回旋自谐振脉塞多模非线性理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
回旋自谐振脉塞(Cycoltron Autoresonance Maser,缩写CARM)是一类基于电子回旋谐振辐射的高功率电磁波源。自CARM的概念被提出以来,由于其独特的工作特性(如所需工作磁场低,RF结构的横向尺寸大,可采用弱相对论电子束等)而引起人们的广泛关注。
     尽管过去各国学者对CARM已经进行过大量的理论研究,但大部分工作只针对于CARM中的单模束波互作用,而对多模束波互作用的研究则少有涉及。然而,当CARM的工作频率延伸至太赫兹(THz)或亚THz频段时,通常需要采用高阶的电磁波模式来增加器件的几何尺寸,以解决器件的机械加工和散热问题。这必然导致波导腔体中电磁波模式的过模问题,从而诱发器件工作时出现模式竞争,所以,对工作于THz或亚THz频段的CARM器件来讲,对其进行多模束波互作用的理论研究显得很有必要。为此,针对目前CARM多模理论研究的相对匮乏的现状,本文以CARM放大器为研究对象,通过对已有单模非线性理论的总结和分析,建立了比较完善的CARM多模非线性理论,并利用多模理论详细研究了工作于THz频段的CARM器件中各电磁模式与相对论电子束的互作用过程。全文主要工作包括:
     第一章:绪论。简单介绍了回旋自谐振脉塞的工作原理以及国内外对于回旋自谐振脉塞的研究现状;
     第二章:推导了同轴波导CARM中TE模式和TM模式电磁波的束波耦合方程以及圆柱波导中TE模式和TM模式电磁波的束波耦合方程,同时给出了考虑波导壁欧姆损耗后的束波耦合方程以及相对论电子在多电磁波模式共同作用下的电子运动方程,从而得到了完整描述CARM多模束波互作用的自洽非线性方程组;
     第三章:介绍了CARM多模束波互作用非线性模拟软件的设计方法,对软件设计中涉及到的关键问题进行了详细的阐述,如物理量的归一化、初值的选取以及方程组数值求解过程中的精度监测等,最后,给出了整个模拟软件设计的流程图,并利用FORTRAN语言编制了数值模拟软件。利用本模拟软件不仅可以对CARM中的整个多模束波互作用过程进行数值模拟,同时还可以对CARM的工作参数进行优化设计;
     第四章:从实验(利用国际上已公布的实验数据)和理论两方面对本论文所编制的多模束波互作用非线性模拟软件进行了可靠性验证,为下一步太赫兹CARM器件多模非线性模拟结果的正确性提供了保障;
     第五章:利用本文CARM多模非线性理论模型对采用高阶横电(TE)工作模式的太赫兹CARM进行了多模束波互作用非线性数值模拟。通过进一步分析主要工作参数对多模束波互作用过程的影响发现,高阶TE模式太赫兹CARM器件的性能对工作参数具有很强的依赖性,因此在参数设计过程中有必要对其进行多模束波互作用模拟分析;
     第六章:利用本文CARM多模非线性理论模型对采用高阶横磁(TM)工作模式的太赫兹CARM进行了多模束波互作用非线性数值模拟,证实了太赫兹CARM采用高阶TM模式的可行性和有效性,并通过进一步分析主要工作参数对多模束波互作用过程的影响发现,高阶TM模式太赫兹CARM器件的性能对工作参数具有很强的依赖性,因此在参数设计过程中有必要对其进行多模束波互作用模拟分析;
     本文所建立的CARM多模非线性理论以及所编制的模拟软件,可以对CARM中多电磁模式与相对论电子束的互作用过程进行数值模拟,通过进一步分析工作参数对多模束波互作用过程的影响,可以发现潜在的模式竞争,能够对高工作频率(如太赫兹或亚太赫兹频段)、高阶工作模式CARM器件的参数设计和优化提供一定的帮助。
Cyclotron autoresonance maser (CARM) is a kind of high power electromagnetic wave sources, the operating mechanism of which is based on the electron cyclotron resonance radiation. Since the concept of CARM was proposed, it has been attracting much attention due to its prospective peculiarities such as relatively lower operating magnetic field, larger RF cross-sectional size, and weak relativistic electron beam). Although plenty of theoretical models have been performed for CARM in the past years, most of them mainly focused on the interaction of a single mode with the electron beam, and relatively less attention was paid to the multimode interaction. As the frequency of a CARM is stretched to terahertz (THz) or sub-THz wave ranges, higher-order mode is always adopted so as to enlarge the cross-sectional dimension of the cavity and then to facilitate the mechanic manufacture and thermal wall loading. However, it may also lead to severe over-modes and thus mode competition may happen. Consequently, multi-mode interaction should be considered in a THz or sub-THz CARM. Based on the single mode nonlinear model, a multimode nonlinear theory is proposed for CARM and the nonlinear interaction of multimodes with relativistic electron beam in a terahertz CARM is specially analyzed. The main work of this thesis includes:
     In Chapter 1, the operating principle and recent development of CARM are briefly introduced.
