回旋管振荡器注波互作用的数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
回旋管振荡器是一类基于电子回旋脉塞机理的快波真空电子器件,能在毫米及亚毫米波段产生高功率、高效率电磁辐射。它在毫米波雷达、受控热核聚变等离子体加热和诊断、定向能武器以及材料处理等领域有重大应用前景。国际上很重视它的理论和实验研究。
     注波互作用过程一直是回旋管研究领域的重要课题。电磁粒子模拟技术(Particle in Cell Simulation)技术基于时域有限差分方法和有限大小粒子概念,能直接求解有源麦克斯韦方程组和电子相对论运动方程。与大信号理论模拟相比,PIC模拟能更全面地反映互作用物理过程。与实验研究相比,PIC模拟具有耗费人力、物力较少的优点。随着计算机计算能力的快速增长,目前PIC技术已逐步应用到回旋管注波互作用的计算机模拟中。
     本论文对被研究的回旋管互作用电路模型,运用线性理论确定初步设计参数,再使用PIC技术进行大量计算机模拟,详细分析腔体几何参数、电子导引中心半径、注电流和外加直流磁场等参量对互作用过程和模式竞争状况的影响,最后总结模拟结果并给出优化设计参数。基于上述思路,本论文对回旋管振荡器注波互作用进行深入研究,得到了三种稳定工作且输出频谱纯度好的Ka波段回旋管振荡器的优化设计结果:基波TE_(01)模单腔管在70kV、1.323T、16A的工作条件下获得44.2%的电子效率及495kW的输出功率;二次谐波TE_(02)模单腔管在50kV、0.695T、6A的工作条件下获得28.8%的电子效率及76.9kW的输出功率;TE_(01)—TE_(04)模式对基波工作复合腔回旋管在70kV、1.262T渐变磁场、17A的工作条件下获得60.2%的电子效率及716kW的输出功率。模拟结果表明,本文给出的Ka波段基波TE_(01)-TE_(04)模式对复合腔回旋管具有高稳定工作电流,高效率和高输出功率的优点,是一种较好的高功率回旋管振荡器设计方案。
The gyrotron, which can be used to generate high power and high efficiency electromagnetic radiation in millimeter and sub-millimeter wavelength range, is a kind of fast-wave vaccum electron device based on electron cyclotron maser instability. Potential applications of the gyrotron include millimeter wave radar, plasma heating and diagnostic of controlled thermonuclear fusion, directed-energy weapons and materials processing. These prospects have motivated widely theoretic and experimental investigations into the physics of gyrotrons.
    The study of beam-wave interaction is one of the most important subjects in the gyrotron field. The electromagnetic particle-in-cell (PIC) simulation technology, which bases on the time-domain finite difference (FDTD) algorithm and the concept of finite-size particle, can solve the Maxwell equations and the motion equations of electrons directly. Comparing with the large-signal numerical simulation, the PIC simulation can investigate the interaction process much more thoroughly. In addition, the PIC simulation consumes less human and material resources than the experimental study does. With the improvement of computer performance, the PIC technology has been applied to the computer simulation of the beam-wave interaction in the gyrotron gradually.
