基于宽频带系统的被动雷达测向技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
围绕实际工程应用中被动测向技术面临的问题展开研究,主要对任意阵列的干涉仪测向方法、提高MUSIC (Multiple Signal Classification)算法的分辨力、实际测向系统通道的幅相不一致校正方法几个方面进行了深入的研究,提出了相应的解决方法,并进行了软硬件方案的设计和调试,在实际测向系统中对提出的方法进行了相应的测试,验证了提出方法的可行性。
     基于干涉仪测向方法提出了立体基线测向方法,它可以在任意的天线阵列形式下实现宽频带内辐射信号入射角度的无模糊求解。建立了立体基线测向模型,对任意两个阵元接收数据的相位差与信号入射角度的关系进行了推导,通过建立方程组实现对信号入射角度的计算,并提出了多值模糊和镜像模糊的解决方法,通过仿真实验分析了立体基线测向方法对入射信号角度的估计性能,并且通过实际测向系统对立体基线测向方法进行了测试。
     针对阵列孔径限制分辨力及基于四阶累积量的算法计算量大等问题,提出了改进的四阶累积量二维MUSIC算法,该算法根据分辨力与阵列孔径成正比的特点,选择构成最大虚拟孔径的一组阵元进行二维入射角度估计,同时给出了新的阵列流型及四阶累积量矩阵的构造方法。最大的虚拟阵列孔径是真实阵列孔径的2倍,且其阵元数与真实阵元数相同,获得虚拟阵列对应的四阶累积量矩阵后根据MUSIC算法步骤进行角度估计,可以提高有限阵列孔径条件下MUSIC算法的分辨力且基本不增加计算量,并且通过仿真实验验证了理论的有效性。
     在配有诱饵的雷达系统中,为了实现从各个入射角度都能充分的保护雷达信号,诱饵脉冲前沿通常会超前雷达脉冲信号,结合诱饵和雷达信号的辐射特点提出了基于不完全重合信号的MUSIC算法,利用多个信号的协方差矩阵与单个信号的协方差矩阵之间的关系,可以得到对应入射信号的协方差矩阵,通过对各个协方差矩阵的处理可以依次估计得到各个信号的入射角度,仿真及实际系统接收数据的测试均验证了提出算法的可行性。
     针对空间谱估计算法性能对阵列通道幅相不一致误差敏感的问题,根据实际测向系统接收通道的特点,提出了利用自检信号进行实时校正的方法,将整个通道的校正分为天线到接收通道之间的无源器件预校正和接收通道的实时校正两个部分,在测向过程中利用自检信号对接收通道进行实时校正。仿真结果表明实时校正方法可以动态校正通道的幅相不一致误差并且有利于提高MUSIC算法的分辨力,实测数据也表明实时校正方法可以动态的校正通道幅相不一致误差,达到提高测向精度的目的。
     对测向信号处理器进行了方案设计、硬件制作及整机测试,介绍了测向信号处理器的硬件组成及其软件程序流程图,在实际测向系统中对立体基线测向方法和MUSIC算法的运算时间以及测向精度进行了测试,技术指标满足项目要求。
It is about the problem that passive direction finding techniques faced in actual engineering application. It mainly studies on such aspects of interferometer direction finding method of arbitrary array, improving resolution performance of MUSIC (Multiple Signal Classification) algorithm and calibration method of amplitude-phase mismatch in actual direction finding system, and corresponding methods are proposed. The software and hardware of direction estimation processor is designed and debugging at the same time. The proposed methods are tested in actual direction finding system, and their feasibility is proved adequately.
     Direction finding method of spatial baseline is proposed based on interferometer method. It can realize unambiguity estimation of directon of arrival with arbitrary arrays in wide band. Its direction finding model is established and the relationship between phase difference of two arbitrary antennas and direction of arrival is derived. It realizes estimating the direction of arrival by constrrcting equations. Methods of resolving ambiguity of multi-value and mirror are proposed in the process of computing.
     To the problems of resolution limited by array aperture and large computation cost of algorithms based on fourth-order cumulant, a modified 2-D MUSIC algorithm based on fourth-order cumulant is proposed. According to the theorem that resolution is proportional to array aperture, a group of antennas which constitute the largest virtual aperture is chosen for 2-D direction of arrival estimation, and the new array manifold and construction method of fourth-order cumulant matrix are proposed. The largest virtual array aperture is twice of the actual ones, and its antenna number is the same to the actual ones. According to the new array manifold and fourth-order cumulant matrix, we can realize 2-D direction of arrival estimation following steps of MUSIC algorithm. It prompts resolution validly with limited array aperture and no computation cost in addition. Its availability is testified by simulation experiment.
