerically, and the effects ofstructure parameters on resonant frequency and gap impedance character areanalyzed. This simulation and research is significative for manufacture ofhyper-broad bandwidth klystron. The main achievements of this dissertation can beconcluded as follow:
     1. The theory of overlapped mode is analyzed further via equivalent circuitmethod. Possibility of overlapped three-mode is illuminated. Taken 3GHz forinstance, the gap impedance character of three-mode overlapped two-gap coupledcavity type output circuit is calculated combined with the theory of translation line.It is indicated that, 3dB bandwidth reaches 480MHz, while 1 dB bandwidth reaches 570MHz loaded by filter.
     2. In the platform of software package CST MWS, which is based on FiniteIntegration Method, taken center frequency f_0=3GHz bandwidthΔf=450MHzas example, 3D models for calculation are set up, and steps on how to design thiskind of output circuit are particularized; parameters of structure are given out. Thehyper-broad bandwidth of this kind of output circuit is proved, and the initial size ofcold test manufacture and direction for adjustment are provided, which are the maininnovate points in this dissertation.
引文
[1] 廖复疆主编.真空电子技术——信息装备的心脏.北京:国防工业出版社,1999第1版:第二章.
    [2] R H Varian, S F Varian. A High Frequency Oscillator and Amplifier. Journal of Applied Physics, May 1939, Vol.10: 321-327.
    [3] M. Chodorow et al. Design and Performance of a High Power Pulsed Klystron. Proc. Inst. Radio. Engrs. 41, 1953, Vol.41:1584-1602.
    [4] Kompfner. Transit Time Phenomena in Electronic Tubes. Wireless Eng, 1942, Vol.19: 2-6.
    [5] 杨祥林,张兆镗,张祖舜.微波器件原理.北京:电子工业出版社,1994年第1版:第二章.
    [6] L F Broadway, et al. Velocity Modulation Valves. JIEE Vol.93, ⅢA, 885, 1946.
    [7] Chalk G O, et al. A 5-cavity X-band Klystron Amplifier. J.Electronics, 1956, 2(1):50.
    [8] P G R King. A 5%-bandwidth 2.5MW S-band Klystron. PIEE, 105(B) Suppl. No.12, 813, May 1958.
    [9] L D Clough et al. A High Effeciency 15MW 400MC/S Pulsed Kulsed Klystron. J. Ele. & Contr.12, 2, 105, 1962.
    [10] M R Boyd, et al. The Multiple-beam Klystron. IRE Trans. on ED, 1962, ED-9(3): 247-252.
    [11] H Golde. A Traveling-wave Description of Distributed Interaction Klystrons. IRE Trans. on ED, 1962, ED-9(1):57.
    [12] D H preist. Experiments with High-power CW Klystron using Extended Interaction Catchers. IEEE Trans. on ED, 1963, ED-10(3):201.
    [13] 谢家麟,赵永翔.速调管群聚理论.北京:科学出版社,1966年第1版, 第五章.
    [14] 丁耀根,彭均.多注速调管——一种新型大功率微波放大器.电子科学学刊,1996,18(1):64-71.
    [15] Kovalenko V F. Auther's Certificate, No. 72756, Class21, 13, Applied on Dec. 31, 1940, No. 304035, USSR.
    [16] Bemier J. Brevet CSF No.952853, Patent of Thomason CSF, France, September 15, 1944.
    [17] Boyd M R, et al. Multiple-Beam Klystron. IRE Trans. on ED, 1962, ED-9(3): 247-252.
    [18] Pohl W J, et al. The Design and demonstration of a Wide Band Multiple Beam Travelling-Wave Klystron. IRE Trans. on ED, 1965, ED-12(6): 351-368.
    [19] Branch G M, et al. AD 807515/2, AD 812190/7, AD 815777/8, Sept. 1966-March. 1967.
    [20] E. A.Gelvich, E.V.Zhery, et al. A New Generation of Power Klystrons on the Base of Multiple-Beam Design. IEEE MTT-S, Digest, 1991: 1319-1329.
