GSK-3β抑制剂对原发和转移结肠癌细胞耐药性影响及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景与目的
     结直肠癌是一种常见恶性肿瘤,其发病率呈上升趋势,但治疗效果并未因多年的努力而得到明显改善,其中肿瘤多药耐药是影响肿瘤化疗疗效的一个重要因素。研究表明体内存在的实体肿瘤是一个三维的细胞群集体,其细胞间的相互作用使实体肿瘤耐药机制错综复杂,细胞间信号转导可能参与肿瘤细胞多药耐药的调控,为多药耐药机制的研究带来了新的思路。
     糖原合成酶激酶-3p(glycogen synthase kinase-3β,GSK-3β)是一种多功能的丝氨酸/苏氨酸激酶,参与细胞增殖、分化和凋亡等多种重要生理过程,已成为备受关注的研究热点。研究表明GSK-3β是细胞内Wnt/β-链接素(β-catenin)、核因子-κB (nuclear factor-κB, NF-κB)及RB/E2F-1等众多信号传导通路的主要调控酶,通过对下游核转录因子的影响参与细胞增殖、凋亡的调控及肿瘤多药耐药的调控,但GSK-3β对肿瘤细胞生物学特性的影响以及GSK-3β能否成为肿瘤治疗的靶点目前仍存有较大争议,而且GSK-3β参与肿瘤多药耐药调控的机制尚不明确。因此,进一步研究GSK-3β在结直肠癌细胞生长及多药耐药机制中的作用具有重要的临床意义。
     肿瘤细胞多药耐药是指肿瘤细胞在接触某种化学治疗药物后,不仅对该种化疗药物产生耐药,同时对其他结构、功能和作用机制不同的化学药物也产生不同程度交叉耐药的现象。肿瘤多药耐药的形成机制错综复杂,目前比较受关注的耐药机制主要有:(1)调控细胞调亡进程的相关基因或蛋白的改变,导致肿瘤细胞对多种化疗药物诱导细胞凋亡的抵抗或逃避,如β-catenin、P53、Bcl-2等;(2)通过ABC (ATP binding cassette, ABC)跨膜转运蛋白作用增加药物外排,目前发现的ABC转运蛋白家族共有48个基因,与耐药相关的基因有:ABCA2、ABCB1 (P-gp)、ABCC1 (MRP1)、ABCC2(MRP2)、ABCC3、ABCC4、ABCC5、ABCC6、ABCC11、ABCG2,其中ABCB1 (P-gp)及ABCC2 (MRP2)在结直肠组织有较高的表达;(3)激活药物解毒系统,如谷胱甘肽-S-转移酶(glutathione-S-transferase, GST)系统的激活;(4)参与DNA复制、修复的蛋白酶改变,如拓朴异构酶Ⅱ(TOPOⅡ); (5) DNA合成关键酶,如胸苷酸合成酶(thymidylate synthase, TS), TS是DNA合成及代谢过程的关键酶也是结直肠癌基本化疗药物5-Fu的靶酶,TS表达的高低是影响5-Fu化疗敏感性的重要因素;(6)肿瘤干细胞耐药机制,肿瘤干细胞逃避化疗药物及靶向治疗的作用继续生存并可上调ABC转运蛋白的表达。
     新近在GSK-3β抑制剂与化疗药物联合用药的实验研究中发现GSK-3β抑制剂降低了部分化疗药物诱导细胞凋亡的作用,但机制尚不明确,在结直肠癌GSK-3β抑制剂对基础化疗药物5-Fu诱导的细胞凋亡有何作用尚未知,为了进一步研究GSK-3β对结直肠癌耐药性的影响及其调控机制,我们选择来源于同一结肠腺癌患者的原发灶SW480细胞及淋巴结转移灶SW620细胞作为研究对象,应用一种小分子ATP竞争性GSK-3β抑制剂2'Z,3'E)-6-bromoindirubin-3'-oxime(BIO)作用于结肠癌SW480、SW620细胞,比较BIO作用前后原发及转移二种不同发展阶段的结肠癌细胞多药耐药蛋白P-gp、MRP2、TS及相关调控蛋白β-catenin、Bcl-2、E2F-1蛋白及mRNA含量变化,同期观测BIO对二种肠癌细胞生物学特性及5-Fu诱导细胞凋亡的影响并分析其机制,应用基因芯片及生物信息学分析BIO对二种肠癌细胞多药耐药相关基因表达的影响及调控机制。
     方法
     1. GSK-3β抑制剂对原发和转移结肠癌细胞生物学特性的影响
     应用不同浓度GSK-3β抑制剂BIO作用于结肠癌SW480、SW620细胞,采用倒置显微镜观察BIO作用前后结肠癌SW480、SW620细胞生长情况并检测细胞内ATP浓度;采用流式细胞技术检测细胞周期及凋亡;Western blot检测β-catenin、E2F-1和Bcl-2蛋白表达;免疫细胞化学检测β-catenin、Ki-67及CyclinD1蛋白表达及细胞定位情况;HE染色及电镜观察细胞形态;Tunel染色观察凋亡细胞形态。
     2. GSK-3β抑制剂对原发和转移结肠癌细胞多药耐药相关蛋白表达的影响
     采用Western blot检测BIO作用前后结肠癌SW480、SW620细胞P-gp、MRP2、TS蛋白表达;免疫荧光双重标记β-catenin及P-gp、β-catenin及MRP2,共聚焦显微镜观察β-catenin与P-gp、MRP2共定位情况,并进行罗丹明123外排能力检测。
     3. GSK-3β抑制剂对5-Fu诱导原发和转移结肠癌细胞凋亡的影响
     采用流式细胞术检测不同浓度5-Fu诱导结肠癌SW480、SW620细胞凋亡情况,筛选适宜的5-Fu药物浓度;再采用流式细胞技术及Tunel染色技术检测5-Fu及5-Fu和BIO联合作用前后结肠癌SW480、SW620细胞凋亡情况。
     4. GSK-3β抑制剂对原发和转移结肠癌细胞耐药性影响的基因芯片检测及分析
     采用NimbleGen公司的人类基因组表达谱芯片(NimbleGen Human Gene Expression Microarrays)对BIO作用前后结肠癌SW480、SW620细胞进行基因芯片检测(45,033个基因),进行差异表达基因的筛选,分析多药耐药相关基因表达变化及调控机制。
     结果
     1. GSK-3β抑制剂影响原发和转移结肠癌细胞生物学特性
     GSK-3β抑制剂BIO作用结肠癌SW480、SW620细胞后,细胞内ATP浓度适度升高。在SW480细胞,BIO明显上调β-catenin蛋白表达(F=33.250,P=0.000)、促进β-catenin核移位、下调E2F-1及Bcl-2蛋白表达(F=317.869, P =0.001; F=12.389, P=0.002)、降低细胞凋亡率(F=11.114,P=0.003)、增加Ki-67阳性表达率及S和G2/M期细胞数量,细胞形态呈高增殖状态,Cyclin Dl表达变化不明显。在SW620细胞,BIO明显上调β-catenin及E2F-1蛋白表达(F =19.608 P=0.000; F=22.630, P=0.000)、促进β-catenin核移位、轻度下调Bcl-2蛋白表达、轻度降低细胞凋亡率、增加Ki-67阳性表达率,S和G2/M期细胞数量、细胞形态及Cyclin D1表达变化不明显。
     2. GSK-3p抑制剂影响原发和转移结肠癌细胞多药耐药相关蛋白的表达
     GSK-3p抑制剂BIO明显上调结肠癌SW480细胞P-gp、MRP2、TS蛋白表达(F=29.600, P=0.000; F=11.555, P=0.003; F=32.996, P=0.000)、也明显上调SW620细胞P-gp、MRP2、TS蛋白表达(F=26.792, P=0.000; F=17.657, P=0.001; F=92.953, P=0.000),增强SW480和SW620细胞罗丹明123外排能力(P=0.027; P=0.038), P-gp、MRP2与β-catenin有较明显的共定位表达现象。