     In Chapter 2, a complete set of self-consistent equations describing the nonlinear interaction of multimodes with the relativistic electron beam in CARM is derived. These equations include the beam-wave coupling equations for TE mode coaxial CARM, TM mode coaxial CARM, TE mode cylindrical CARM, TM mode cylindrical CARM. The beam-wave coupling equations taking Ohmic losses into account and the motion equations for electron immerged in multimode electromagnetic waves are also derived.
     In Chapter 3, the key issues of computer code for the proposed multimode nonlinear theory are introduced, including normalization of quantities, choice of initial parameters, accuracy monitoring. Finally, the block diagram of software is presented and the computer codes are programmed in FORTRAN language. These codes can be employed for both the simulation of the whole interaction process of multimodes with the relativistic electron beam and the optimization of operating parameters.
     In Chapter 4, the multimode nonlinear theory and computer code are verified by the comparison of experimental and theoretical results which have been published. These verifications ensure the reliability of the results simulated in the next Chapters.
     In Chapter 5, a THz, high-order TE-mode CARM is analyzed by multimode nonlinear theory. The influences of operating parameters on multimode beam-wave interaction indicate that the performance of a high-order TE mode CARM deeply depend on the operating parameters, and thus it is necessary to perform multimode beam-wave interaction for parameter design.
     In Chapter 6, a THz, high-order TM-mode CARM is analyzed by multimode nonlinear theory. The feasibility of a THz CARM operated with TM mode is verified. The influences of operating parameters on multimode beam-wave interaction indicate that the performance of a high-order TM mode CARM deeply depend on the operating parameters, and thus it is necessary to perform multimode beam-wave interaction for parameter design.
     The proposed multimode nonlinear theory and computer codes can be employed to analyze the interaction of multimodes with relativistic electron beam in CARM. In addition, the potential mode competition in CARM can also be revealed by observing the influence of operating parameters on multimode beam-wave interaction and this will be benefit to the design and optimization of CARM operating parameters.
引文
[1]James Benford, John A.Swegle, Edl Schamiloglu著.高功率微波.江伟华,张弛译.北京国防工业出版社,2008
    [2]Liu S G, Yan Y, Zhu D J. "The possible contribution of vacuum electronics to THz radiation sources." presented at the IEEE International Conference on Vacuum Electronics, Korea,2003,357-358
    [3]Cairns R A, Phelps A D R. "Generation and Application of High Power Microwave." Bristol and Philadelphia:Institute of Physics Publishing.1997
    [4]Thumm M. State-of-the Art of High Power Gyro-devices and Free Electron Masers. Karlsruhe:Forschungszentrum,2008
    [5]Gold Steven H, Nusinovich G S. "Review of high-power microwave source research." Rev Sci Instrum.1997,68(11):3945-3974
    [6]Willshaw W E. "Microwave magnetrons:a brief history of research and development." GEC Research,.1985,84(3):84-91
    [7]Brittain J E. "The magnetron and the beginnings of the microwave age." Phys.Today. 1985,38(7):60-67
    [8]张世昌.”从磁控管到回旋管和自由电子激光.”物理.1988,17(9):570-574
    [9]廖复疆.真空电子技术(第二版).北京:国防工业出版社,2008
    [10]吴鸿适.微波电子学原理.北京:科学出版社,1987
    [11]Twiss R Q. "Radiation Transfer and the Possibility of Negative Absorption in Radio Astronomy." Aust J Phys.1958,11:564-579
    [12]Twiss R Q, Robert J A. "Electromagnetic Radiation from Electrons Rotating in an Ionized Medium under the Action of a Uniform Magnetic Field." Aust J Phys.1958, 11424-446
    [13]Schneider J. "Stimulated emission of radiation by relativistic electrons in a magnetic field." Phys Rev Lett.1959,2:504-508