     In radar system which is equipped with decoy, usually, the decoy pulse is advanced by radars to protect the radar adequately. According to the receiving characteristic of pulse signals in actual direction finding system, MUSIC algorithm based on some overlap signals is proposed. It can obtain a new covariance matrix of signal by relationships between covariance matrixes of multi-signals and single signal. Then, it can estimate directions of arrival by processing each covariance matrix successively. It testified the feasibility of the proposed algorithm by simulation results and test in actual direction finding system.
     To solve the problem that the property of spatial spectrum estimation algorithms is sensitive to array channel amplitude-phase mismatch, a real-time calibration method based on self-checking signal is proposed according to the characteristic of actual receiving channel. The whole channel calibration is divided into two parts:the pre-calibration of passive devices between antennas and receiving channels and the real-time calibration of receiving channels. At first, it can get the pre-calibration matrix by setting a signal which has direction of arrival of 0°. Then, it can realize real-time calibration using self-checking signal during the process of direction finding. It is proved by simulation results that the proposed real-time calibration method can dynamically calibrate the channel amplitude-phase mismatch errors and it is helpful to prompt the solve ability of MUSIC algorithm. The experiment in actual direction finding system has also testified that it can calibrate amplitude-phase mismatch real-timely and get higher direction finding precision.
     According to technical intexes, proposal design, hardware manufacture and test are done to direction finding signal processor. The structure of hardware is introduced in detail, and its software flow chart is also introduced. The computing time of spatial baseline and MUSIC algorithm are test in actual direction finding system. Also, their direction finding accuracy are test in direction finding system. The results of testing in actual system prove that the processor achieve the technical intexes well.
引文
[1]邵姚定.宽带被动导引头技术的分析[J].制导与引信,1995,(3):27-39.
    [2]刘治,王勇.美国反辐射导弹的发展历程和方向[J].飞航导弹,2005,(3):24-32.
    [3]胡磊,李相平,赵腊.反辐射导弹对抗技术研究[J].舰船电子对抗,2009,31(1):28-31.
    [4]张弛,梁彦,陈涛.反辐射导弹在信息化作战环境下的应用及发展趋势[J].飞航导弹,2007,(10):19-23.
    [5]王艳奎.反辐射导引头技术发展分析[J].飞航导弹,2009,(3):39-44.
    [6]王鹏坡,韩洪伟.多模复合寻的制导技术研究[J].飞航导弹,2010,(8):73-75.
    [7]王永良,陈辉,彭应宁等.空间谱估计理论与算法[M].北京:清华大学出版社,2004.
    [8]司锡才,赵利军.反辐射导弹抗诱饵诱偏技术研究[J].弹箭与制导学报,2006,26(2):550-553.
    [9]Stoica P, Nehorai A. MUSIC, maximum likelihood, and Cramer-Rao bound:further results and comparisons [J]. IEEE Transactions on Acoustics, Speech, and Signal Processing,1990,38(12):2140-2150.
    [10]Jiankan Yang, Swindlehurst A L. The effects of array calibration errors on DF-based signal copy performance [J]. IEEE Transactions on Signal Processing,1995,43(11): 2724-2732.
    [11]丁鹭飞,耿富录.雷达原理(第三版)[M].西安:西安电子科技大学出版社,2004.
    [12]Henault S, Antar Y M M, Rajan S, et al. Mutual coupling analysis of coplanar adcock direction finding arrays [J].2008 24th Biennial Symposium on Communications, 2008,(6):27-30.
    [13]Cheol-Sun Park, Won Jang, Dae-Young Kim. The array geometry design in airborne microwave 2-D direction finding [J]. Sensor Array and Multichannel Processing, Fourth IEEE Workshop,2006, (7):65-69.
    [14]李兴华,顾尔顺.干涉仪解模糊技术研究[J].现代防御技术,2008,36(3):92-96.
    [15]司锡才,赵建民.宽频带反辐射导弹导引头技术基础[M].哈尔滨:哈尔滨工程大学出版社,1996.