     3. GSK-3β抑制剂影响5-Fu诱导的原发和转移结肠癌细胞凋亡
     筛选出5-Fu作用于结肠癌SW480、SW620细胞的最佳浓度为50μnol/L,在SW480细胞,GSK-3p抑制剂BIO明显降低5-Fu诱导的细胞凋亡(P=0.000),在SW620, GSK-3p抑制剂BIO仅轻度降低5-Fu诱导的细胞凋亡。
     4. GSK-3β抑制剂对原发和转移结肠癌细胞耐药性影响的基因芯片检测及分析
     从基因芯片检测结果中筛选出SW620与SW480细胞之间耐药相关差异表达基因有:GSTM1、TOP2A、ABCB7、ABCB7、ABCC2、TOP1、ABCA11 ABCB9。GSK-3β抑制剂BIO作用后,在SW480细胞上调的耐药基因有ABCB1,在SW620细胞上调的耐药基因ABCB1、ABCC2、ABCB10、TAP2、ABCE1。其中ABCB1、ABCC2经Real-time PCR检测验证,GSK-3β抑制剂BIO明显上调SW480细胞ABCB1 mRNA含量(F=6.451、P=0.016),明显上调SW620细胞ABCB1及ABCC2 mRNA含量(F=16.204,P=0.001;F=13.122,P=0.002)。
     结论
     1. GSK-3β抑制剂BIO增加了结肠癌SW480和SW620细胞对5-Fu的耐药性,此作用在SW480细胞比SW620细胞明显。
     2. GSK-3β抑制剂BIO增加结肠癌SW480和SW620细胞耐药性的机制有:(1)凋亡抵抗增强;(2)P-gβ、MRP2转运蛋白增多,功能增强;(3)TS蛋白增多;(4)细胞内ATP含量增多,可能有助于增强ABC转运蛋白的功能。其中凋亡抵抗在SW480高于SW620细胞。
     3.β-catenin、E2F-1与Bcl-2共同参与了BIO对结肠癌SW480和SW620细胞增殖凋亡及耐药性的调控,β-catenin在GSK-3β调控结肠癌细胞耐药性方面可能起到关键作用,E2F-1在SW480和SW620细胞表达的不同可能是二株细胞耐药性不尽相同的重要原因。
     4.在SW480和SW620细胞,GSK-3β抑制剂BIO上调P-gp、MRP2转运蛋白与β-catenin上调有关,而TS上调可能通过E2F-1或非E2F-1途径,其机制有待进一步研究。
     5.结肠癌SW480和SW620细胞之间存在差异表达基因,这些差异是二株细胞对GSK-3β抑制剂及GSK-3β抑制剂联合5-Fu作用产生不同反应的基础。
     创新点
     1.证实GSK-3β参与结肠癌细胞耐药性的调控,提出并验证了GSK-3β参与结肠癌细胞耐药性调控的机制,为GSK-3β作为结肠癌耐药靶点的研究提供了重要的理论及实验依据。
     2.初步验证了β-catenin在结肠癌细胞凋亡及P-gp、MRP2转运蛋白调控中的作用,提出β-catenin在GSK-3β调控结肠癌细胞耐药性方面可能起到关键作用。
     3.发现GSK-3β抑制剂对原发灶和转移灶结肠癌细胞耐药性及耐药相关调控因子的影响有所不同,尤其是对E2F-1有相反的作用,提示GSK-3β在结肠癌的不同发展时期可能具有不同的功能,为GSK-3β在转移灶癌细胞耐药性方面的研究提供了新的线索。
BACKGROUND & OBJECTIVE
     Colorectal cancer (CRC) is a type of common malignant tumor, and it's incidence rate keeps increasing over the years. The therapeutic efficacy of CRC was not significantly improved in spite of great efferts having been made in many years. One of the main obstacles is the multidrug-resistance (MDR) property of CRC, which leads to the failure of chemotherapy. Researchs show that solid tumor is a three-dimensional cell cluster. The inter-communication among the cells results the complex drug resistance mechanisms. The signal transduction among the cells may directly involve in and contribute to the drug resistance. This may shade some new light on the study of the MDR mechanism.
     Glycogen synthase kinase 3β(GSK-3β), a multiFunctional serine/threonine kinase which has become a research focus, participates in a variety of important physiological processes, such as intracellular glucose metabolism, cell proliferation, differentiation and apoptosis. Study has shown that GSK-3β, as a major regulating enzyme to Wnt/β- catenin, nuclear factor-KB (NF-κB), RB/E2F-1 and other moleculars in many signaling pathways, participates in regulating cell proliferation, apoptosis and MDR of tumor by influence on downstream nuclear transcription factors. However, the role of GSK-3βand GSK-3βinhibitors, the influence of GSK-3P to the biological properties of tumor cell, and whether GSK-3βis the prime target during the tumor therapy remain controversial. The MDR regulation mechanism of GSK-3βin CRC is not clear. Thus, It's important to elucidate the role of of GSK-3p and the mechanism of MDR in CRC.