    [21] Edward A.Gelvich, Ludvik M.Borisov, et al. the New Generation of High-Power Multiple-Beam Klystrons. IEEE Trans. on MTT, 1993, 41(1): 15-19.
    [22] A.S.Pobedonostsev, E.A.Gelvich. Multiple-Beam Microwave Tubes. IEEE MIT-S Digest, 1993: 1131-1134.
    [23] 丁耀根,彭钧等.S波段多注速调管的研制.电子科学学刊,1996, 18(2):221-224.
    [24] Bearzatto C, A Beunas, G Faillon. Long Pulse and Large Bandwidth Multibeam Klystron. Proc. Workshop High Energy Density Microwaves, Pajaro Dunes, CA, October 1998, AIP Conference Proceedings 474, 107.
    [25] Caryotakis G, E Jongewaard, R Phllips, G Schietrum, S Tantawi, N Luhmarm. A 2-gigawatt, 1-microsecond Microwave Source. Proceedings of 11th International Conference on High Power Particle Beams, Prague, Czech Republic, 1996, 406.
    [26] Bres M, et al. Compact Multibeam Klystron. Technical Digest of IEDM, 1986: 784-786.
    [27] Bearzatto C, et al. Advantage of a Multiple Beam Klystron (MBK). ITG-Fachbericht, 1992 (120): 45-51.
    [28] Beunas A, Faillon G, Choroba S, Gamp A. A high efficiency long pulse multiple beam klystron for the TESLA linear collider. DESY-M-2001-05-F; DESY-TESLA-2001-01. Hamburg: DESY, Feb 2001, 3-5.
    [29] BAA White Paper. Proposal Multiple Beam Klystron. The U.S.A Version, Stanford University, May 22, 1997.
    [30] R H Abrams, B Levush, A A Mondelli, R K Parker. Vacuum Electronics for the 21th Century. IEEE Microwave Magazine, Sep 2001: 61-72.
    [31] 丁耀根,彭钧等.多注速调管的研究进展.中国电子学会真空电子分会第十一界学术年会论文集,1997年8月,青岛:118-121.
    [32] (苏)A.3.哈依柯夫(著),黄高年(译),李泽普(校).速调管放大器.国防工业出版社:北京,1980年第1版.
    [33] (苏)H.B.列别捷夫(著),韩家瑞,鲍贤杰,李庆绩,(译),刘盛纲(校).微波电子学.北京:国防工业出版社,1982年第1版.
    [34] 陆钟祚.超高频电子管.北京:人民邮电出版社,1958年第1版.
    [35] 电子管设计手册编辑委员会.大功率速调管设计手册.北京:国防工业出版社,1979年第1版.
    [36] J R Pierce. Theory and Design of Electron Beams. 1954, Chapterl0.
    [37] 中国科学院电子学研究所编.微波管电子光学系统设计手册.北京:国防工业出版社,1981年第一版.
    [38] M Muller, J Brit., I.R. E., Vol.16, No.2, pp83, 1956.
    [39] G R Brewer, J. Appl. Phys., Vol.28, No.1, pp1, 1957.
    [40] 丁耀根.多注速调管电子光学系统的研究.电子科学学刊,1999年, 21(3):424-427.
    [41] B CH Djubua, O V Polivnikova, N M Ogoleva, Y G Ding and J Peng. The impregnated cathode for high power klystron. Proc. of 2000 2nd International Conference on Microwave and Millimeter Wave Technology, Beijing, China, September 2000:146-149.
    [42] 赵京君,丁耀根,刘铁山.改进宽带速调管等激励功率频率特性的方法.电子科学学刊,1992年,4(1):58-63.
    [43] W W Siekanowicz, F E Vaccaro. Periodic Electrostatic Focusing of Laminar Parallel-Flow Electron Beams. Proc. IRE, 1959, Vol.47:451-452.