    In this thesis, a general design process of the gyrotron oscillator is presented as follows. Firstly, the linear theories of gyrotron are used to determine the preliminary parameters of the design for studied gyrotron interaction circuits. Then, the PIC
引文
[1] M. V. Kartikeyan, E. Borie, M. K. Thumm, Gyrotrons, Berlin, Springer, 2004 1439-2674
    [2] D. B. McDermott, R. C. Statzman, A. J. Balkcum, N. C. Luhmann, Jr., 94-GHz 25-kW CW Low-Voltage Harmonic Gyrotron, IEEE TRANSACTIONS ON PLASMA SCIENCE, 1998,26: 402-408,
    [3] R. O. Twiss, Radiation Transfer and the Possibility of Negative Absorption in Radio Astronomy, Hust. J. Phys. 1958, 11:567-579
    [4] A. V. Gaponov, Interaction Between Rectilinear Electron Beams and Electromagnetic Waves in Transmission Lines, Izv. VUZov. Radiofiz, 1959, 2: 836-837
    [5] J. L. Hirshfield, J. M Wachtel, Electron Cyclotron Maser, Phys. Rev. Lett., 1964, 12:533-536
    [6] 廖复疆,吴固基,《真空电子技术》,北京,国防工业出版社,1999,P.117-119
    [7] Victor L. Granatstein, Gregory S. Nusinovich, Monica Blank, et al, High Power Microwave Sources Technologic, Wiley-IEEE Press, 2001
    [8] Gregory S. Nusinovich, Introduction to the Physics of Gyrotrons, The Johns Hopkins University Press, Baltimore, MD, 2004
    [9] Victor L. Granatstein, Baruch Levush, B. G. Danly, R. K. Parker, A Quarter Century of Gyrotron Research and Development, IEEE TEANSACTIONS ON PLASMA SCIENCE 1997, 25: 1322-1335
    [10] 袁广江,粟亦农,罗积润,王晓霞,张燕生,郑雷,郭伟,朱敏,吴尔生,毫米波烧结对纯钛酸钡陶瓷介电性能的影响,硅酸盐学报,2004,32(9):1134-1139
    [11] 罗积润,袁广江,粟亦农等。无机材料毫米波处理的初步研究。稀有金属材料与工程,2002,31(增刊1):518-522
    [12] Jirun Luo, Guangjiang Yuan, Yinong Su, Shixi Zhao, Hanxing Liu et al. Millimeter Wave Processing of Materials in IECAS. Proceedings of 27th IEEE International Conference on Infrared and Millimeter Waves, 2002, San Diego, California, USA
    [13] Guangjiang Yuan, Yinong Su, Jirun Luo, XiaoxiaWang, Yansheng Zhang, Lei Zheng, Wei Guo, Min Zhu, Ersheng Wu. Sintering of Pure Barium Titanate Ceramics by 34. SGHz Millimeter Wave Radiation, Proceedings of 28th International Conference on Infrared and Millimeter Waves, Otsu, Japan, 2003: 321-322
    [14] Barker, Booske, Luhmann and Nusinovich, Modern Microwave and Millimeter-Wave Power Electronics, IEEE, New York, 2005, Chap. 2
    [15] M. Thumm State-of-the-art of High Power Gyro-Devices and Free Electeon Masers, Update 2004, FZKA 6957
    [16] V. G. Pavel' ev and S. E. Tsimring, Inventors Certificate 661664, Byull. Izobret., 17 240, 1979
    [17] A. W. Fliflet, R. C. Lee, and M. E. Read, Self-Consistent Field Model for the Complex Cavity Gyrotron, Int. J. Electron., 1988,65(3): 273-283.
    [18] H. Jory, R. Bier, S. Evans, K. Felch, et al, First 200 kW CW Operation of a 60 GHz Gyrotron, IEDM, 1983, pp. 267-270.
    [19] V. E. Zapevalov, S. A. Malygin, V. G. Pavel' ev, S. E. Tsimring, Coupled Resonator Gyrotrons with Mode Conversion, Radiophys. Quantum Electron., 1984, 27:846-852.