     MDR refers to the phenomenon that the tumor cells may simultaneously become cross-resistant to a wide variety of chemotherapeutic drug with different structures, Functions and cellular targets, when selected for resistance to a single cytotoxic agent. The mechanism of MDR is very complex. At present, some drug-resistant mechanisms are highly concerned:1) The change of apoptosis regulation gene or protein which results in tumor cells resistance or escape from apoptosis induced by varieties of chemotherapeutic drug, such asβ-catenin, P53, Bcl-2, etc; 2) ATP binding cassette(ABC) transmembrane transporter protein increases drug's efflux. There are 48 genes have been found in ABC translocator family, the ones which are associated with drug resistance as follow:ABCA2, ABCB1 (P-gp), ABCC1 (MRP1), ABCC2 (MRP2), ABCC3, ABCC4, ABCC5, ABCC6, ABCC11, ABCG2. Among of them, ABCB1 (P-gp) and ABCC2 (MRP2) have higher expression in colorectal tissues; 3) Activating drug's detoxification systems, such as the activation of glutathione-S-transferase (GST) system; 4) The changing of proteases which participate in DNA replication and repair, such as topoisomeraseⅡ(TOPOⅡ); 5) The changing of the key enzymes of DNA synthesis, such as thymidylate synthase (TS), TS is a key enzyme in the process of DNA synthesis and metabolism and it is a target enzyme of 5-Fu, which is an essential chemotherapy drug for colorectal cancer. The level of TS expression is an important factor in chemosensitivity of 5-Fu; 6) the mechanisms of cancer stem cell resistance to chemotherapy. cancer stem cells could survive cytotoxic or targeted therapies and enhanced ABC transporter protein expression.
     Recent experimental study on combination therapy of GSK-3βinhibitor with chemotherapy drugs found that GSK-3βinhibitors reduces some cell apoptosis induced by chemotherapy drug, however, the mechanism is still not clear. It has not yet known the effect of GSK-3βinhibitor on apoptosis induced by 5-Fu chemotherapy in colorectal cancer. In order to Further study the effects and regulatory mechanism of GSK-3βin drug resistance of colorectal cancer, the SW480 cells from primary lesion and the SW620 cells from lymph node metastases lesion, which originate from the same patient with colon cancer, were used as the research objects.. A small molecule ATP competitive GSK-3βinhibitor (2'Z,3'E) -6-bromoindirubin-3'-oxime (BIO) was used in colon cancer SW480 and SW620 cells, to compare the variation of multidrug resistence protein P-gp, MRP2, TS and the corresponding regulatory proteinβ-catenin, Bcl-2, E2F-1 in two cells before and after BIO was used. At the same time, the effects and mechanism of BIO on cancer cell's biological properties and apoptosis induced by 5-Fu were observed. Gene chips, Real-time PCR and Bioinformatics analysis method were applied to Further investigate the affect of BIO on the multidrug resistance-associated gene expression and regulation mechanism in both types of colon cancer cells.
     METHODS
     1. The effects of GSK-3βinhibitor BIO on biological properties of primary and metastatic colon cancer cells.
     The colon cancer SW480 and SW620 cells were treated with BIO in different concentrations. The growth of SW480 and SW620 cells was observed by inverted microscope and intracellular ATP concentration was detected by luminometer. Cell cycle distribution and apoptosis levels were detected by Flow Cytometry and morphology of Apoptosis cell was observated by Tunel staining. The expressions ofβ-catenin, E2F-1 and Bcl-2 protein were detected by Western blot. Theβ-catenin, Ki-67 and Cyclin D1 expression, and cellular localization were detected by Immunocytochemical. Cell morphology of SW480 and SW620 was observated using HE staining and light microscopy and cell ultrastructure was observated by electron microscopy before and after 24h of BIO treatment in different concentration.
     2. The effects of GSK-3βinhibitor BIO on expression of MDR-associated proteins in primary and metastatic colon cancer cell.
     The expressions of P-gp, MRP2, TS protein were detected by Western blot in SW480 and SW620 cells before and after 24h of BIO treatment in different concentration. P-catenin and P-gp, P-catenin and MRP2 were stained with double immunofluorescence, and the staining of P-catenin and P-gp, P-catenin and MRP2 were observed by confocal microscope, meanwhile, the ability of rhodamine 123 efflux was detected in SW480 and SW620 cells before and after 24h of BIO treatment.
     3. The effects of GSK-3P inhibitor BIO on the apoptosis induced by 5-Fu in primary and metastatic colon cancer cell
     The Apoptosis induced by 5-Fu with different concentration was detected by flow cytometry in colon cancer SW480 cells and then appropriate 5-Fu concentration was selected. The cell apoptosis induced by 5-Fu and 5-Fu combined with BIO was detected with flow cytometry and Tunel staining in colon cancer cell SW480 and SW620.
     4. Gene Chip detection and analysis of the effects of GSK-3βinhibitors BIO on expression of MDR-associated genes in primary and metastatic colon cancer cells Gene expression was detected with NimbleGen Human Gene Expression Microarrays(consist of 45,033 gene) in colon cancer SW480 and SW620 cells before and after BIO treatment. The changing of gene expression was validated by Real-time PCR, and analysed with Bioinformatics.
     RESULTS
     1. GSK-3βinhibitor BIO affects the biological characteristics of primary and metastatic colon cancer cells
     Compared with those of untreated colon cancer SW480 and SW620 cells, the intracellular ATP concentration is slightly elevated in SW480 and SW620 cells after the GSK-3βinhibitor BIO treatment with different concentration. In SW480 cells, BIO significantly increases the expression ofβ-catenin protein and promotes nuclear translocation ofβ-catenin (F=33.250, P=0.000), and decreases the expressions of E2F-1 and Bcl-2 protein (F=317.869, P=0.001; F=12.389, P=0.002), also decreases apoptosis rate (F=11.114, P=0.003). BIO significantly increases the expression of Ki-67 protein and the cell quantity in S and G2/M phase. The cells showed a high proliferation state, while Cyclin Dl expression change is not obvious. In SW620 cells, BIO significantly increases the expression of P-catenin protein and promotes nuclear translocation of P-catenin protein (F=19.608 P=0.000), increases the expression of E2F-1 protein (F=22.630, P=0.000), slightly decreases the expression of Bcl-2 protein, and moderately decreases the cell apoptosis rate. BIO increases the expression of Ki-67 protein, but the change of cell quantity in S and G2/M phase, cell morphology and Cyclin D1 expression were not obvious.
     2. GSK-3βinhibitor BIO affects the expression of MDR-associated protein in primary and metastatic colon cancer cells.
     GSK-3βinhibitor BIO significantly upregulates the expressions of P-gp, MRP2 and TS protein in SW480 (F=29.600, P=0.000; F=11.555, P=0.003; F=32.996, P=0.000) and SW620 cells (F=26.792, P=0.000; F=17.657, P=0.001; F=92.953, P=0.000), and enhances the efflux ability of of rhodamine 123 in SW480 and SW620 cells (P=0.027; P=0.038). The P-gp, MRP2 andβ-catenin retains obvious co-localization expressing phenomenon in SW480 and SW620 cells.
