纳米BaTiO_3粉体的制备与表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以典型钙钛矿结构的BaTiO_3为研究对象,分别采用氢氧化物-醇盐法(简称AH法)和溶剂热重结晶法(SV法)系统地研究了纳米BaTiO_3的制备工艺并对所得粉体进行了表征。
     以Ti(i-OC_3H_7)_4和Ba(OH)_2·8H_2O为钛源和钡源,采用AH法,低温下(<100℃)合成了纳米BaTiO_3粉体。研究表明:粉体粒径随反应时间的增加先减小后增大;随反应温度或钛醇盐浓度的升高而增加;增加反应物Ba/Ti摩尔比使粉体粒径减小。当钛醇盐浓度为1.104M,回流温度下将钡源加入到稍过量的钛源中反应8h,可以得到颗粒分布窄、类球形且粒径约为~13nm的立方相BaTiO_3粉体,HRTEM表明粉体中存在单晶颗粒;粉体经800℃热处理后,可以得到粒径约~60nm,c/a=1.0097的四方相BaTiO3。以Ba(OH)_2取代部分Ba(OH)_2·8H_2O(Ba(OH)_2/Ba(OH)_2·8H_2O=R)发现粉体粒径随R的增加而减小,不同反应时间粉体的XRD和TEM结果表明BaTiO_3颗粒的形成过程遵循溶胶-沉淀机制,提高反应温度及减小R均可加快生成BaTiO_3的速率。
     其次,对AH-BaTiO_3浆料进行溶剂热重结晶处理,研究发现处理后粉体的结晶度提高,形貌更加规整且羟基缺陷减少。粉体的粒径随着溶剂热处理温度的升高及溶剂热处理时间的延长而增大。提高前驱物Ba/Ti摩尔比会减少晶胞中的羟基缺陷,有利于四方相钛酸钡的生成。当氨水/乙醇为2/3,Ba/Ti摩尔比为2,前驱物固含量为0.4g/ml,190℃下处理3h可得到形貌规整且平均粒径约为25nm的四方相BaTiO_3。
     最后,研究了BaTiO_3粉体的烧结活性和介电性能,AH-BaTiO_3粉体在1000℃烧结就可以得到相对密度为94.5%BaTiO_3陶瓷,比SV-BaTiO_3粉体达到相同致密度所需的烧结温度约低200℃,表明小尺寸粉体具有高的烧结活性。由于SV-BaTiO_3粉体具有较少的缺陷及较高的原始密度,与AH-BaTiO_3粉体相比,烧结成瓷后室温介电常数有所提高,从2055增加到2608,介电损耗从0.035降至0.02。
Nano-sized BaTiO_3 powders were prepared by an alkoxide-hydroxide process and a solvothermal recrystallization route, respectively.
     Firstly, in the alkoxide-hydroxide process Ba(OH)_2·8H_2O, Ti(i-OC_3H_7)_4 and hydrous ethanol were acted as barium source, titanium source and reactive medium, respectively. The results showed that higher reaction temperature or titanium alcoholic concentration tended to increase the particle size of powders and siutbale reaction time and Ba/Ti were benifit to obtain finer powders. Under refluxing conditions, when added Ba(OH)_2·8H_2O to Ti alcoholic solution and reacted for 8h, nanosized BaTiO_3 particles with mean size of-13 nm, few aggregates and cubic structure was obtained. HRTEM revealed single-crystal particles existed in powders. Calcining the as-prepared powders at 800, tetragonal BaTiO_3 (c/a=1.0097) with particle size of 60nm could be obtained.
     Furthmore, BaTiO_3 powders were synthesized by a modified AH route, that was replacing part of the Ba(OH)_2·8H_2O by hydrous Ba(OH)_2 to change the water content of the reaction system. It was found that the powders particle size increased with reduce of R in barium sources and AH route was a sol-precipitation process. Hydrolysis of titanium alkoxide depended on the release of water molecules in situ Ba(OH)_2·8H_2O dissolved in the alcoholic solution. Thus, smaller R in barium source or lower reaction temperature would slow down the hydrolysis rate of Ti alkoxide.
     In order to process the crystallinity of the BaTiO_3 obtained by AH process, a novel solvothermal recrystallization (SV) route was developed to obtain finer BaTiO_3 nanocrystals. The results showed that the SV-BaTiO_3 powders had much less hydroxyl lattice defects, higher purity and better crystallinity than AH-BaTiO_3. Higher solvothermal treatment temperature and time were favorable for the preparation of nice crystallinity and larger particle size of BaTiO_3 powder. Higer Ba/Ti of the precursor was benefit to produce tetragonal BaTiO_3. When fixed the ammonia/enthnal of 2/3, Ba/Ti molar ratio in precursor of 2, solvothermal temperature of 190℃, recrystalling time of 3h and the concentration of BaTiO_3 slurry of 0.4g/ml, tetragonal BaTiO_3 powders with mean size of 25nm could be obtained.