    [20] D. B. McDermott, , R. C. Statzman, A. J. Balkcum, and N. C. Luhmann, 94-GHz 25-kW CW Low-Voltage Harmonic Gyrotron, IEEE TRANSACTIONS ON PLASMA SCIENCE, 1998, 26:402-498
    [21] V.E. Zapevalov, Problems and Advances of High Power Gyrotrons, MSMW' 2001 Symposium Proceedings, Kharkov, Ukraine, June 4-9,2001, P117-122
    [22] Y. Carmel, K. R. Chu, R. Read, et al., Realization of a Highly Stable and Efficient Gyrotron for Controlled Fusion Research, Phys. Rev. Lett., 1983, 50:112-115
    [23] S. A. Malygin, Powerful Gyrotron Operatiag at the Third Harmonic, Radiotekhnika Ⅰ Elektronika, 1986, 31:334-336,
    [24] Hezong Guo, D. S. Wu, G.. Liu, et al, Special Complex Open-Cavity and Low-Magnetic-Field High-Power Gyrotron, IEEE Transaction on Plasma Science, 1990, 18:326-333
    [25] Yu Sheng Li Hongh Xie Zhonglia. n LuoYong, A Nonlinear Simulation on Beam-Wave Interaction for Third-Harmonic Complex Cavity Gyrotron, IEEE, 2000, P269-271
    [26] Fei Xiao and ZhongHai Yang, Particle Simulation of a 35-GHz Third-Harmonic Low-Voltage Complex Cavity Gyrotron, Internatlonal Journal of Infrared and Millimeter Waves, 2003, 24: 993-1004
    [27] Li Hongfu, Xie Zhonglian, Wang Wenxiang, et al. 35GHz Third-Harmonic Gyrotron with a Peranent Magnet System, IEEE Transaction on Plasma Science, 2002, P301-302
    [1] 张克潜,李德杰,微波与光电子学中的电磁理论,2001,北京,电子工业出版社,第二版,267-268
    [2] K. R. Chu, Theory of Electron Cyclotron Maser Interaction in a Cavity at the Harmonic Frequencys, Phys Fluids, 1978, 21(2):2354-2364
    [3] K.R. Chu, A.T. Lin, Gain and Bandwidth of the Gyro-TWT and CARM Amplifiers, IEEE Trans. Plasma Sci., 1988, 16(2): 90-104
    [4] F. W. J. Oliver, Handbook of Mathematical Functions, edited by M. Abramowitz and I.A. Stegun (Dover, New York, 1965), P. 363
    [5] G.S. Nusinovich, Introduction to the Physics of Gyrotrons, The Johns Hopkins University Press, Baltimore and London, 2004, pp. 19-20
    [6] 刘盛纲,相对论电子学,科学出版社,1987,pp.196-198
    [7] 吴鸿适,微波电子学原理,科学出版社,1987,456-457
    [8] Q. S. Wang, C.S. Kou, D.B. McDermott, etc., High-power Harmonic Gyro-TWAT's, Part Ⅱ: Nonlinear Theory and Design, IEEE Trans. Plasma Sci., 1992, 20(3): 163-169
    [9] Guo He-Zong, Chen Zeng-Gui, Zhang Shi-Chang, and Wu De-Shun, The Study of a TE_(02) Mode Gyromonotron Oerating at the Second Harmonic of the Cyclotron Frequency, Int. J. Electronics, 1981, 51 (4) :485-492
    [10] K.R. Chu, The Electron Cyclotron Maser, Reviews of Modern Physics, 2004, 76(4): 512
    [11] 罗积润,徐承和,张世昌,洪文洁,耦合双腔回旋管的束波互作用分析,电子科学学刊,1987,9(6),507-517
    [12] B.G. Danly and R. J. Temkin, Genaralized Nonlinear Harmonic Gyrotron Theory, PAys. Fluids, 1986,29(2):561-567
    [13] A.W. Fliflet, M.E. Read, K.R. Chu, R. Seeley, A Self-Consistent Field Theory forGgyrotron Oscillations: Aapplication to a Low Q Gyromonotron, Int.J.Electronics, 1982, 53:505-521
    [14] A. W.Fliflet, R.C. Lee, etc., Time-Dependent Multimode Simulation of Gyrotron Oscillations, PAys Review E, 1991,43:6166-6176
    [15] K.E. Kreischer, R.J. Temkin, Mode Excitation in a Gyrotron Operating at the Fundamental, Int. J infrsred and millimeter waves. 1981, 2:175-196
    [16] M.K. Hornstein, V.S. Bajaj, R.G. Griffin, Second Harmonic Operation at 460 GHz and Broadband Continuous Frequency Tuning of a Gyrotron Oscillator, IEEE Trans. Plasma Sci., 2005, 52(5):798-807