     3. GSK-3βinhibitor BIO affects the apoptosis induced by 5-Fu in primary and metastatic colon cancer cells
     The optimum concentration of 5-Fu inducing cell apoptosis in SW480 cells is 50μmol /L. With this concentration, GSK-3βinhibitor BIO reduces apoptosis of SW480 and SW620 which induced by 5-Fu, and this is particularly proninent in SW480 cell (P=0.000)
     4. Gene Chip detection and analysis of GSK-3P inhibitor BIO affects the expression of MDR-associated genes in primary and metastatic colon cancer cells
     The differential expression genes with drug resistance between SW620 and SW480 cells were as follows:GSTM1, TOP2A, ABCB7, ABCB7, ABCC2, TOP1, ABCA11, ABCB9. The increased expression genes with drug resistance after GSK-3P inhibitor BIO treatment in SW480 cells was as follow:ABCB1; The increased expression genes with drug resistance after GSK-3βinhibitor BIO treatment in SW620 cells were as follows:ABCB1,ABCC2,ABCB10,TAP2,ABCE1. With the detection of Real-time PCR, GSK-3βinhibitor BIO significantly increases mRNA content of ABCB1 in SW480 cells (F=6.45、P=0.016) and increases mRNA content of ABCB1 and ABCC2 in SW620 cells (F=16.204,P=0.001; F=13.122, P=0.002).
     CONCLUSION
     1. GSK-3βinhibitor BIO enhance the drug-resistant phenomenon in SW480 and SW620 cells. GSK-3βinhibitor BIO significantly inhibited apoptosis induced by 5-Fu in SW480 cells, whereas the effect was slight in SW620 cells.
     2. The mechanisms of drug-resistant induced by GSK-3βinhibitor BIO in SW480 and SW620 cells including:(1) The enhancement of apoptosis resistance (2) The enhancement of expression and Function of P-gp and MRP2 transporter protein; (3) The increase of TS protein expression; (4) the increase of intracellular ATP level may enhance the transportion Function of ABC transmembrane transporter protein. The apoptosis resistance induced by GSK-3βinhibitor BIO was obvious in SW480 cells, whereas the effect was slight in SW620 cells.
     3.β-catenin, E2F-1 and Bcl-2 jointly participate in the cell proliferation, apoptosis and drug-resistant regulation induced by BIO in colon cancer SW480 and SW620 cells, and The P-catenin is probably a key factor in this process. The different expression of E2F-1 in SW480 and SW620 cells is likely one of the mechanisms leading to the different outcome in the two kinds of cells.
     4. BIO is able to increase the expressions of P-gp, MRP2 transporter protein and TS protein in SW480 and SW620 cells. The increase of P-gp and MRP2 expressions induced by BIO is bound up with the activation ofβ-catenin signal transduction pathways. The Increase of TS is likely related with E2F-1 or non E2F-1 pathways, and the mechanism needs to be made a Further studied.
     5. There are differences of gene expressions between SW480 cell and SW620 cell, which are the bases to bring different responses to GSK-3βinhibitor BIO and BIO combined with 5-Fu.
引文
[1]万德森.结直肠癌流行趋势及其对策[J].癌症,2009,28(9):897-902.
    [2]郑树,蔡善荣.中国人结直肠癌的流行病学研究[J].The Chinese-German Journal of Clinical Oncology,2003,2(2):72-5.
    [3]Sung JJ, Lau JY, Goh K, et al. Increasing incidence of colorectal cancer in Asia: implications for screening [J]. Lancet Oncol,2005,6(11):871-6.
    [4]Jemal A, Thomas A, Murray T, et al. Cancer statistics,2002.CA Cancer J Clin, 2002,52:23-47.
    [5]Perez-Tomas R. Multidrug resistance:retrospect and prospects in anti-cancer drug treatment [J]. Curr Med Chem,2006,13(16):1859-1876.
    [6]Shi H, Lu D, Shu Y, et al. Expression of multidrug-resistance-related proteins P-glycoprotein, glutathione-S-transferases, topoisomerase-Ⅱ and lung resistance protein in primary gastric cardiac adenocarcinoma [J]. Cancer Invest,2008,26(4): 344-351.
    [7]Tsourouflis G, Theocharis Se, Sampani A, et al. Prognostic and predictive value of thymidylate synthase expression in colon cancer[J]. Dig Dis Sci,2008,53(5): 1289-1296.
    [8]Szakacs G, Paterson J K, Ludwig J A, et al. Targeting multidrug resistance in cancer [J]. Nat Rev Drug Discov,2006,5(3):219-234.
    [9]Wong N A, Pignatelli M. Beta-catenin--a linchpin in colorectal carcinogenesis? [J]. Am J Pathol,2002,160(2):389-401.
    [10]Ahmed F E. Molecular markers that predict response to colon cancer therapy [J]. Expert Rev Mol Diagn,2005,5(3):353-375.
    [11]Green S K, Frankel A, Kerbel R S. Adhesion-dependent multicellular drug resistance [J]. Anticancer Drug Des,1999,14(2):153-168.
    [12]B.W. Doble, J.R. Woodgett, GSK-3:tricks of the trade for a multi-tasking kinase [J]. Cell Sci,116 (2003) 1175-1186.
    [13]R.S. Jope, G.V.W. Johnson, The glamour and gloom of glycogen synthase kinase-3 [J]. Trends Biochem. Sci.29 (2004) 95-102.
    [14]A.S. Manoukian, J.R. Woodgett, Role of glycogen synthase kinase-3 in cancer: regulation by Wnts and other signaling pathways [J]. Adv. Cancer Res.84 (2002) 203-229.
    [15]Farago M, Dominguez I, Landesman-Bollag E, et al. Kinase-inactive glycogen synthase kinase 3β promotes Wnt signaling and mammary tumorigenesis [J]. Cancer Res,2005,65(13):5792-5801.
    [16]Sinha D, Wang Z, Ruchalski KL, et al. Lithium activates the Wnt and phosphatidylinositol 3-kinase Akt signaling pathways to promote cell survival in the absence of soluble survival factors [J]. Am J Physiol Renal Physiol,2005, 288(4):703-713.
    [17]Gould TD, Gray NA, Manji HK.Effects of a glycogen synthase kinase-3 inhibitor, lithium, in adenomatous polyposis coli mutant mice [J]. Pharmacol Res, 2003,48(1):49-53
    [18]Li J, Xing M, Zhu M, et al. Glycogen synthase kinase 3β induces apoptosis in cancer cells through increase of survivin nuclear localization [J]. Cancer Lett,2008, 272(1):91-101.