    [14]Gaponov A V. "Interaction of Irrectilinear Electron Beams with Electronmagnetic Waves in Transmistion Lines." Izv VUZov Radiofiz.1959,2:836-837
    [15]Hirshfield J L, Wachtel J M. "Electron Cyclotron Maser." Phys Rev Lett.1964,12: 533-536
    [16]Kartikeyan M V, Borie E, Thumm M. Gyrotrons. Berlin:pringer,2004
    [17]Flyagin V A, Gaponov A V, Petelin M I. "The gyrotron." IEEE Trans Microwave Theory Tech.1977,25:514-521
    [18]Thumm M. "State-of-the-art of High Power Gyro-Devices and Free Electron Masers." Forschungszentrum.2003
    [19]Granatstein V L, Sprangle P, Herndon, et al. "Microwave amplification with an intense relativistic electron beam." J Appl Phys.1975,46:3800
    [20]朱国瑞,张存绩,陈仕宏”电子回旋脉塞的原理及应用.”物理.2006,28:426-433
    [21]张世昌.”强功率毫米、亚毫米波辐射源.”微波学报.1992,4:73-83
    [22]刘盛纲.相对论电子学.北京:科学出版社,1987
    [23]刘盛纲.电子回旋脉塞和回旋管的进展.成都:四川教育出版社1988
    [24]刘盛纲.微波电子学导论.北京:国防工业出版社,1985
    [25]张世昌.”自由电子脉塞的一种统一理论——回旋动力学.”中国科学(A辑)1991,(1)55-64
    [26]Petlin M I. "One century of Cyclotron radiation." IEEE Trans Plasma Sci Tech.1999, 27:294-302
    [27]Davydovskii V Ya. "On the possibility of accelerating charged particles by electromagnetic waves in a constant magnetic field." Zh Eksp Teor Fiz.1962,13: 886-888
    [28]Kolomenskiy A A. "Resonance effects associated with particle motion in a plane electromagnetic wave." Zh Eksp Teor Fiz.1963,44:261-269
    [29]Milant'ev V P. "Cyclotron autoresonance and its applications." Physics Uspekh. 1997,40(1):1-14
    [30]Chen C. "Theory of electron-cyclotron-resonance laser acceleration." Phys Rev A. 1992,46:6654-6661
    [31]Cooke S J, Cross A W, He W, et al. "Experimental operation of a cyclotron autoresonance maser oscillator at the second harmonic." Phys Rev Lett.1996,77: 4836-4839
    [32]Marshal T C, Wang Ch, Hirshfield J L. "Femtosecond Planar Electron Beam Source for Micron-Scale Dielectric Wake Field Accelerator." Phys Rev ST Accel Beams. 2001,4:121301-1-121301-7
    [33]Wang Q S, McDermott D B, Lin A T, et al. "CARM Amplifier Designs for High Power." Int. J. Infrared and Millimeter Waves.1991,12:297-322
    [34]Savilov A V. "CARM-amlifier in the regime of "nonresonant" trapping of the electron beam." Plasma Sci.2002,30:927-930
    [35]Bratman V L, Kalynov Yu K, Ofitserov M M, et al. "CARMs and relativistic gyrotrons as effective sources and millimeter and submillimeter waves."presented at the Conf Digest of 22nd Int Conf on Infrared and Millim waves, Wintergreen, 1997,58-60
    [36]Davies J A. "Conditions for absolute instability in the cyclotron resonance maser." Phys Fluids B.1989,1:663-669
    [37]Menninger W L, Danly B G, Chen C, et al. "Cyclotron autoresonance maser (CARM)amplifiers for RF accelerator drivers." presented at the Particle Accelerator Conference,1991,754-756
    [38]Wang Q S, Caplan M, Chu K R, et al. "Cyclotron autoresonance maser amplifiers and oscillators." IEEE IEDM technical diges.1989,31.5.1-31.5.4
    [39]Bratman V L, Denisov G G, Ofitserov M M, et al. "Cyclotron autoresonance maser with high Doppler frequency up-conversion." Int J Infrared Millim waves.1992,13: 1857-1873
    [40]Botvinnik I E, Bratman V L, Volkov A B, et al. "The cyclotron autoresonance masers operated at a wavelength 2.4 mm." Pis'ma Zh Eskp Teor Fiz.1982,8: 1376-1378
    [41]Lin A T. "Doppler shift dominated cyclotron masers." Int J Electron.1984,57: 1097-1107
    [42]Lin A T, Lin C C. "Doppler shift dominated cyclotron masers amplifiers." Int J Infrared and Millim waves.1985,6:41-51
    [43]Kou C S, Chu K R, McDermott D B, et al. "Effective bandwidth and the Kompfner dip for cyclotron autoresonance maser amplifiers." Phys. Rev. E.1995,51:642
    [44]Bratman V L, Fedotov A E, Kalynov Yu K, et al. "Effective co-generation of opposite and forward waves in cyclotron-resonance masers." Phys Rev Lett.2000, 85:3424-3427