    [17] E. Borie, B. Jodicke, Cogent on the Linear Theory of Gyrotron, IEEE Trans. Plasma Sci, 1988, 16(2): 116-121
    [18] M.V. Kartikeyan, E. Borie, M.K.A. Thumm, Gyrotrons, High Power Microwave and Millimeter Technology, Springer-Verlag Berlin Heidelberg New York 2004, pp. 91-95
    [19] 喻胜,李宏福,谢仲伶,渐变复合腔回旋管高次谐波注-波互作用非线性模拟,物理学报,2000,49(12):2455-2459
    [20] M.V. Kartikeyan, E. Borie, M.K.A. Thumm, Gyrotrons, High Power Microwave and Millimeter Technology, Springer-Verlag Berlin Heidelberg New York 2004, pp. 31-37
    [21] 李宏福,杜品忠,杨仕文,突变复合腔回旋管自洽场理论与模拟,物理学报,2000,49(2):312-317
    [22] M.V. Kartikeyan, E. Borie, M.K.A. Thumm, Gyrotrons, High power Microwave and Millimeter Technology, Springer-Verlag Berlin Heidelberg New York 2004, pp. 41-43
    [23] O. Dumbrajs, E. Borie, A Complex Cavity with Mode Conversion for Gyrotron, Int. J. Electron, 1988, 65:285-295
    [24] A.W. Flelet, R. C. Lee, M.E. Read, Self-Consistent Field Model for the Complex Cavity Gyrotron, 1988, 65:273-283
    [1] R.L. Morse, Multidimensional Plasma Simulation by the Particle-in-Cell Method, Methods in Computational Physics, 1970, Vol. 9, Academic Press, New York,
    [2] 邵福球,《等离子体粒子模拟》,科学出版社2002
    [3] Thomas J. T. Kwan, Application of Particle-in-Cell Simulation in Free-Electron Lasers, IEEE JOURNAL OF QUANTUM ELECTRONICS, 1981, QE-17:1394-1408
    [4] C. K. Chong, D. B. McDenmott, A. T. Lin, W. J. DeHope, Q. S. Wang, and N. C. Luhmann, Stability of a 95-GHz Slotted Third-Harmonic Gyro-TWT Amplifier, IEEE TRANSACTIONS ON PLASMA SCIENCE, 1996, 24:735-743
    [5] Hao Wu, RongLin Liou, and Alan H. McCurdy, PIC Code Simulation of Pulsed Radiation in a Tapered Closed-Cavity Gyrotron, IEEE TRANSACTIONS ON PLASMA SCIENCE, 1996, 24:606-612
    [6] DAVID GOLOMB, YEHUDA GOREN, AMIRAM RON, AND JAY L. HIRSHFIELD, Investigation of the Saturation Proper ties of Gyroamplifiers, IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 1988, 36:934-938
    [7] Ping Liao, ZhongHai Yang, and Tao Huang, Electron Beam Optics System PIC Simulat ion for MMW TWTs, International Journal of Infrared and Millimeter Waves, 2003, 24:1853-1860
    [8] Liang Xian-feng Liu Pu-kun, PIC Simulation of a Ka-Band Second Harmonic Gyroklystron Amplifier, Journal of Electronics&Information Technology, 2005, 5: 819-822
    [9] T. M. Tran, G. Jost, K. Appert, S. Alberti, and M. Pedrozzi, Particle-in-cell (PIC) simulations of beam instabilities in gyrotrons, Phys. Plasmas 1997, 4(8): 3043-3048
    [1] Hao Wu, RongLin Liou, and Alan H. McCurdy, PIC Code Simulation of Pulsed Radiation in a Tapered Closed-Cavity Gyrotron, IEEE TRANSACTIONS ON PLASMA SCIENCE 1996, 24:606-612
    [2] DAVID GOLOMB, YEHUDA GOREN, AMIRAM RON, AND JAY L. HIRSHFIELD, Investigation of the Saturation Proper ties of Gyroamplifiers, 1988, IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 36:934-938
    [3] T. M. Tran, G. Jost, K. Appert, S. Alberti, and M. eedrozzi, Particle-in-cell (PIC) simulations of beam instabilities in gyrotrons, Phys. Plasmss 1997,4 (8), 3043-3048
    [4] A. W. Fliflet, M. E. Read, K. R. Chu and R. Seeley, A Self-ConsistentField Theory foe Gyrotron Oscillators: Application to a Low Q Gyromonotron, INT. J. ELECTRONICS, 1982, 53: 505-521