    [19]Shakoori A, Ougolkov A, Yu Z W, et al. Deregulated GSK3β activity in colorectal cancer:its association with tumor cell survival and proliferation [J]. Biochem Biophys Res Commun,2005,334(4):1365-1373.
    [20]Sun A, Shanmugam I, Song J, et al. Lithium suppresses cell proliferation by interrupting E2F-DNA interaction and subsequently reducing S-phase gene expression in prostate cancer [J]. Prostate.2007,67(9):976-88.
    [21]Ougolkov AV, Fernandez-Zapico ME, Savoy DN, et al. Glycogen synthase kinase-3β participates in nuclear factor κB-mediated gene transcription and cell survival in pancreatic cancer cells [J]. Cancer Res.2005,65(6):2076-2081.
    [22]Ougolkov A, Bone N D, Fernandez-Zapico M E, et al. Inhibition of glycogen synthase kinase-3 activity leads to epigenetic silencing of nuclear factor κB target genes and induction of apoptosis in chronic lymphocytic leukemia B cells [J]. Blood, 2007,110(2):735-742.
    [23]Bilim V, Ougolkov A, Yuuki K, et al. Glycogen synthase kinase-3:a new therapeutic target in renal cell carcinoma [J]. Br J Cancer,2009,101(12):2005-2014
    [24]Garcia-Alvarez G, Ventura V, Ros O, et al. Glycogen synthase kinase-3beta binds to E2F-1 and regulates its transcriptional activity [J].Biochim Biophys Acta, 2007,1773(3):375-382.
    [25]Tseng AS, Engel FB, Keating MT.The GSK-3 inhibitor BIO promotes proliferation in mammalian cardiomyocytes [J]. Chem Biol,2006,13(9):957-963.
    [26]Sato N, Meijer L, Skaltsounis L, et al. Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor [J]. Nat Med,2004,10(1):55-63.
    [27]Meijer L, Skaltsounis AL, Magiatis P, et al. GSK-3-selective inhibitors derived from Tyrian purple indirubins [J]. Chem Biol,2003,10(12):1255-66.
    [28]Lim J C, Kania K D, Wijesuriya H, et al. Activation of β-catenin signalling by GSK-3 inhibition increases p-glycoprotein expression in brain endothelial cells. [J].Journal of neurochemistry,2008,106:1855-1865.
    [29]Lim JC, Mickute Z, Zaman M, et al. Decreased expression of multidrug efflux transporters in the brains of GSK-3beta transgenic mice [J]. Brain Res,2009,18, 1276:1-10.
    [30]Beurel E, Kornprobst M, Blivet-Van Eggelpoul M J, et al. GSK-3beta inhibition by lithium confers resistance to chemotherapy-induced apoptosis through the repression of CD95 (Fas/APO-1) expression [J]. Experimental cell research,2004, 300 (2):354-364.
    [31]Sun-Il Yun E, Hyung-Young Yoon, E Yoon-Sok Chung. Glycogen synthase kinase-3b regulates etoposide-induced apoptosis via Bcl-2 mediated caspase-3 activation in C3H10T1/2 cells [J]. Apoptosis,2004,14:771-777
    [32]Satvorvskaya AA. Cellular mechanisms of multi-drug resistance of tumor cells [J]. Biochemistry,2000,65(1):95-106.
    [33]Huerta S, Goulet E J, Livingston E H. Colon cancer and apoptosis [J]. Am J Surg, 2006,191(4):517-526.
    [34]Reed J C. Dysregulation of apoptosis in cancer [J]. J Clin Oncol.1999,17(9): 2941-2953.
    [35]Wei M C, Zong W X, Cheng E H, et al. Proapoptotic BAX and BAK:a requisite gateway to mitochondrial dysFunction and death [J]. Science,2001,292(5517): 727-730.
    [36]Michael Dean, Yannick Hamon, Giovanna Chimini.The human ATP-binding cassette (ABC) transporter superfamily [J]. J Lipid Res,2001,42:1007-1017.
    [37]Michael Dean, Andrey Rzhetsky, Rando Alikmets.The human ATP-biding cassette (ABC) transporter superfamily [J]. Genome Res,2001,11:1156-1166.
    [38]Gergely Szakacs, Jill K. Paterson, Joseph A. Ludwig, et al. Targeting multidrug resistance in cancer [J]. Nature reviews,2006,5:219-234.
    [39]Juliano, R. L, Ling V. A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants [J]. Biochim Biophs Acta,1976,455(1): 152-162.
    [40]Cole, S. P, Bhardwaj G, Gerlach JH, et al. Overexpression of a transporter gene in a multidrug resistant human lung cancer cell line [J]. Science,1992, 258(5088):1650-1654.
    [41]Doyle, L. A, Yang W, Abruzzo LV, et al. A multidrug resistance transporter from human MCF-7 breast cancer cells [J]. Proc Natl acad Sci,1998, 95:15665-15670
    [42]Michael Dean, Tito Fojo, Susan Bates. Tumour stem cells and drug resistance [J].Nat Rev cancer [J].2005,5:275-284.
    [43]Shi H, Lu D, Shu Y, et al.Expression of multidrug-resistance-related proteins P-glycoprotein, glutathione-S-transferases, topoisomerase-II and lung resistance protein in primary gastric cardiac adenocarcinoma [J]. Cancer Invest,2008,26(4): 344-351.
    [44]Sutoh I, Kohno H, Nakashima Y, et al.Concurrent expressions of metallothionein, glutathione S-transferase-pi, and P-glycoprotein in colorectal cancers [J]. Dis Colon Rectum,2000,43(2):221-232.
    [45]CSalerno S, Da Settimo F, Taliani S, et al. Recent advances in the development of dual topoisomerase Ⅰ and Ⅱ inhibitors as anticancer drugs [J]. Current Med Chem, 2010,17(35):4270-90.
    [46]Matsumoto Y, Tamiya T, Nagao S. Resistance to topoisomerase II inhibitors in human glioma cell lines overexpressing multidrug resistant associated protein (MRP) 2 [J]. J Med Invest.2005,52(1-2):41-48.
    [47]Queener S F, Morr Is H P, Weber G, et al. Dihydrouracil dehydrogenase activity in normal, differentiating and regenerating liver and in hepatomas [J]. Cancer Res, 1971,31 (7):10042 1009.
    [48]Ish Ikawa Y, Kubota T, Otan I Y, et al. Thymidylate synthetase and dihydropyrimidine dehydrogenase levels in gastric cancer [J]. Anticancer Res,1999, 19(6C):563525640.