    [44] W W Siekanowicz. Derivationof Ideal Electrode Shapes for Electrostatic Beam Focusing. RCA Review, 1962, 23(1): 47.
    [45] Sergei S Drozdov, et al. Reversible Periodic Magnetic Focusing System. United Stated Patent No.4433270, 1984.
    [46] 丁耀根,赵京君等.多注速调管用周期反转永磁聚焦系统的研制.中国电子学会真空电子分会第十界年会论文集,北京,1995年11月:69-72.
    [47] 师绍明,丁耀根,蒋振柏.多注速调管用周期反转永磁聚焦系统的实验研究.中国电子学会真空电子分会第十三界年会,贵阳,2001.
    [48] 郭炜,罗积润,粟亦农.C波段永磁聚焦速调管磁饱和问题的初步解决.中国电子学会真空电子分会第十三界年会,贵阳,2001.
    [49] 丁耀根.大功率速调管的技术现状和发展趋势.真空电子技术,1995(2): 17-17
    [50] 廖复疆.大功率微波真空电子器件的发展和应用.真空电子技术, 1992(1):1.
    [51] 丁耀根.民用微波电真空器件的技术现状和发展趋势.
    [52] 丁耀根等.大功率速调管的研究进展.中国科学院电子学研究所建所40周年学术论文集,1996年10月.
    [53] 丁耀根,王友智,刘铁山等.用于电子直线加速器的S波段脉冲大功率速调管.高能物理和核物理,1982,7(2):265-268.
    [54] Stringall R L, Lebacgz J V. High Power Klystron Developed at the Stanford Linear Accelerator Center. MOGA 70, 1970(14): 13.
    [55] Tallerico P J. Low-frequency Klystron for Accelerator Application. IEEE Trans. on Nuclear Science, 1977, NS24(3): 1692.
    [56] Konrad Gerhard T. High Efficiency, CW, High Power Klystron for Storage Ring Application. IEEE Trans. on Nuclear Science, 1975, NS-22(3): 1249.
    [57] Konrad Gerhard T. Performance of a High Efficiency High Power UHF Klystron. IEEE Trans. on Nuclear Science, 1977, NS-24(3): 1689.
    [58] Vlieks AE, et al. 100MW Klystron Developed at SLAC. SLAC-PUB-5480, 1991, No.03: 1-3.
    [59] D. Sprehn. Recent Testing of X Band PPM Klystrons at the Klystron Department at SLAC. Proceedings of IVEC 2004, Monterey, California, USA, April 27-29, 2004: 342-343.
    [60] Auberdiac A, et al. A High Power CW or Long Pulsed Klystron; 500KW at 3.7GHz. 11th Symposium on Fusion Engineering Proceedings, 1985, No.2:1312.
    [61] Miyakes. Development of 2GHz, 1MW Klystron for Plasma Heating. IEDM'84, 1984:75.
    [62] 丁耀根等.S波段2.5MW宽频带大功率速调管的研制.电子科学学刊,1985,7(4):247-253.
    [63] Mann J. Wide Bandwidth High Efficiency High Gain Klystron Amplifier. 1982 Microwave Power Tube Conference, 1982:75.
    [64] Randall J P. Broadband Klystron. Vacuum, 1980, 30(11/12):455.
    [65] Smith M J, et al. A one Megawatt S-Band Gridded Klystron for a Wide Band Pulse Compression Radar. Radar-77 International Conference, 1977.
    [66] Auberdiac A, et al. Three-Megawatt Wideband Pulsed Klystron Provides Frequency Agility for Modem S-band Radars. MSN & CT, June 1986, No.06: 74.
    [67] Firmain G. TV2091: A 20MW Wideband Klystron. MOGA 70, 1970:14-7.
    [68] Butwell R J. The Development of A Mult-Megawatt Coupled-Cavity Twystron at C-band. MOGA 70, 1970:11-1.