    [16]Jacobs E, Ralston W E. Ambiguity resolution in interferometry[J]. IEEE Transactions on Aerospace and Electronic Systems,1981,17(2):766-779.
    [17]张勇,刘渝.多信号数字测向算法研究[J].数据采集与处理,2002,17(3):265-270.
    [18]安效君.改进的干涉仪测向方法研究[J].无线电工程,2009,39(3):59-61.
    [19]Sundaram K R, Mallik R K, Murthy U M S. Modulo conversion method for estimating the direction of arrival [J]. IEEE Transactions on Aerospace and Electronic Systems, 2000,36(4):1391-1396.
    [20]龚享铱,皇甫堪,袁俊泉.基于相位干涉仪阵列二次相位差的波达角估计算法研究[J].电子学报,2005,33(3):444-446.
    [21]曲志昱,司锡才.基于虚拟基线的宽带被动导引头测向方法[J].弹箭与制导学报,2007,27(4):92-95.
    [22]宋才水,顾尔顺.无模糊长基线干涉仪测角的设计[J].现代防御技术,2006,34(2):52-54.
    [23]Cornelius Brinergar. Passive direction finding:combining amplitude and phased based methods[C]. Proceedings of the IEEE National Aerospace and Electronics Conference. 2000, (1):78-84.
    [24]Athley F, Engdahl C, Sunnergren, P. On radar detection and direction finding using sparse arrays[J]. IEEE Transactions on Aerospace and Electronic Systems,2007, (43)4: 1319-1333.
    [25]Balogh L, Kollar I. Angle of arrival estimation based on interferometer principle[J]. IEEE International Symposium on Intelligent Signal Processing,2003(3):219-223.
    [26]王磊,束坤.干涉仪测向中相关处理算法的研究[J].舰船电子对抗,2010,33(4):87-90.
    [27]韩广,王斌,王成.相关运算在相位干涉仪解模糊中的应用[J].声学技术,2010,29(5):538-542.
    [28]Saucier N E, Struckman K A. Direction finding using correlation techniques[J]. IEEE Antenna Propagation Society International Symposium,1975(6):260-263.
    [29]Saucier N, Struckman K. Correlation Interferometer Geolocation[J]. IEEE Transactions on Antennas and Propagation Society International Symposium,2006:1141-1144.
    [30]Bunger R, Demmel F, Ritter J. Installed performance analysis of a direction finding system on board of a large aircraft platform[C].33rd European Microwave Conference, 2003, (3):695-697.
    [31]车梦虎.反辐射导弹导引头关键技术及发展趋势研究[J].航天电子对抗,2008,24(4):5-8.
    [32]周伟光,罗积润,王华彬.雷达诱饵合成场对反辐射导弹测向系统的影响[J].电子与信息学报,2009,31(4):981-984.
    [33]司锡才,崔冬槐,司伟建.反辐射导弹对抗低截获概率雷达和诱饵技术[J].系统工 程与电子技术,2005,27(9):1549-1552.
    [34]史震,李岩,于秀萍.多点源作用下反辐射导弹导引信号的形成[J].哈尔滨工程大学学报,2006,27(1):70-74.
    [35]刘剑,王丰华,黄知涛等.阵列扩展用于反辐射导弹抗诱偏的研究[J].系统工程与电子技术,2007,29(3):365-367.
    [36]Schmidt R O. Multiple emitter location and signal parameter estimation[J]. IEEE Transactions on Antennas and Propagation,1986,34(3):276-280.
    [37]Kawitkar R S, Wakde D G. An approach for MUSIC algorithm in smart antenna system[J]. IEEE International Workshop on Antenna Technology: Small Antennas and Novel Metamaterials,2005:403-406.
    [38]Roy R, Paulraj A, Kailath T. Estimation of signal parameters via rotational invariance techniques-ESPRIT[C]. Communication Conference-Computers: Teamed for the 90's, 1986, (3):41.6.1-41.6.5.
    [39]Paulraj A, Roy R, Kailath T. Estimation of signal parameters via rotational invariance techniques-ESPRIT[C]. Nineteenth Asilomar Conference on Circuits, Systems and Computers,1985:83-89.
    [40]Roy R, Kailath T. ESPRIT-estimation of signal parameters via rotational invariance techniques[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing,1989, 37(7):984-995.