    [49]Ich Ikawaw, Uetake H, Shirota Y, et al. Combination of dihydropyrimidine dehydrogenase and thymidylate synthase gene expressions in p rimary tumors as predictive parameters for the effi2 cacy of fluoropyrimidine-based chemotherapy for metastatic colo-rectal cancer [J]. Clin Cancer Res,2003,9 (2):786-791
    [50]Aschele C, Debernard Is D, Casazza S, et al. Immuno-histochemical quantitation of thymidylate synthase expression in colorectal cancer metastases predicts for clinical outcome to fluorouracil-based chemotherapy [J]. J Clin Oncol,1999,17 (6):1760-1770.
    [51]Salonga D, Danenberg KD, Johnsonm, et al. Colorectal tumors responding to 5-fluorouracil have low gene expression levels of dihydropyrimidine dehydrogenase, thymidylate synthase, and thymidine phosphorylase [J]. Clin Cancer Res,2000,6 (4): 1322-1327.
    [52]Dean M. ABC transporters, drug resistance, and cancer stem cells [J]. Mammary Gland Biol Neoplasia.2009,14(1):3-9.
    [53]Gangemi R, Paleari L, Orengo AM, et al. Cancer stem cells:a new paradigm for understanding tumor growth and progression and drug resistance [J]. Cur Med Chem.2009,16(14):1688-1703.
    [54]Nakai E, Park K, Yawata T, et al. Enhanced MDR1 Expression and Chemoresistance of Cancer Stem Cells Derived from Glioblastoma [J]. Cancer Invest.2009,27(9):901-908.
    [55]H. Doucas. Changes in the Wnt signaling pathway in gastrointestinal cancers and their prognostic significance [J].European Journal of Cancer,2005,41(3):365-379.
    [56]Gregorieff A, Clever H. Wnt signaling in the intestinal epithelium:from endoderm to cancer [J]. Genes Dev,2005 (19):877-890.
    [57]Leibovitz A, Stinson J C, Mccombs W R, et al. Classification of human colorectal adenocarcinoma cell lines.[J]. Cancer Res.1976,36(12):4562-4569.
    [1]Forde J E, Dale T C. Glycogen synthase kinase 3:a key regulator of cellular fate [J]. Cell Mol Life Sci,2007,64(15):1930-1944.
    [2]Luo J. Glycogen synthase kinase 30 (GSK3β) in tumorigenesis and cancer chemotherapy [J]. Cancer Lett,2009,273(2):194-200.
    [3]Miyashita K, Nakada M, Shakoori A, et al.An emerging strategy for cancer treatment targeting aberrant glycogen synthase kinase 3beta [J]. Anticancer Agents Med Chem,2009,9(10):1114-1122.
    [4]Tseng AS, Engel FB, Keating MT.The GSK-3 inhibitor BIO promotes proliferation in mammalian cardiomyocytes [J]. Chem Biol,2006,13(9):957-963
    [5]Gould TD, Gray NA, Manji HK.Effects of a glycogen synthase kinase-3 inhibitor, lithium, in adenomatous polyposis coli mutant mice [J]. Pharmacol Res,2003, 48(1):49-53.
    [6]Farago M, Dominguez I, Landesman-Bollag E, et al. Kinase-inactive glycogen synthase kinase 3β promotes Wnt signaling and mammary tumorigenesis [J]. Cancer Res,2005,65(13):5792-5801.
    [7]Li J, Xing M, Zhu M, et al. Glycogen synthase kinase 3β induces apoptosis in cancer cells through increase of survivin nuclear localization [J]. Cancer Lett,2008, 272(1):91-101.
    [8]Shakoori A, Ougolkov A, Yu Z W, et al. Deregulated GSK3β activity in colorectal cancer:its association with tumor cell survival and proliferation [J]. Biochem Biophys Res Commun,2005,334(4):1365-1373.
    [9]Cho H H, Song J S, Yu J M, et al. Differential effect of NF-κB activity on β-catenin/Tcf pathway in various cancer cells [J]. FEBS Lett,2008,582(5):616-622.
    [10]Wong N A, Pignatelli M. β-catenin--a linchpin in colorectal carcinogenesis [J]. Am J Pathol,2002,160(2):389-401.
    [11]高明,龚瑾,吕永添,等.p-连环素在结肠腺癌中的异常表达及其与预后的关系[J].中国病理生理杂志,2010,26(5):928-930
    [12]Annica Vlad a, Sonja Rohrs.The first five years of the Wnt targetome [J].Cellular Signalling,2008,20 (2008) 795-802
    [13]滕颖,王秀问,王亚伟,等.Wnt/β-catenin信号传导途径在肺癌细胞A549中的作用[J].山东大学学报(医学版),2010,48(1):74-77.
    [14]Ougolkov AV, Fernandez-Zapico ME, Savoy DN, et al. Glycogen synthase kinase-3β participates in nuclear factor κB -mediated gene transcription and cell survival in pancreatic cancer cells [J]. Cancer Res.2005,65(6):2076-2081.
    [15]Ougolkov AV, Bone N D, Fernandez-Zapico M E, et al. Inhibition of glycogen synthase kinase-3 activity leads to epigenetic silencing of nuclear factor κB target genes and induction of apoptosis in chronic lymphocytic leukemia B cells [J]. Blood, 2007,110(2):735-742..
    [16]Bilim V, Ougolkov A, Yuuki K, et al. Glycogen synthase kinase-3:a new therapeutic target in renal cell carcinoma [J]. Br J Cancer,2009,101(12):2005-2014
    [17]Thotala D K, Geng L, Dickey A K, et al. A new class of molecular targeted radioprotectors:GSK-3β inhibitors [J]. Int J Radiat Oncol Biol Phys,2010, 76(2):557-565.
    [18]Sun A, Shanmugam I, Song J, et al. Lithium suppresses cell proliferation by interrupting E2F-DNA interaction and subsequently reducing S-phase gene expression in prostate cancer [J]. Prostate,2007,67(9):976-988.
    [19]Garcia-Alvarez G, Ventura V, Ros O, et al. Glycogen synthase kinase-3beta binds to E2F-1 and regulates its transcriptional activity [J].Biochim Biophys Acta, 2007,1773(3):375-382.
    [20]Li Q, Dashwood WM, Zhong X, et al. Bcl-2 overexpression in PhIP-induced colon tumors:cloning of the rat Bcl-2 promoter and characterization of a pathway involving beta-catenin, c-Myc and E2F-1 [J].Oncogene,2007,26(42):6194-6202.
    [21]Abramova MV, Zatulovskiy EA, Svetlikova SB, et al. E2F-1 Gene is a new member of Wnt/beta-catenin/Tcf-regulated genes [J].Biochem Biophys Res Commun, 2010,391(1):142-146.
    [22]Espada L, Udapudi B, Podlesniy P, et al. Apoptotic action of E2F-1 requires glycogen synthase kinase 3-beta activity in PC 12 cells [J]. J Neurochem,2007, 102(6):2020-2028.