    [45]Savilov A V, Bratman V L, Phelps A D R., et al. "Effective coupling of cyclotron autoresonance maser and "gyrotron" modes on a phase-synchronized electron beam." Phys. Rev. Lett.2000,62:4207-4215
    [46]Kho T H, Lin A T. " Efficiency Dependence on Beam Current and Input Power in a Cyclotron Autoresonance Maser Amplifier." Phys.Fluids B.1990,2:822-827
    [47]Chen C, Wurtele J S. "Efficiency Enhancement in Cyclotron Autoresonance Maser Amplifiers by Magnetic Field Tapering." Phys Rev A.1989,40:489-492
    [48]Kho T H. Lin A T. "Efficiency optimization in an electron cyclotron autoresonance maser amplifier through magnetic field tapering." Phys Rev A.1989,40:2486-2493
    [49]Vomvoridis J L. "An efficient Doppler-shifted electron-cyclotron maser oscillator." Int J Electron.1982,53:555-571
    [50]Kho T H, Lin A T. "Enhancement of efficiency and gain in cyclotron autoresonance masers." Phys Rev Lett.1987,59:1181-1184
    [51]Bratman V L, Denisov G G, Nusinovich G S, et al. "FEL's with Bragg reflectiton resonators:Cyclotron autoresonance masers versus ubitrons." J Quantum Electron. 1983,19:282-296
    [52]Wang J G, Gilgenbach R M, Choi J J, et al. "Frequency-tunable, high-power microwave emission from cyclotron autoresonance maser oscillation and gyrotron interaction." IEEE Trans on Plasmas Sci.1989,17(6):906-908
    [53]Chu K R, LIN A T. "Gain and bandwidth of the gyro-twt and carm amplifiers." IEEE Trans Plasma Sci.1988,16(2):90-104
    [54]Bratman V L, Denisov G G, Kol'chugin BD, et al. "High-efficiency CARM." Nucl Instr and Meth A.1996,375:360-362
    [55]Lin A T, Lin C C. "Induced Inhibition of Electron Acceleration in Wiggler Enhanced Cyclotron Autoresonance Maser Amplifiers." IEEE Trans Plasma Sci.1998,28: 561-566
    [56]Chen C P, Wurtele J S. "Linear and nonlinear theory of cyclotron autoresonance masers with multiple waveguide modes." Phys Fluids B.1991,3(8):2133-2148
    [57]FLIFLET A W. "Linear and non-linear theory of the Doppler-shifted cyclotron resonance maser based on TE and TM waveguide mode." int J Electronics.1986, 61(6):1049-1080
    [58]Chen L, Kho T H, Chen K R, et al. "Linear theory of an electron cyclotron autoresonance maser with a " phase filter." Phys Fluids.1988,31:3116-3119
    [59]Dawn T Y, Chien H C, Chen J M, et al. "Modified self-consistent nonlinear simulation of cyclotron autoresonance maser amplifiers." Phys Plasmas.1998,5: 529-535
    [60]Chen C P, Wurtele J S. "Multimodes interactios in cycoltron autoresonance maser amplifier " Phy Rev letts 1990,65:3389-3392
    [61]Cooke S J, Cross A W, He W, et al. "The operation of a second harmonic CARM oscillator."presented at the Conf. Digest 20th of Int Conf on Infrared and Millim waves, Orlando,1995,427-428
    [62]Kleva R G, Levush B. "Radiation guiding and efficiency enhancement in the cyclotron autoresonance maser." Phys Fluids B.1990,2(1):185-192
    [63]Bratman V L, Phelps A D R, Savilov A V. "Recovery of electron energy in cyclotron autoresonance masers." Phys Plasmas.1997,4:2285-2291
    [64]Bratman V L, Ginzburg N S, Nusinovich G S. "Relativistic gyrotrons and cyclotron autoresonance masers." Int J Electron.1981,51:541-568
    [65]Lee J K, Bard W D, Chiu S C, et al. "Self-consistent nonlinear evolution of the cyclotron autoresonance maser." Phys Fluids.1988,31:1824-1826
    [66]Pendergast K D, Danly B G, Temkin R J. "Self-Consistent Simulation of Cyclotron Autoresonance Maser Amplifiers." IEEE Trans Plasma Sci.1988,12:122-128
    [67]LIN ANTHONY T, CHU K R, BROMBORSKY A. "The Stability and Tunability of a CARM Amplifier." IEEE Trans Electron Devices.1987, ED-34:2621-2624
    [68]Lin A T, Lin C C, Chu K R. "Stability of a high order mode CARM amplifier." IEEE Trans on Electron Devices.1989,35(4):785-788