    [41]Thompson P M, Grant P M, Mulgrew B. Performance of spatial smoothing algorithms for correlated sources[J]. IEEE Transactions on Signal Processing,1996,44(4): 1040-1046.
    [42]Dong Mei, Zhang Shouhong, Wu Xiangdong, et al. A high resolution spatial smoothing algorithm [J]. IEEE International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications,2007:1031-1034.
    [43]Cadzow J A. Multiple source location-the signal subspace approach[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing,1990,38(7):1110-1125.
    [44]Stoica P, Nehorai A. MUSIC, maximum likelihood, and Cramer-Rao bound[J]. IEEE Transactions on Acoustics, Speech and Signal Processing.1989,37(5):720-741.
    [45]Hai Zhan, Ayadi J, Farerotu J, Le Boudec J-Y. Impulse radio ultra-wideband ranging based on maximum likelihood estimation[J]. IEEE Transactions on Wireless Communications,2009,8(12):5852-5860.
    [46]刘曦霞,朱泽君,胡辉.对抗雷达反辐射导弹技术综述[J].科技信息,2010,(22):506-504.
    [47]Kaveh M, Barabell A J. The statistical performance of the MUSIC and the minimum-norm algorithm in resolving plane waves in noise [J]. IEEE Transactions on Acoustics, Speech, and Signal Processing,1986,34(2):331-341.
    [48]ZHOU C G, Haber F, Jaggard D L. A resolution measure for the MUSIC algorithm and its application to plane wave arrivals contaminated by coherent interference [J]. IEEE Transactions on Signal Processing,1991,39(2):454-463.
    [49]Ferreol A, Larzabal P, Viberg M. Statistical analysis of the MUSIC algorithm in the presence of modeling errors, taking into account the resolution probability [J]. IEEE Transactions on Signal Processing,2010,58(8):4156-4166.
    [50]Ferreol A, Larzabal P, Viberg M. Performance Prediction of Maximum-Likelihood Direction-of-Arrival Estimation in the Presence of Modeling Errors [J]. IEEE Transactions on Signal Processing,2008,56(10):4785-4793.
    [51]Dogan M C, Mendel J M. Applications of cumulants to array processing-part Ⅰ:aperture extension and array calibration[J]. IEEE Transactions on Signal Processing,1995,43(5): 1200-1216.
    [52]Porat B, Friedlander B. Direction finding algorithms based on high-order statistics[J]. IEEE Transactions on Signal Processing,1991,39(9):2016-2024.
    [53]Zhu zhou-hua. The fourth order cumulants based modified MUSIC algorithm for DOA in colored noise[C]. Asia-Pacific Conference on Wearable Computing Systems,2010: 345-347.
    [54]Cardoso J F, Moulines E. Asymptotic performance analysis of direction-finding algorithms based on fourth-order cumulants[J]. IEEE Transactions on Signal Processing, 1995,43(1):214-224.
    [55]Moulines E, Cardoso J F. Direction finding algorithm using fourth order statistics: asymptotic performance analysis[C]. IEEE International Conference on Acoustics, Speech, and Signal Processing,1992:437-440.
    [56]Zeng Wen-jun, Li Xi-lin, Zhang Xian-da. Direction-of-arrival estimation based on the joint diagonalization strcture of multiple fourth-order cumulant matrices[J]. IEEE Signal Processing Letters,2009,16(3):164-167.
    [57]陈建,王树勋.基于四阶累积量虚拟阵列扩展的DOA估计[J].吉林大学学报(信息科学版),2006,24(4):345-350.
    [58]陈建,王树勋.基于高阶累积量虚拟阵列扩展的DOA估计[J].电子与信息学报,2007,29(5):1041-1044.
    [59]唐建红,司锡才,初萍.改进的基于四阶累积量的MUSIC算法[J].系统工程与电 子技术,2010,32(2):256-259.
    [60]Smith S T. Statistical resolution limits and the complexified Cramer-Rao bound [J]. IEEE Transactions on Signal Processing,2005,53(5):1597-1609.
    [61]Abeida H, Delmas J P. Statistical performance of MUSIC-Like algorithms in resolving noncircular sources[J]. IEEE Transactions on Signal Processing,2008,56(9):4317-4329.
    [62]Scarano G, Jacovitti G. Applications of generalized cumulants to array processing [J]. Signal Processing,1996,53(2-3):179-193.