     Finally, the sintering reactivity and delectric properties of BaTiO_3 ceramic were investigated. It was found that AH-BaTiO_3 ceramics had a relative low sintering temperature and could be sintered at 1000℃with relative density of 94.5%, which was lower than that obtained by solvothermal recrystallization route. Compared with the untreated powders, due to the less hydroxyl lattice defects content and higher density of crude pellet, the dielectric constant of BaTiO_3 ceramics increased from 2055 to 2608 at room temperature, while the delectric loss reduced from 0.035 to 0,02,
引文
[1] 张立德.纳米材料研究的进展与我国的对策[J].科技导报,2000,(10):3341
    [2] 姜东梅,李红霞,王战民,曹喜营.耐火材料纳米科技在耐火材料中的研究现状及发展趋势[J],耐火材料,2006,40(4):297-299
    [3] 张莉芹,袁泽喜.纳米技术和纳米材料的发展及其应用[J].武汉科技大学学报(自然科学版),2003,26(3):234-238
    [4] 张建州,黄宇芳,陈凌霞.纳米陶瓷及其研究进展[J].南阳师范学院学报(自然科学版),2004,3(13):61-62
    [5] 王辅忠,张慧春,史冬梅,陆路,孙静静,张军.纳米陶瓷研究进展[J].材料导报,2006,20(S2):19-22
    [6] 杨邦朝,冯哲圣,卢云.多层陶瓷电容器技术现状及未来发展趋势[J].电子元件与材料,2001,18(6):17-19
    [7] 邓湘云,李建保,王晓慧,李龙土.MLCC的发展趋势及在军用电子设备中的应用[J].电子元件与材料,2006,25(5):1-6
    [8] 蒋渝,陈家钊,刘颖,涂铭旌.多层片式陶瓷电容器MLC研发进展[J].功能材料与器件学报.2003,9(1):101-106
    [9] 陈祥冲,黄新友.多层陶瓷电容器研究现状和发展展望[J].材料导报,2004,18(9):12-15
    [10] 李继光,孙旭东,茹红强.湿化学法合成单分散陶瓷超微粉体的基本原理[J].功能材料,1997:28(4):333-336
    [11] Oledzka M, Brese N, Riman R E. Hydrothermal synthesis of barium titanate on a titanium loaded polymer support [J]. Chem. Mater., 1999, 11(7): 1931-1935
    [12] 郑煜。电子陶瓷用钛酸盐[J].杭州化工,1993:3-8
    [13] Venigalla S. Advanced Materials and Powders Barium Titanate [J]. The American Ceramic Society Bulletin, 1999, 6(1): 45-56
    [14] 李汶军,施尔畏,郑燕青,等.BaTiO_3,CeO_2和NaCl晶体的生长习性[J].人工晶体学报,1999,28(4):377-382
    [15] 江东亮等.精细陶瓷材料[M],北京:中国物资出版社(第一版).2000.188-189
    [16] 袁,广江,粟亦农,罗积润,等.毫米波烧结对纯钛酸钡陶瓷介电性能的影响[J].硅酸盐学报,2004,32(9):1134-1139
    [17] Arlt G, Hennings D. Dielectric properties of fine-grained barium titanate ceramics[J]. J. Appl. phys., 1985, 58(4): 1619-1625
    [18] Shaikh A S, Vest R W, Vest G M, IEEE Trans. Ultrasonics, Ferroelectric and Frequency control, 1989, 36(4): 407-412
    [19] 栾伟玲,高濂,郭景坤.细晶粒BaTiO_3陶瓷的烧结和介电性能研究[J].中国科学(E辑),1999,29(4):306-310
    [20] Cheung M C. Study on barium titanate ceramics prepared by various methods [J]. Journal of Material Science, 2001, 36(2): 381-387
    [21] 杜仕国.超微粉制备技术及其进展[J].功能材料,1997,28(3):237-241
    [22] 阳鹏飞,周继承.直接沉淀法合成钛酸钡粉体的研究[J].无机盐工业,2005,37(4):22-23
    [23] 方佑龄,赵文宽,邹化民,等.BaTiO_3纳米晶的制备和结构[J].高等学校化学学报,1996,17(11):1685-1686
    [24] 何天平.化学共沉淀法制备BaTiO_3纳米粉混合酯合成工艺研究[J].化工时刊,1997,11(3):10-12
    [25] 周宁玲,胡柏星,潘毅,沈健.纳米钛酸钡的制备及表征[J].精细化工,2004,21(6):405-407