    [23]Bramis J, Zacharatos P, Papaconstantinou I, et al. E2F-1 transcript ion factor immunoexpression is inversely associated with tumor growth in colon adenocarcinomas [J]. Anticancer Res,2004,24 (5A):3041-3047.
    [24]Li Z, Kreutzer M, Mikkat S, et al. Proteomic analysis of the E2F-1 response in p53-negative cancer cells:new aspects in the regulation of cell survival and death [J]. Proteomics,2006,6(21):5735-5745.
    [25]Herbst A, Kolligs F T. Wnt signaling as a therapeutic target for cancer [J]. Methods Mol Biol,2007,361:63-91.
    [1]Lim J C, Kania K D, Wijesuriya H, et al. Activation of β-catenin signalling by GSK-3 inhibition increases p-glycoprotein expression in brain endothelial cells [J]. Journal of neurochemistry,2008,106:1855-1865.
    [2]Lim JC, Mickute Z, Zaman M, et al. Decreased expression of multidrug efflux transporters in the brains of GSK-3beta transgenic mice [J]. Brain Res,2009, 18(1276):1-10.
    [3]Yong-Yu Liu, Vineet Gupta, Gauri A. Glucosylceramide synthase upregulates MDR1 expression in the regulation of cancer drug resistance through cSrc and β-catenin signaling [J]. Molecular Cancer,2010,9:145.
    [4]Lilly Y. W. Bourguignon, Weiliang Xia, Gabriel Wong. Hyaluronan-mediated CD44 Interaction with p300 and SIRT1 Regulates P-Catenin Signaling and NFκB-Specific Transcription Activity Leading to MDR1 and Bcl-xL Gene Expression and Chemoresistance in Breast Tumor Cells [J]. The Journal of Biological Chemistry, 2009,284,2657-2671.
    [5]Yamada T, Takaoka A S, Naishiro Y, et al. Transactivation of the multidrug resistance 1 gene by T-cell factor 4/beta-catenin complex in early colorectal carcinogenesis [J]. Cancer Res,2000,60(17):4761-4766.
    [6]Yamada T, Mori Y, Hayashi R, et al. Suppression of intestinal polyposis in Mdrl-deficient ApcMin/+ mice [J].Cancer Res,2003,63(5):895-901.
    [7]Chikazawa N, Tanaka H, Tasaka T, et al. Inhibition of Wnt signaling pathway decreases chemotherapy-resistant side-population colon cancer cells [J]. Anticancer Res,2010, (6):2041-2048.
    [8]Kasahara M, Takahashi Y, Nagata T, et al. Thymidylate synthase expression correlates closely with E2F-1 expression in colon cancer [J].Clin Cancer Res,2000, 6(7):2707-2711.
    [9]Belvedere O, Puglisi F, Di Loreto C, et al. Lack of correlation between immunohistochemical expression of E2F-1, thymidylate synthase expression and clinical response to 5-fluorouracil in advanced colorectal cancer [J]. Ann Oncol,2004, 15(1):55-8.
    [10]Gribaudo G, Riera L, Rudge TL, et al. Human cytomegalovirus infection induces cellular thymidylate synthase gene expression in quiescent fibroblasts [J]. J Gen Virol, 2002,83(12):2983-2993.
    [11]Gribaudo G, Riera L, Lembo D, et al. Murine cytomegalovirus stimulates cellular thymidylate synthase gene expression in quiescent cells and requires the enzyme for replication [J]. Journal of Virology,2000,74,4979-4987.
    [12]Dong S, Lester L, Johnson LF, et al. Transcriptional control elements and complex initiation pattern of the TATA-less bidirectional human thymidylate synthase promoter [J]. Journal of Cellular Biochemistry,2000,77,50-64.
    [13]Chung-Tsen Hsueh, David Kelsen, Gary K. Schwartz. UCN-O1 suppresses Thymidylate Synthase Gene expression and enhances 5-Fluorouracil-induced apoptosis in a sequence-dependent manner [J]. Clinical Cancer Research,1998, 9(4):2201-2206.
    [14]Bendardaf R, Ristamaki R, Syrjanen K, et al. Bcl-2 expression significantly correlates with thymidylate synthase expression in colorectal cancer patients [J]. World J Gastroenterol,2008,14(40):6218-6223.
    [15]Pitchakarn P, Ohnuma S, Pintha K, et al. Kuguacin J isolated from Momordica charantia leaves inhibits P-glycoprotein (ABCBl)-mediated multidrug resistance [J]. J Nutr Biochem,2011 Mar 15. [Epub ahead of print]
    [16]Doligalska M, Jozwicka K, Kiersnowska M, et al. Triterpenoid saponins affect the Function of P-glycoprotein and reduce the survival of the free-living stages of Heligmosomoides bakeri [J]. Vet Parasitol,2011 Feb 2. [Epub ahead of print]
    [1]袁庶强,周志伟,梁永钜,等.三维培养药敏实验测定的结直肠癌化疗敏感性与多药耐药基因蛋白表达的关系[J].癌症,2009,28(29):932-938.
    [2]Gramont A, Bosset JF, Milan C, et al. Randomized trial comparing monthly low-dose leucovorin and fluorouracil bolus with bimonthly high-dose leucovorin and fluorouracil bolus plus continuous inFusion for advanced colorectal cancer:a French intergroup study [J]. J Clin Oncol,1997,15(2):808-815.
    [3]R Labianca, S Marsoni, G Pancera, et al. International Multicentre Pooled Analysis of Colon Cancer Trials (IMPACT) investigators.Efficacy of adjuvant fluorouracil and folinic acid in colon cancer [J]. Lancet,1995,345:939-944.
    [4]John M. Mariadason, Diego Arango, Qiuhu Shi, et al. Gene Expression Profiling-Based Prediction of Response of Colon Carcinoma Cells to 5-Fluorouracil and Camptothecin [J]. Cancer Research,63,8791-8812.
    [5]罗红林,赵向东.NF-κB参与GSK-3β对结直肠癌细胞凋亡的调节[J].江苏大学学报,2007,17(2):171-174.
    [6]Beurel E, Kornprobst M, Blivet-Van Eggelpoul M J, et al. GSK-3beta inhibition by lithium confers resistance to chemotherapy-induced apoptosis through the repression of CD95 (Fas/APO-1) expression [J]. Experimental cell research,2004, 300(2):354-364.
    [7]SI Yun, HY Yoon, YS Chung. Glycogen synthase kinase-3b regulates etoposide-induced apoptosis via Bcl-2 mediated caspase-3 activation in C3H10T1/2 cells [J]. Apoptosis,2009,14:771-777.