    [69]Chen S H, Dawn T Y. "Study of Efficiency enhancement through Magnetic field Profiling in Cyclotron Autoresoance Maser." Phys Plasmas.1995,2:959-964
    [70]Danly B G, Pendergast K D, Temkin R J. "Theory and design of a high-power, 140GHz CARM amplifier." Microwave and Particle Beam Sources and Propagation. 1988,873:143-147
    [71]Lin A T, Lin Chih-Chien. "Wiggler enhanced cyclotron autoresonance maser amplifiers." Appl.Phys Lett.1996,70(7):906-908
    [72]McCowan R B, Fliflet A W, Gold S H, et al. "The design of a 100-GHz CARM oscillator Experiment." IEEE Trans Electron Devices.1989,36:1968-1975
    [73]Bekeli G, DiRienzo A, Leibovitch C, et al. "35GHz cyclotron autoresonance maser amplifier." Appl Phys Lett.1989,54:1302-1304
    [74]DiRienzo A C, Bekefi G, Chen C, et al. "Experimental and theoretical studies of a 35 GHz cyclotron autoresonance maser amplifier." Phys Fluids B.1991,3: 1755-1765
    [75]Caplan M, Kulke B, Bubp D G, et al. "A 250 GHz CARM oscillator experiment driven by an induction linac." Nuclear Instruments and Methods in Physics Research Section A.1991,304:200-203
    [76]McCowan R B, Sullivan C A, Gold S H, et al. "Observation of harmonic gyro-backward-wave oscillation in a 100 GHz oscillator experiment." Int J Electron. 1992,72:1033-1043
    [77]Pendergast K D, Danly B G, Menninger W L, et al. "A long-pulse, CARM oscillator experiment." Int J Electron.1992,72:983-1004
    [78]Danly B G, Hartemann F V, Chu T S, et al. "Long-pulse millimeter-wave free-electron laser and cyclotron autoresonance maser experiments." Phys Fluids. 1992, B4:2307-2314
    [79]Choi J J, Gilgenbach R M, Spencer T A. "Mode competition in Bragg resonator cyclotron resonance maser experiments driven by a microsecond intense electron beam accelerator." Int J Electron.1992,1045-1066
    [80]Menninger W L, Danly B G, Alberti S, et al. "CARM and Harmonic Gyro-Amplifier Experiment at 17GHz." in Conf Digest of Particle Accelerator conference, Washington DC,1993,2656-2658
    [81]Alberti S, Danly B G, Gulotta G, et al. "Experimental study of a 28 GHz high-power long-pulse cyclotron autoresonance maser oscillator." Phys Rev Lett. 1993,71:2018-2021
    [82]Bratman V L, Denisov G G, Kol'chugin BD, et al. "Experimental demonstration of high-efficiency cyclotron-autoresonance-maser operation." Phys Rev Lett.1995,7: 3102-3105
    [83]Yong. A R, He W, Ronald K, et al. "Cold and thermionic cathode CARM experiments."presented at the Conf. Digest 23th of Int Conf on Infrared and Millim waves, Colchester,1998,448-449
    [84]Zhang S C, Sun Y. A. "A Large-orbit nonwiggler free-electron laser." IEEE J. Quantum Electron.1987,23:1646-1650
    [85]Zhang S C. "Madey-theorem derivation for the gyrotron, the cyclotron autoresonance maser, and the nonwiggler free-electron laser." Phy Rev A.1989,40:897-901
    [86]Zhang S C. "Influences of the Initial Parameters on Efficiency in a Large-Orbit Nonwiggler Free-Electron Laser." Phy Rev A.1989,40:3777-3781
    [87]Zhang S C. "Gyrokinetics of transverse-magnetic-mode gyrotron, gyropeniotron, cyclotron autoresonance maser, and nonwiggler free-electron laser amplifiers." Phys Fuilds B.1989,1:2502-2506
    [88]Zhang S C. "General formula of the energy-transfer rate in gyrotron,cyclotron-autoresonance-maser,and nonwiggler-free-electron-laser oscillators." Phys Rev A.1992,45:1177-1182
    [89]彭光华,张世昌.”回旋自谐振脉塞的Bragg腔设计分析.”电子科学学刊.1993,15:500-505
    [90]Zhang S C. "Linear and Nonlinear Investigation of a Coaxial-Waveguide Cyclotron Autoresonance Maser Amplifier." Phys Plasmas.2004,11:3969-3975
    [91]Qiu C R, Zhang SC, Zhang H B. "Nonlinear Investigation of a Coaxial-Waveguide Cyclotron Autoresonance Maser Amplifier." Int J Infrared and Millim waves.2004, 25:451-458