    [26] Verder G S, Emond M H J, et al. Preparation of BaTiO_3 by homogeneous precipitation [J]. J. Eur. Ceram. Soc., 1999, 19(9):1683-1690
    [27] 李竟先,李涛.微乳液法制备纳米颗粒及其在陶瓷材料中的应用[J].硅酸盐学报,2002,30(supplement):145-147
    [28] 徐冬梅,张可达,王平,朱秀林。微乳液法制备纳米粒子[J].化学研究与应用,2002, 14(5):501-506
    [29] Wang J, Fang J, Ng S C, Gan L M, Chew C H, Wang X. B, Shen Z X. Ultrafine Barium Titanate Powders Via Microemulsion Processing Routes[J]. J. Am.Cream.Soc., 1999, 82(4):873-881
    [30] 宋方平,宋启安,王树峰,陈万平.反相微乳液法合成纳米钛酸钡球形颗粒[J].无机化学学报,2006,22(2):355-358
    [31] 朱启安,宋方平.钛酸钡纳米棒的制备方法[P].中国专利,200510032583.7
    [32] Bocquet J F, Chhor K, Pommier C. Barium titanate powders synthesis from solvothermal reaction and supercritical treatment [J]. Materials Chemistry and Physics, 1999, 57(3):273-280
    [33] Stephen O'Brien, Louis Brus, and Christopher B. Murray. Synthesis of Monodisperse Nanoparticles of Barium Titanate:Toward a Generalized Strategy of Oxide Nanoparticle Synthesis [J]. J. Am Chem. Soc. 2001, 123(48), 12085-12086
    [34] Viswanasth R N, Ramasamy S. Preparation and ferroelectric phase transition studies of nanocrystalline BaTiO_3[J]. Nanostrucmred Materials, 1997, 8(2):155-162
    [35] 李青莲,陈维,陈寿田,等.纳米晶钛酸钡粉体制备及陶瓷烧结性能研究[J].压电与声光,2000,22(1):37-39
    [36] 程元龙,袁绪富.钛酸钡品粉的溶胶-凝胶合成工艺[J].淮南职业技术学院学报,2003,8(3):85-86
    [37] Flaschen, S S. An Aqueous Synthesis of Barium Titanate [J]. J. Am. Chem. Soc.; 1955, 77, 6194-6194
    [38] Michael Veith, Sanjay Mathur, Nicolas Lecerf, Volker Huch and Timo Decker. Sol-Gel Synthesis of Nano-Scaled BaTiO_3, BaZrO_3 and BaTi_(0.5)Zr_(0.5)O_3Oxides via Single-Source Alkoxide Precursors and Semi-Alkoxide Routes[J]. Journal of Sol-Gel Science and Technology, 2000, 17(2):145-158
    [39] Kiss K, Meander J, Vukasovich M S, Lockhart R J. Ferroelectric of ultrafine particle size:synthesis of titanate powders of ultrafine particle size [J]. J. Am. Ceram. Soc., 1966, 49 (6):291-294.
    [40] Chaput F, Boilot J P, Alkoxide-hydroxide route to synthesize BaTiO3-Based Powders[J], J. Am. Ceram. Soc., 1990, 73 (4):942-948
    [41] Li Q L, Wang Y, Gui Z. Preparation ofNanoscaled BaTiO_3 Powders by DSS Method Near Room Temperature UnderNormal Pressure [J]. J. Cryst. Growth, 2004, 260(3-4): 551-556
    [42] Yoon S, Baik S, Kim, M G, Shin N Formation Mechanisms of Tetragonal Barium Titanate Nanoparticles in Alkoxide-Hydroxide Sol-Precipitation Synthesis [J]. J. Am. Ceram. Soc., 2006, 89(6): 1816-1821
    [43] Baik S, Yoon S, Kim M G, Shin N, Kim I. Synthesis of Tetragonal Barium Titanate Nanoparticles Via Alkoxide-Hydroxide Sol-Precipitation: Effect of Water Addition[J]. J. Am. Ceram. Soc., 2006, in press.