    [63]刘剑,于红旗,黄知涛等.基于二阶预处理的共轭扩展MUSIC算法[J].系统工程与电子技术,2008,30(1):57-60.
    [64]曲志昱,司锡才,谢纪岭.相干源诱偏下比相被动雷达导引头测角性能分析[J].系统工程与电子技术,2008,30(5):824-827.
    [65]穆富岭,周经伦,罗鹏程.两点源干扰下的反辐射导弹误差距离进一步探讨[J].系统仿真学报,2008,20(7):1665-1668.
    [66]Zhao Juan-juan, Ma Dongli. Distribution analysis of multi-source decoying system against ARM[J]. International Symposium on System and Control in Aeronautics and Astronautics,2010, (3):167-171.
    [67]Rao B, Zhao Y L, Xiao S P, Wang X S. Discrimination of exo-atmospheric active decoys using acceleration information [J]. Radar, Sonar & Navigation, IET,2009,4(4): 626-638.
    [68]Shan Z L, Yum T S P. A conjugate augmented approach to direction of arrival estimation [J]. IEEE Transactions on Signal Processing,2005,53(11):4104-4109.
    [69]刘剑,于红旗,黄知涛等.二阶共轭增强MUSIC算法[J].信号处理,2008,24(3):411-413.
    [70]刘剑,黄知涛,周一宇.一种新的共轭增强MUSIC算法[J].宇航学报,2007,28(5):1309-1313.
    [71]马源军,辛永升.雷达有源诱饵设计[J].雷达与对抗,2002,2:32-35.
    [72]张永顺,童宁宁,赵国庆.雷达电子战原理[M].国防工业出版社.2006,254-256.
    [73]See C M S. Method for array calibration in high-resolution sensor array processing [J]. IEE Proceedings-Radar, Sonar and Navigation,1995:142(3):90-96.
    [74]Rockah Y, Schultheiss P. Array shape calibration using sources in unknown locations-part I:far-field sources[J]. IEEE Transactions on Acoustics, Speech and Signal Processing,1987,35(3):286-299.
    [75]Forste P, Martinerie F. Passive array shape calibration with wide band sources of unknown location[J]. Proceedings of Oceans Engineering for Today's Technology and Tomorrow's Preservation,1994, (1):I/235-I/240.
    [76]Viberg M, Lundgren A. Array interpolation based on local polynomial approximation with application to DO A estimation using weighted MUSIC [J]. IEEE International Conference on Acoustics, Speech and Signal Processing,2009:2145-2148.
    [77]Henault S, Antar Y M M. Interpolation or coupling matrices in the calibration of antenna arrays [J]. International Symposium on Antenna Technology and Applied Electromagnetics & the American Electromagnetics Conference,2010:1-4.
    [78]Chen Y M, Lee J H, Yeh C C. Calibration-free bearing estimation for arrays with randomly perturbed sensor locations[C]. International Conference on Acoustics, Speech, and Signal Processing,1988, (5):2917-2920.
    [79]Ng B C, Wee Ser. Array shape calibration using sources in known locations[C]. Singapore ICCS/ISITA'92 Communications on the Move,1992, (2):836-840.
    [80]Jager P D, Trinkle M, Hashemi-Sakhtsari A. Automatic microphone array position calibration using an acoustic sounding source [C]. IEEE Conference on Industrial Electronics and Applications,2009:2110-2113.
    [81]Silverstein S D. Application of orthogonal codes to the calibration of active phased array antennas for communication satellites[J]. IEEE Transactions on Signal Processing,1997, 45(1):206-218.
    [82]Ng B P. Array shape self-calibration technique for direction finding problems[J]. IEE Proceedings-H Microwaves, Antennas and Propagation,1992,139(6):521-525.
    [83]Liu M, Wan C. Location calibration and DOA estimation using randomly distributed acoustic sensor network[J]. Oceans 2005-Europe,2005, (1):573-578.
    [84]See C M S, Boon-Kiat Poh. Parametric sensor array calibration using measured steering vectors of uncertain locations[J]. IEEE Transactions on Signal Processing,1999,47(4): 1133-1137.
    [85]Solomon I S D, Gray D A, Abramovich Y I, et al. Receiver array calibration using disparate sources[J]. IEEE Transactions on Antennas and Propagation,1999, 47(3):496-505.