    [92]Qiu C R, Zhang S C, Zhang H B. "Output Power of a Coaxial-Waveguide Cyclotron Autoresonance Maser (CARM) Amplifier with an Electron-Beam Misalignment Taken into Account." presented at the Conf Digest of joint 29th International Conference on Infrared and Millimeter Waves and 12th International Conference on Terahertz Electronic, Karlsruhe,2004,641-642
    [93]胡莉,张世昌,邱春蓉,et al. "CARM放大器回旋动力学理论及其与实验的比较.”科学技术与工程.2004,4(2),111-114
    [94]Zhang H B, Zhang S C, Qiu C R. "Influences of the initial parameters on the performance of a coaxial-waveguide cyclotron autoresonance maser (CARM) amplifier." Int J Electron.2005,92:55-62
    [95]Qiu C R, Ouyang Z B, Zhang S C, et al. "Nonlinear Theory of a Cyclotron Autoresonance Maser (CARM) Amplifier with Outer-Slotted-Coaxial Waveguide." J Phys D.2005,38:1571-1576
    [96]Qiu C R, Zhang S C, Zhang H B, et al. "An Outer-inner-slotted-waveguide Cyclotron Autoresonance Maser (CARM) amplifier." in Donf. Digest 2005 Asia-Pacific Microwave, Suzhou,2005,1153-1155
    [97]Zhang S C, Thumm M. "Large-orbit coaxial-structure cyclotron autoresonance maser." Appl Phys Lett.2006,88:033514
    [98]Chai B, Zhang S C, Qiu C R, et al. "Linear study of a large-orbit coaxial-waveguide cyclotron autoresonance maser amplifier." Int J Infrared and Millim waves.2007, 28:423-432
    [99]Chai B, Zhang S C, Qiu C R, et al. "Parameters Analysis of a Large-orbit Coaxial-waveguide Cyclotron Autoresonance Maser Amplifier." in Conf Digest of joint 32th International Conference on Infrared and Millimeter Waves and 15th International Conference on Terahertz Electronics, Cardiff,2007,170-171
    [100]Ouyang Z B, Zhang S C. "Nonlinear analysis of a large-orbit coaxial-waveguide cyclotron autoresonance maser amplifier." J Appl Phys.2007,102:074516
    [101]Lai Y X, Zhang S C, Zhang H B, et al. "A Coaxial Bragg Reflector for Cyclotron Autoresonance Maser Oscillators." IEEE Microw Wireless Compon Lett.2007,17: 328-330
    [102]Lai Y X, Zhang S C, Zhang H B, et al. "Design of a coaxial Bragg Resonator for a 250 GHz Cyclotron Autoresonance Maser Oscillator." presented at the Conf Digest of joint 32th International Conference on Infrared and Millimeter Waves and 15th International Conference on Terahertz Electronics, Cardiff,2007:722-723
    [103]Ouyang Z B, Zhang S C. "Mode competition in a large-orbit coaxial-waveguide maser(CARM) amplifier." appl Phys 2008,41:015501
    [104]Yang N, Zhang S C. "Linear Analysis of a Cyclotron Autoresonance Maser(CARM) Operating in a Transverse Magnetic Mode." Int J Infrared Milli Terahz Waves.2009, 30:328-336
    [105]Kong Y Y, Zhang S C. "A Cyclotron Autoresonance Maser with a Radial Electrostatic Field."presented at the The 35th International Conference on Infrared, Millimeter, and Terahertz Waves Proceeding, Chengdu,2010
    [106]Kong Y Y, Zhang S C. "Power Enhancement of a Small-Orbit Coaxial Cyclotron Autoresonance Maser (CARM) by Employing an External Radial Electrostatic Field." J Infrared Milli Terahz Waves.2010,31(8):919-925
    [107]Liu B F, Zhang S C. "Nonlinear Simulation of a Cyclotron Autoresonance Maser (CARM) Operating in a Transverse Magnetic Mode." J Infrared Milli Terahz Waves. 2011,32:8-15
    [108]Nusinovich G S. Introduction to the Physics of Gyrotrons. Baltimore, The Johns Hopkins University Press,2004
    [109]Cooke S J, He W, Cross A W. "Optimisation of the electron beam system of a second harmonic CARM." IEEE Conf Record Plasma Sci.1996,211
    [110]张亚东,张世昌,邱春蓉.”使用横向螺旋摇摆磁场提高同轴回旋自谐振脉塞(CARM)放大器的效率.”科学技术与工程.2007,7:5893-5895
    [111]Qiu C R, Zhang S C, Zhang H B, et al. "Nonlinear characteristics of a coaxial-waveguide cyclotron autoresonance maser (CARM) amplifier." J Phys D. 2006,39:424-428
    [112]Fliflet A W, Lee R C, Gold S H, et al. "Time-dependent multimode simulation of gyrotron oscillators." Phys.Rev.A.1991,43(11):115-125
    [113]Gold S H, Fliflet A W. "Multimode simulation of high frequency gyrotrons." Int J Electronics.1992,72:779-794