    [44] Christensen A. N. Hydrothermal preparation of barium titanate by transects reactions [J]. Acta. Chem. Scand., 1970, 24(7): 2247-2252
    [45] Kumazawa H, Annen S, Sada E. Hydrothermal synthesis of barium titanate fine particles from amorphous and crystalline titania[J]. J. Mater. Sci., 1995, 30(18): 4740-4744
    [46] Clark I J, Takeuchi T, Ohtori N, Sinclair D C. Hydrothermal synthesis and characterization of BaTiO_3 fine powders: precursors, polymorphism and properties[J]. J. Mater. Chem., 1999, 9(1): 83-91
    [47] Xia C T, Shi E W, et al. Hydrothermal synthesis of BaTiO_3 nano/microcrystals[J]. J. Crystal. Growth, 1996, 166(1-4): 961-966
    [48] Wada S, Chikamori H, Noma T, Suzuki T. Hydrothermal synthesis of barium titanate crystallites using new stable chelated complex in aqueous solution[J]. J. Mater. Sci. Lett, 2000, 19(3): 245-247
    [49] Urek S, Drofenik M. The hydrothermal synthesis of BaTiO_3 fine particles from hydroxide-alkoxide precursors[J]. Journal of the European Ceramic Society, 1998, 18(4): 279-286
    [50] Sun W, Li J. Microwave-hydrothermal synthesis of tetragonal barium titanate[J]. Materials Letters, 2006, 60(13-14): 1599-1602
    [51] Xu H, Gao L, Guo J. Peparation and characterizations of tetragonal bariumtitanate powders by hydrothennal method[J]. Journal of the European Ceramic Society, 2002, 22(7): 1163-1170
    [52] Guo L, Luo H, Gao J, Guo L, Yang J. Microwave hydrothermal synthesis of barium titanate powders[J]. Materials Letters, 2006, 60(24): 3011-3014
    [53] Chen D, Jiao X. Solvothermal synthesis and characterization of barium titanate powders [J]. J. Am. Ceram. Soc., 2000, 83(10): 2637-2639.
    [54] Junga Y J, Lima D Y, Nhob J. S, Chob S B, Rimanc R E, Lee B W. Gtycothermal synthesis and characterization of tetragonal barium titanate[J]. Journal of Crystal Growth 2005, 274(3-4): 638-652
    [55] Kwon S G, Choi K, Kim B I. Solvothennal synthesis of nauo-sized tetragonal barium titanate powders, Materials Letters 2006, 60(13-14): 979-982
    [56] Badheka P, Qi L, Lee B I. Phase transition in barium titanate nanocrystals by chemical treatment [J]. Journal of the European Ceramic Society, 2006, 26(8): 1393-1400
    [57] 吴会军,朱冬生,向兰.有机溶剂热法合成纳米材料的研究与发展[J].化工新型材料,2005,33(8):1-4
    [58] 董敏,苗鸿雁,谈强,溶剂热合成纳米材料技术及其进展[J].材料导报,2005,19(z1):27-29
    [59] 史萌定.电子陶瓷工艺基础[M].上海:上海科技出版社,1983,65-75
    [60] 叶瑞伦,方永汉,陆佩文.无机材料物理化学[M].北京:中国建筑工业出版社,1986,116-137
    [61] 陈树川,陈凌冰.材料物理性能[M].上海:上海交通大学出版社,1999,253-255
    [62] 熊兆贤.材料物理导论[M].北京:科学出版社,2001,59-60
    [63] 徐行.热学[M].北京:高等教育出版社,1990,345-346
    [64] Klug H P, Alexander L E. X-Ray Diffraction Procedures for polycrystalline and amorphous materials [M]. New York:John Wiley and Sons, 1974, 618
    [65] 彭志忠,X射线分析简明教程[M],第一版,北京,地质出版社,1999,327-339
    [66] Asiaie R, Zhu W, Akbar S A, Dutta P K. Characterization of submicron particles of tetragonal BaTiO_3[J]. Chem. Mater., 1996, 8 (1):226-234
    [67] Atkins, P W. Physical Chemistry:Process at Solid Surfaces[M], 2nd Edition, Freeman, New York, 1982:1002
    [68] 栾伟玲,高濂,郭景坤.pH值对BaTiO_3纳米粉体性能的影响[J].无机材料学报,1997,14(2):287-289
    [69] Diaz Guemes M I, Carreno Gonzalez T, Sema C J, Palacios J M. Mechanism of Formation of MTiO_3(M.=Sr or Ba) by the Gel Method[J]. J. Mater. Sci., 1989, 24(3):1011-1014
    [70] 王连州,范福康.pH值对沉淀法制备SrTiO_3粉料性能的影响,硅酸盐通报[J];1999,(1):3-8
    [71] 张克从,张乐漶.晶体生长科学与技术(上册)[M].第二版.北京,科学出版社,1997,249-250
    [72] Riman R E, Suchanek W L, Lencka M M. Hydrothermal crystallization of ceramics[J]. Annales de Chimie Science des Materiaux, 2002, 27(6):15-36
    [73] 夏长泰,施尔畏,仲维卓.水热条件下四方相BaTiO_3合成[J].科学通报,1996,41(21):1996-1999.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700