    [69] 李应凤.速调四极管发展现状和展望.真空电子技术,1993(2):35。
    [70] Shrader M B, et al. Klystrode_(TM) Update. IEDM'84, 1984:660.
    [71] Bres M, et al. Compact Multibeam Klystron. IEDM'86, 1986: 784.
    [72] Bearzatto C, et al. Advantages of Multiple Beam Klystrons. ITG Fachbericht, 1992(120):45.
    [73] 丁耀根.多注速调管技术的新进展.真空电子技术,2002(5):8-14.
    [74] Gelvich E A., et al. Moderate and high power Microwave Amplifiers of a New Generation. PAOTEXHKA (Radio Technology), April 1999, No.4:18-31.
    [75] Victor I Poognin. High Power Broadband Pulse Multiple-Beam Klystron with Output Power from 100KW to 1000KW with a Bandwidth up to 12%. Proceedings of UHF-99, International University Conference, Electronics and Radiophysics of Ultra-High Frequencies, St. Petersburg, Russia, May 24-28, 1999: 75-78.
    [76] L M Borisov, E V Zhary. Broadband MultiBeam Pulse Klystron of Moderate Output Power with a Special Control Electrode. Proceedings of UHF-99, International University Conference, St. Petersburg, Russia, May 24-28, 1999: 22-27.
    [77] Specifications on Multi-Beam Klystron The research and Production Association Toriy.
    [78] Y. Besov. Multiple Beam Klystron. High Energy Density Microwaves, New York, American Insitute of Physics, AIP conference Proceedings 474, 1998, Woodburg: 91-106.
    [79] Y. Besov. Multiple Beam Klystron. Proceedings of UHF-99, International University Conference, St. Petersburg, Russia, May 1999: 9-12.
    [80] Alexander T Tour. X-band High Power Broadband Low Voltage Multi-Beam Klystron Amplifier with Two-barrel Design. Proceedings of UHF-99, International University Conference, St. Petersburg, Russia, May 24-28, 1999: 83-85.
    [81] 丁耀根,彭均等.多注速调管的研究进展.中国电子学会真空电子学分会第十一届学术年会论文集,1997年8月,青岛:118-121.
    [82] Y G Ding, et al. Theoretical and Experimental Research on Multi-Beam Klystron. High Energy Density Microwaves, Pajaro Dunes, California, U.S.A: 126-135.
    [83] Ding Yaogen. The state of art and trend of multi-beam Klystron (invited paper). 25th International conference on Infrared and Millimeter Waves, September 14-16, 2000, Beijing, China, TU-E2: 73-74.
    [84] 丁耀根,彭均等.多注速调管的研究进展.中国电子学会真空电子学分会第十三届学术年会论文集,贵阳,2001年8月:112-114.
    [85] Ding Yaogen, Zhu Yunshu, Yin Xiuling, Shen Bin, Wang Caiying, Zhang Ding. 100 KW L-band CW Broadband Multiple-Beam Klystron. IVEC 2003, Seoul, Korea, 2003: 368-369.
    [86] 张益林等.5cm波段高次模多注速调管.中国电子学会真空电子学分会第十三届学术年会论文集,贵阳,2001年8月:139-142.
    [87] A Balkcum, E Wright, H Bohlen, et al. Operation of a 1.3GHz, 10MW Multiple Beam Klystron. Proceedings of IVEC 2004, Monterey, California, USA, April 27-29, 2004: 280-281.
    [88] L Song, P Ferguson, R LIves, G Miram, et al. Development of an X-Band 50 MW Multiple Beam Klystron. Proceedings of IVEC 2004, Monterey, California, USA, April 27-29, 2004: 286-287.
    [89] A. Larionov, et al. Design of Multi-Beam Klystron in X-Band. Proc. of the 27th Linear Accelerator Meeting (LAM27).
    [90] 丁耀根.高功率微波毫米波电真空器件的现状和发展.中国电子学会真空电子学分会第十二届年会论文集(大会特邀报告),1999年9月,10-14.