    [114]Nusinovich G S. "Review of the theory of mode interaction in gyrodevices." IEEE Trans on Plasma Sci.1999,27:313-326
    [115]Borie E, Jodicke B. "Self-consistent theory of mode competition for gyrotrons." Int J Electronics.1992,72:721-744
    [116]Whaley D R, Tran M Q, Tran T M, et al. "Mode Competition and Startup in cylindrical Cavity Gyrotrons Using High-Order Operating Modes." Trans on Plasma Sci.1994,22:850-860
    [117]Cai S Y, Antonsen T M, Saraph J G, et al. "Multifrequency theory of high power gyrotron oscillators." Int J Electronics.1992,72:759-777
    [118]Dumbrajs O, Nusinovich G S. "Cold-Cavity and Self-Consistent Approaches in the Theory of Mode Competition in Gyrotrons." IEEE Trans on Plasma Sci.1992,20(3): 133-138
    [119]Dumbrajs O, Nusinovich GS, Pavelyev AB. "Competition of Modes resonant with arbitrary cyclotron harmonics in a gyrotron with nonfixed axial structure of the high-frequency field." IEEE Trans on Plasma Sci.1990,18(3):301-305
    [120]Idehara T, Shimizu Y. "Mode cooperation in a submillimeter wave gyrotron." Phys Plasma Sci.1994,10:3145-3147
    [121]Idehara T, Tatsukawa T, Ogawa I. "Competition between fundamental and second-harmonic operations in a submillimeter wave gyrotron." Appl Phys Lett. 1991,15(58):1594-1596
    [122]Gold S H, Fliflet A W. "Multimode simulation of high power gyrotrons." Int J Electronics.1992,72:779-794
    [123]Whaley D R, Tran M Q, Tran T M, et al. "Competition and Startup in cylindrical Cavity Gyrotrons Using High-Order Operating Modes." IEEE Trans on Plasma Sci. 1994,22(5):850-860
    [124]Nusinovich G S, Sinitsyn O V, Velkovich L, et al. "Startup scenarios in high-power gyrotrons." IEEE Trans on Plasma Sci.2004,32(3):841-852
    [125]Dumbrajs O, Mobius A. "Competition between co-and counter-rotating modes in gyrotrons." Int J Electronics.1992,72:683-686
    [126]Dumbrajs O, Glyavin M Y, Zapevalov V E, et al. "IEEE Trans on Plasma Sci." Influence of reflections on mode competition in gyrotrons.2000,28(3):588-596
    [127]Brand G F, Idehara T, Tatsukawa T, et al. "Mode competition in a high harmonic gyrotron." Int J Electronics.1992,72:745-758
    [128]Kreischer K E, Temkin R J, Fetterman H R, et al. "Multimode oscillation and mode competition in high-frequency gyrotrons." IEEE Trans on Microwave theory and Tech.1984,32(5):481-490
    [129]Levush B, Antonsen T M. "Mode competition and control in high-power gyrotron oscillators." IEEE Trans on Plasma Sci.1990,18(3):260-272
    [130]Botton M, Antonsen T M, Levuch B. "MAGY:a time-dependent code for simualtion of slow and fast microwave souces." IEEE Trans on Plasma Sci.1998,26(3): 882-892
    [131]Danly B G, Temkin R J. "Generalized nonlinear harmonic gyrotron theory." Phys Fluids.1986,29:561-567
    [132]Wang Q S, Kou C S, McDermott D B, et al. "High-Power Harmonic Gyro-TWT's Part Ⅱ:Nonlinear Theory and Design." IEEE Trans Plasma Sci.1992,20(3):163-169
    [133]Ganguly A K, Choi J J. "Nonlinear theory of a folded waveguide gyrotron traveling-wave tube amplifier." Phy Rev E.1995,52(6):6777-6786
    [134]Fliflet A W, Manheimer W M. "Nonlinear theory of phase-locking gyrotron oscillators driven by an external signal." Phys Rev A.1989,39:3432-3443
    [135]Saraph G P, Antonsen T M, Nusinovich G S, et al. "Nonlinear theory of stable,efficient operation of a gyrotron at cyclotron harmonics." Phys Fluids B. 1993,5(12):4473-4485
    [136]Zhang H B, Li H F, Wang H J, et al. "Noulinear Analysis of a Slotted Third-Harmonic Gyro-TWT Amplifier." Int J Infrared and Millim waves.1998, 19(11):1489-1498
    [137]Fliflet A W, Lee R C, Read M E. "Self-consistent field model for the complex cavity gyrotron." Int J Electronics.1988,65:273-283
    [138]Fliflet A W, Read M E, Chu K R, et al. "A self-consistent field theory for gyrotron oscillators:application to a low Q gyromonotron." Int J Electronics.1982,53(6): 505-521