    [5] H. Guo et al.,The study of a TE_(02) mode gyromonotron operating at the second harmonic of the cyclotron frequency, INT. J. ELECTRONICS 1981, 51:485-492
    [6] Carmel. Y, Chu, K.R, M.E. Arfin, Mode competition, suppression and efficiency enhancement in overmoded gyrotron oscillators, Int. J. Infrared and Millimeter Waves, 1982, 3:235-246
    [7] Charbit, P., Herscovici, A.,and Mourier, G., A partly self-consistent theory of the gyrotron, Int. J. Electron., 1981:51:303-330
    [1] A. V. Gaponov, Interaction Between Rectilinear Electron Beams and Electromagnetic Waves in Transmission Lines, Izv. VUZov. Radiofiz, 1959, 2: 836-837
    [2] 刘刚 新型复合开放腔回旋管注波互作用计算 硕士论文 中科院电子所 1988
    [3] 罗积润,徐承和,张世昌,洪文洁,耦合双腔回旋管的束波互作用分析,电子科学学刊,1987,9(6),507-517
    [4] M. V. Kartikeyan, et al., Design of a 42-GHz 200-kW Gyrotron Operating at the Second Harmonic, IEEE TRANSACTIONS ON Plasmas Sciences, 2004, 52: 686-692
    [5] Melissa K. Hornstein, et al., Second Harmonic Operation at 460 GHz and Broadband Continuous Frequency Tuningof a Gyrotron Oscillator, IEEE TRANSACTIONS ON ELECTRON DEVICES, 2005, 52: 798-807
    [1] A. V. Gaponov, Interaction Between Rectilinear Electron Beams and Electromagnetic Waves in Transmission Lines, Izv VUZov. Radiofiz, 1959, 2: 836-837
    [2] 刘刚,新型复合开放腔回旋管注波互作用计算,硕士论文中科院电子所,1988
    [3] Y. Carmel, at al, Realization of a Stable and Highly Efficient Gyrotron for Controlled Fusion Research, Phys. Rem Lett., 1983, 50:(112-115)
    [4] H. Jory, Status of Gyrotron Developments at Varian Associates, Proceedings of the 4th International Symposium on Heating in Toroidal Plasmas, Rome, March 1984, VOL. 2
    [5] Kenneth E. Kreischer, Richard J. Temkin, Harold R. Fetterman, William J. Mulligan, Multimode Oscillation and Mode Competition in High-Frequency Gyrotrons, IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHMQUES, 1984, WTT-32, 5:481-490
    [6] V. G. Pavel' ev and S. E. Tsimring, Inventors Certificate 661664, Byull. Izobret., 17 240, 1979
    [7] Hezong Guo, D. S. Wu, G.. Liu, et al, Special Complex Open-Cavity and Low-Magnetic-Field High-Power Gyrotron, IEEE Transaction on Plasma Science 1990, 18:326-332
    [8] Y. Carmel, K. R. Chu, R. Read, et al., Realization of a highly stable and efficient gyrotron for controlled fusion research, 1983, Phys. Rev Lett., 50:112-115
    [9] S. A. Malygin, Powerful gyrotron operating at the third harmonic, Radiotekhnika I Elektronika, 1986, 31: 334-336,.
    [10] Yong Huang, Hongfu Li, Shiwen Yang, and Shenggang Liu, Study of a 35-GHz Third-Harmonic Low-Voltage Complex Cavity Gyrotron, IEEE Transactions on plasma science 1999, 27: 368-373
    [11] D. R. Whaley, M. Q. Tran, T. M. Tran, T. M. Antonsen Jr, Mode Competition and Startup in Cylindrical Cavity Gyrotrons Using High-Order Opereting Modes, IEEE Transaction on Plasma Science, 1994, 22: (850-860)
    [12] A. W. Fliflet, R. C. Lee, M. E. Read, Self-consistent field model for the complex cavity gyrotron, Int. J. Electronics, 1988, 65(3): 273-283.
    [13] M. V. Kartikeyan, E. Borie, M. K. Thumm, Gyrotrons, Berlin, Springer, 2004 1439-2674

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700