    [91] 丁耀根.高功率微波毫米波源及相关技术的发展.全国第四届高功率微波学术研讨会(大会特邀报告),2000年8月.
    [92] 王勇等.11%带宽S波段大功率速调管的研制,第十五届学术年会军用微波管研讨会,2005,9
    [1] 盛剑霓等.电磁场数值分析.北京:科学出版社,1984.
    [2] J. P.Webb. The Finite-Element Method for Finding Modes of Dielectric Loaded Cavities. IEEE Trans. On Microwave Theory and Techniques, 1985,33:635-639.
    [3] Choi D H, Heofer W J R. The Finite-Difference Time-Domain Method and its application on Eigenvalue Problems. IEEE Trans. On Microwave Theory and Techniques, 1986,34:1464-1470.
    [4] T.Weiland, On the Numerical Solution of Maxwell's Equations and Applications in the Field of Accelerator Physics. Particle Accelerator, 1984,15:245-292
    [5] F.Ebeling, R.Klatt, F.Krawczyk, et al. The 3-D MAFIA Group of Electromagnetic Codes. 1989, Vol. 25, No.4: 2962-2964.
    [6] M.Dehler, M.Dohlus, G.Fischerauer, et al. Status and Future of the 3D MAFIA Group of Codes. 1990, Vol. 26, No.2: 751-754.
    [7] CST China.CSTI作室套装~(TM)2006高级概念.CST China.
    [8] R.Ehmann,M.Burkhardt,H.Wolter, T.Weiland. Electromagnetic Simulation of a Loaded Cavity. IEEE Trans on Magnetics. 1996, Vol. 32, No.3: 922-925.
    [9] 李智慧,唐靖宇,张伦.有限积分理论(FIT)及其在腔体计算中的应用.强激光与粒子束,2002,Vol.14,No.1:156-160.
    [1] 丁耀根,陆孝厚.具有两节滤波器的速调管宽带输出段的设计方法.电子学通讯,1982,4(3):168-174.
    [2] 陆孝厚.对速调管双间隙输出段间隙阻抗矩阵系数分布的分析.电子科学通讯,1983,5(5):290-302.
    [3] 丁耀根.三模重叠双间隙耦合腔的研究.中国电子学会真空电子学分会第八届年会论文集[C].咸阳,1990:3-7.
    [1] 王进华,丁耀根,沈斌.用场分析法求解速调管输出回路特性参数.强激光与粒子束,2005,17(6)p:893-896.
    [2] 王进华.速调管输出回路计算方法的研究(博士论文).北京:中国科学院电子学研究所,2006,44-55,第三章.
    [3] 林福民.大功率宽带多注速调管输出段的研究(博士论文).北京:中国科学院电子学研究所,2003,26-45,第三章.
    [4] Edward A G. Ludvik M B, Yevgeny V Z, et al. The new generation of high—power multiple-beam klystron[J] IEEE Trans on MTT 1993. 41 (1): 15-19.
    [5] 丁耀根,钮得禄等.S波段2.5MW宽频带大功率速调管的研制.电子科学学刊,1985年第4期:247-253
    [6] Robert E.Collin.Field Theory of Guided Waves.New York:IEEE PRESS 1991 2nd edit:377-387.
    [7] 电子管设计手册编辑委员会.大功率速调管设计手册.北京:国防工业出版社,1979年第1版:93-111.
    [8] 张敏.CST微波工作室用户全书.成都:电子科技大学出版社,2004.7:73-74.
    [9] 孙红兵,裴元吉,金凯等.单谐振腔外部Q值的计算方法,强激光与粒子束,2006,18(1):127-130.
    [10] 张大伟,冯进军,李炳炎等.用MAFIA计算外观品质因数Q.真空电子技术,2005,2:27-28.
    [11] 林福民,王志勇,黄焕辉.反射系数相位法计算谐振腔外观品质因数的局限性,强激光与粒子束,2005,17(9):1399-1404.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700