    [139]Zhang H B, Li H F. "Self-Consistent Nonlinear Simulation of a Severed Slotted Gyro-TWT." Int J Infrared and Millim waves.1999,20(2):253-264
    [140]张宏斌,李宏福,俞胜等.”高次谐波开槽回旋行波管放大器的自洽非线性模拟.”强激光与粒子束.1998,10(5):273-278
    [141]喻胜,李宏福,谢仲柃等.”渐变复合腔回旋管高次谐波注一波互作用非线性模拟.”物理学报.2000,49(12):2455-2459
    [142]李宏福,杜品忠,杨仕文等.”突变复合腔回旋管自洽场理论与模拟.”物理学报.2000,49(2):312-317
    [143]杨儒贵主编.高等电磁理论.北京:高等教育出版社,2008
    [144]潘仲英.电磁波、天线与电波传播.北京:电子工业出版社,2003
    [145]张克潜,李德杰.微波与光电子学中的电磁理论(第二版).北京:电子工业出版社,2001
    [146]黄宏嘉.微波原理(卷Ⅰ).北京:科学出版社,1963
    [147]Chu K R, Chen H Y, Hung C L, et al. "Theory and Experimental of Ultrahigh-Gain Gyrotron Traveling Wave Amplifier." IEEE Trans Plasma Sci Tech.1999,27(2): 391-404
    [148]孙海燕,焦重庆,罗积润.”分布损耗对回旋行波放大器稳定性的影响.”物理学报.2009,58(1):238-242
    [149]焦重庆,罗积润.”有损金属圆波导中电磁波传输特性的研究.”物理学报.2006,55(12):6360-6367
    [150]Jackson J D. Classical Electrodynamics. New York:John Wiley,2001
    [151]Hung C L, Yeh Y S. "The propagation constants of higher-order modes in coaxial waveguide with finite conductivity." Int J Infrared and Millim waves.2005,26: 29-39
    [152]Hung C L, Yeh Y S. "Spectral domain analysis of coaxial cavity " Int J Infrared and Millim waves.2003,24:2025-2041
    [153]Hung C L. "Stability analysis of a coaxial-waveguide gyrotron traveling-wave amplifier." Phy of Plasmas.2005,12:103102
    [154]张世昌.自由电子激光导论.成都:西南交通大学出版社,1993
    [155]Leou K C, McDermott D B. "Dielectric-Loaded Wideband Gyro-TWT." IEEE Trans Plasma Sci 1992,20(3),188-196
    [156]何光渝,高永利Visual Fortran常用数值算法集.北京:科学出版社,2002
    [157]彭国伦.Fortron 95程序设计.北京:中国电力出版社,2006
    [158]Markelz A G, Roitberg A, Neilweil E J. "Pulsed terahertz pectroscopy of DNA, bovine serum albumin and collagen between 0.1 and 2.0 THz." Chem Phys Lett. 2000,320:42-48
    [159]Mickan S, Abbott D, Munch J, et al. "Analysis of system trade-offs for terahertz imaging " Microelectroncs Journal.2000,31(7):503-514
    [160]Carr G L, Martin M C, Mckinney W R. "High power terahertz radiation from relativistic electrons." IEEE Trans Microwave Tech.2002,42:153-156
    [161]Nagel M, Boliver P H, Brucherseifer M, et al. ".Integrated THz techaology for label free genetic diagnostics.".Appl Phys Lett.2002,80(1):154-156
    [162]siegel P. "Terahertz Technology." IEEE Trans Microwave Techniques.2002,50(3): 910-928
    [163]Kohler R, Tredicucci A, Beltram F, et al. "Terahertz semiconductor-heterostructure laser." Nature.2002,417(6885):156-159
    [164]ZimdarsD, Jefrey S. "Terahertz reflection." Proc of SPIE.2004,541(1):78-83
    [165]Zhong H, Karpowicz N. "Terahertz Wave Imaging for Landmine Detection." Proc of SPIE.2004,5411(4):33-44
    [166]Cook D J, Decker B K, Dadusc G. "Through container THz sensing:applications for explosives screening." Proc of SPIE.2004,5354(4):55-62
    [167]Agusu L, Idehara T, Dumbrajs O. "Mode selection for a terahertz gyrotron based on a pulse magnet system." Int J Infrared and Millimeter Waves.2004,25(7):1023-1036
    [168]Woodward M R, Appleby R. "Terahertz and millimetre wave technology in port and harbour security." Proc of SPIE.2005,5780(4):145-152
    [169]刘盛纲.”太赫兹科学技术的新发展."presented at the第270次香山科学会议,北京,2005
    [170]Adri D, Chiko O. "Terahertz-wave sources and imaging applications." Meas Sci Technol.2006,17(5):161-174
    [171]Khanna S P, Chakraorty S, Lachab M, et al. "Terahertz frequeney quantum caseade lasers:growth and measurement." Int J Terahertz science and technology.2008,1(1): 22-27
    [172]Bratman V L, Kalynov Y K, Manuilov V N. "Large-Orbit Gyrotron Operation in the Terahertz Frequency Range." Phys Rev Lett.2009,102:245101
    [173]Zhang S C, Thummb M. "Terahertz transverse-magnetic-wave cyclotron autoresonance maser with a large-orbit relativistic electron beam." Phys Lett A. 2010,374:1745-1748

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700