    [86]王鼎,吴瑛.一种新的阵列误差有源校正算法[J].电子学报,2010,38(3):517-524.
    [87]Boon Chong Ng, Chong Meng Samson See. Sensor-array calibration using a maximum-likelihood approach[J]. IEEE Transactions on Antennas and Propagation, 1996,44(6):827-835.
    [88]Mir H S. A generalized transfer-function based array calibration technique for direction finding[J]. IEEE Transactions on Signal Processing,2008,56(2):851-855.
    [89]Yaradarajan V, Krolik J L. Multichannel system identification methods for sensor array calibration in uncertain multipath environments [J]. IEEE Signal Processing Workshop on Statistical Signal Processing,2001:297-300.
    [90]Li Minghui, Lu Yilong. Source bearing and steering-bector estimation using partially calibrated arrays[J]. IEEE Transactions on Aerospace and Electronic Systems,2009, 45(4):1361-1372.
    [91]Wu Biao, Chen Hui. Performance analysis of self-calibration algorithm for L-shaped array[C]. International Conference on Measuring Technology and Mechatronics Automation,2009,3:798-802.
    [92]Renjian Zhao, Goeckel D L. Mead J B. Nonlinear Kalman filtering for self-calibration of airborne arrays[J]. IEEE International Symposium on Phased Array Systems and Technology (ARRAY),2010:89-101.
    [93]王鼎,吴瑛.阵元位置误差自校正的累量域辅助阵元法[J].系统工程与电子技术,2010,32,(7):1357-1364.
    [94]Madhu N, Martin R. Low-complexity, robust algorithm for sensor anomaly detection and self-calibration of microphone arrays[J]. IET Signal Processing,2011,5(1):97-103.
    [95]Qi C, Wang Y, Zhang Y, et al. DOA estimation and self-calibration algorithm for uniform circular array[J]. Electronics Letters,2005,41(20):1092-1094.
    [96]林象平.雷达对抗原理[M].西安:西北电讯工程学院出版社,1985.
    [97]肖秀丽.干涉仪测向原理[J].中国无线电,2006(5):43-49.
    [98]周亚强,皇甫堪.噪扰条件下数字式多基线相位干涉仪解模糊问题[J].通信学报,2005,26(8):16-21.
    [99]司伟建.一种新的解模糊方法研究[J].制导与引信,2007,28(1):44-47.
    [100]周晓峰,杨建军.反辐射导弹发展的新趋势及其对抗措施分析[J].飞航导弹,2006,(4):3-6.
    [101]冯雨,卞树檀,李站良.反辐射导弹及其发展趋势[J].战术导弹技术,2005,(4):1-3.
    [102]宋银锁,马妙技.导引头共形相控阵天线研究进展[J].航空兵器,2008,(6):44-47.
    [103]Sadler B M, Giannakis G B, Shamsunder S. Noise subspace techniques in non-gaussian noise using cumulants[J]. IEEE Transactions on Aerospace and Electronic Systems, 1995,31(3):1009-1018.
    [104]Strobach P. Two-dimensional equirotational stack subspace fitting with an application to uniform rectangular arrays and ESPRIT[J]. IEEE Transactions on Signal Processing, 2000,48(7):1902-1914.
    [105]Weiss A J, Gavish M. Direction finding using ESPRIT with interpolated arrays[J]. IEEE Transactions on Signal Processing,1991,39(6):1473-1478.
    [106]Yuen N, Friedlander B. Asymptotic performance analysis of ESPRIT, higher order ESPRIT, and virtual ESPRIT algorithms [J]. IEEE transactions on Signal Processing, 1996,44(10):2537-2550.
    [107]唐建红,司锡才,彭巧乐.快速四阶累积量旋转不变子空间算法[J].西安交通大学学报,2009,43(6):88-92.
    [108]刁鸣,吴小强,张鹏.基于修正ESPRIT算法的二维DOA估计[J].哈尔滨工程大学学报,2008,29(4):407-410.
    [109]陈建,王树勋,魏小丽.一种基于L型阵列的二维波达方向估计的新方法[J].吉林大学学报(工学版),2006,36(4):590-593.
    [110]王鼎,吴瑛.基于均匀圆阵的二维ESPRIT算法研究[J].通信学报,2006,27(9):89-95.
    [111]Fan X, Younan N H. Asymptotic analysis of the cumulant-based MUSIC method in the presence of sample cumulant errors[J]. IEEE Transactions on Signal Processing,1995, 43(3):799-802.
    [112]Yan Xuezhi, Jiang Hong, Wang Ke, et al. Broadband near-field range and bearing estimation based on fourth-order cumulants[C]. International Conference on Communications and Mobile Computing,2009:43-46.
    [113]Huan Wu, Zheng Bao, Kehu Yang. MUSIC'S and Cramer-Rao bound in Fourth-Order Cumulant domain[J]. Proceedings of the IEEE Signal Processing,1997,7:290-294.
    [114]谢纪岭,司锡才,唐建红.基于多维维纳滤波器的二维测向算法及DSP实现[J].宇航学报,2008,29(1):315-319.
    [115]Ichge K, Ishikawa Y, Arai H. High resolution 2-D DOA estimation using second-order partial-differential of MUSIC spectrum[J]. IEEE International Symposium on Circuits and Systems,2008:1152-1155.
    [116]董照飞.基于DSP的MUSIC算法的实现[J].现代电子技术,2006,23:21-23.
    [117]李军,钟洪声,肖先赐.阵列信号DOA估计MUSIC算法的DSP实现[J].电子工程师,2004,30(8):40-42.
    [118]Kundu D. Modified MUSIC algorithm for estimating DOA of signals [J]. Signal Processing,1996,48(1):85-90.
    [119]Liu F G, Diao M. A novel algorithm for DOA estimation [J].2nd International Symposium on Information Science and Engineering, ISISE 2009,2010:488-492.
    [120]Kim Y S, Kim Y S. Improved resolution capability via virtual expansion of array [J]. Electronics Letters,1999,35(19):1596-1597.
    [121]韩英臣,张永顺,冯存前等.雷达抗ARM诱饵系统时序设计与仿真[J].航天电子对抗,2002,(3):12-14.
    [122]段晓超.诱饵时序控制的实现[J].现代电子,2002,(1):26-28.
    [123]游鸿,黄建国.子空间投影DOA估计算法分析及合成空间谱[J].航空学报,2008,29(5):1334-1339.
    [124]J.Pierre, M.Kaveh. Experimental performance of calibration and direction-finding algorithms [C]. International Conference on Acoustics, Speech and Signal Processing (ICASSP),1991(4):1365-1368.
    [125]李彩菊,贾云东,李亚安.基于单辅助源的阵列幅相误差校正方法[J].探测与控制学报,2009,31(12):37-39.
    [126]林敏,龚铮权.天线阵通道不一致及阵元间互耦的有源校正法[J].解放军理工大学学报(自然科学版),2001,2(4):35-38.
    [127]S.Henault, Y.M.M, Antar S. Rajan, et al. Impact of experimental calibration on the performance of conventional direction finders[C]. Canadian Conference on Electrical and Computer Engineering(CCECE), Canada,2009:1123-1128.
    [128]Ferreol A, Larzabal P, Viberg M, et al. On the resolution probability of MUSIC in presence of modeling errors[J]. IEEE Transactions on Signal Processing,2008,56(5): 1945-1953.
    [129]冯成燕,吴援明,刘刚等.基于改进NLMS算法的通道校正技术研究[J].信号处理,2005,21(6):649-652.
    [130]Dean Me Arthur, James P. Reilly. A computationally efficient self-calibrating direction-of-arrival estimator[C]. International Conference on Acoustics, Speech and Signal Processing(ICASSP),1994,4(4):201-204.
    [131]Marilynn P. Wylie, Sumit Roy, Hagit Messer. Joint DOA estimation and phase calibration of linear equispaced(LEA) arrays[J]. IEEE Transactions on Signal Processing, 1994,42(12):3499-3459.
    [132]吴向东,张守宏,董玫.阵列通道不一致条件下波达方向估计及其校正[J].系统工程与电子技术,2008,30(10):1847-1850.
    [133]司锡才,谢纪岭.阵列天线通道不一致性校正的辅加阵元法[J].系统工程与电子技术,2007,29(7):1045-1048.
    [134]司锡才,郭立民,郜丽鹏.实时校正信道相位幅度的装置:中国,CN101145860A[P].2008.03.19.
    [135]张贤达.信号处理中的线性代数[M].北京:科学出版社,1997:16-18.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700