    [8]刘翩,蒋幼凡,岳秀,等.GSK-3β参与抑制肺癌细胞增殖的实验研究[J].重庆医科大学学报,2009,34(2):174-177.
    [9]Beurel E, Kornprobst M, Blivet-Van Eggelpoel M J, et al. GSK-3beta reactivation with LY294002 sensitizes hepatoma cells to chemotherapy-in-duced apoptosis [J]. International journal of oncology,2005,27(1):215-222.
    [10]Okumura K, Mekata E, Shiomi H, et al. Expression level of thymidylate synthase mRNA reflects 5-fluorouracil sensitivity with low dose and long duration in primary colorectal cancer [J]. Cancer Chemother Pharmacol,2008,61(4):587-594.
    [11]Leichman C G, Lenz H J, Leichman L, et al. Quantitation of intratumoral thymidylate synthase expression predicts for disseminated colorectal cancer response and resistance to protracted-inFusion fluorouracil and weekly leucovorin [J]. J Clin Oncol,1997,15(10):3223-3229.
    [12]Bathe O F, Franceschi D, Livingstone A S, et al. Increased thymidylate synthase gene expression in liver metastases from colorectal carcinoma:implications for chemotherapeutic options and survival [J]. Cancer J Sci Am,1999,5(1):34-40.
    [13]Paradiso A, Simone G, Petroni S, et al. Thymidilate synthase and p53 primary tumour expression as predictive factors for advanced colorectal cancer patients [J]. Br J Cancer,2000,82(3):560-567.
    [14]Cascinu S, Aschele C, Barni S, et al. Thymidylate synthase protein expression in advanced colon cancer:correlation with the site of metastasis and the clinical response to leucovorin-modulated bolus 5-fluorouracil [J]. Clin Cancer Res,1999, 5(8):1996-1999.
    [15]Johnston P G, Fisher E R, Rockette H E, et al.The role of thymidylate synthase expression in prognosis and outcome of adjuvant chemotherapy in patients with rectal cancer [J]. J Clin Oncol,1994,12(12):2640-2647.
    [16]Yamachika T, Nakanishi H, Inada K, et al.A new prognostic factor for colorectal carcinoma, thymidylate synthase, and its therapeutic significance [J]. Cancer,1998, 82(1):70-77.
    [17]Takenoue T, Nagawa H, Matsuda K, et al. Relation between thymidylate synthase expression and survival in colon carcinoma, and determination of appropriate application of 5-fluorouracil by immunohistochemical method [J]. Ann Surg Oncol,2000,7(3):193-198.
    [18]Edler D, Glimelius B, Hallstrom M, et al. Thymidylate synthase expression in colorectal cancer:a prognostic and predictive marker of benefit from adjuvant fluorouracil-based chemotherapy [J]. J Clin Oncol,2002,20(7):1721-1728.
    [19]Cheng SC, Zhou J, Xie Y. P-glycoprotein expression induced by glucose depletion enhanced the chemosensitivity in human hepatocellular carcinoma cell-lines [J].Cell Biol Int,2005,29(4):269-75.
    [20]Liu Z, Qiu M, Tang QL, et al. Establishment and biological characteristics of oxaliplatin-resistant human colon cancer cell lines [J].Chin J Cancer,2010, 29(7):661-667.
    [21]Hong L, Wang J, Han Y, et al. Reversal of multidrug resistance of vincristine-resistant gastric adenocarcinoma cells through up-regulation of DARPP-32 [J].Cell Biol Int,2007,31(9):1010-1015.
    [22]Yamasaki M, Makino T, Masuzawa T, et al.Role of multidrug resistance protein 2 (MRP2) in chemoresistance and clinical outcome in oesophageal squamous cell carcinoma [J]. Br J Cancer,2011,104(4):707-713.
    [23]Michael Dean, Tito Fojo, Susan Bates.Tumour stem cells and drug resistance [J].Nat Rev Cancer,2005,5:275-284.
    [24]Janaina Fernandes, Ricardo Weinlich, Rachel Oliveira Castilho. Pomolic acid may overcome multidrug resistance mediated by overexpression of anti-apoptotic Bcl-2 proteins [J].Cancer Letters,2007,245,315-320.
    [25]Obama K, Kanai M, Kawai Y, et al. Role of retinoblastoma protein and E2F-1 transcription factor in the acquisition of 5-fluorouracil resistance by colon cancer cells [J]. Int J Oncol,2002,21(2):309-314.
    [1]Zhang L, Zhou W, Velculescu VE, et al. Gene expression profiles in normal and cancer cells [J]. Science,1997,276:1268-1272.
    [2]Bittner M, Meltzer P, Chen Y, et al. Molecular classification of cutaneous malignant melanoma by gene expression profiling [J]. Nature,2000,406:536-540.
    [3]Ramaswamy S, Golub TR. DNA microarrays in clinical oncology [J]. J Clin Oncol,2002,20:1932-1941.
    [4]Notterman DA, Alon U, Sierk AJ, et al.Transcriptional gene expression profiles of colorectal adenoma, adenocarcinoma, and normal tissue examined by oligonucleotide arrays [J]. Cancer Res,2001,61:3124-3130.
    [5]Kitahara O, Furukawa Y, Tanaka T, et al.Alterations of gene expression during colorectal carcinogenesis revealed by cDNA microarrays after laser-capture microdissection of tumor tissues and normal epithelia [J]. Cancer Res,2001,61: 3544-3549.
    [6]Poste G, Fidler, I J.The pathogenesis of cancer metastasis [J]. Nature,1980,283: 139-146.
    [7]Tsunoda T, Nakamura T, Ishimoto K, et al.Upregulated expression of angiogenesis genes and down regulation of cell cycle genes in human colorectal cancer tissue determined by cDNA macroarray [J]. Anticancer Res,2001,21:137-143.
    [8]Abal M, Fsihi H, Bras-Goncalves R, et al. Heterogeneous metastasis efficiency of isogenic orthotopic colon cancer xenografts reveals distinctive gene expression profiles [J]. Tumour Biol,2007,28(3):139-50.
    [9]Saito N, Kameoka S, Furukawa R, et al. Gene profile analysis of colorectal cancer cell lines by cDNA macroarray [J]. Oncol Rep,2007,17(5):1061-1065.
    [10]Takata O, Kawamura YJ, Konishi F, et al. cDNA array analysis for prediction of hepatic metastasis of colorectal carcinoma [J]. Surg Today,2006,36(7):608-614.
    [11]John M. Mariadason, Diego Arango, et al. Gene Expression Profiling-Based Prediction of Response of Colon Carcinoma Cells to 5-Fluorouracil and Camptothecin [J]. Cancer Research,2003,63,8791-8812.
    [12]Bacolod M D, Lin SM, Johnson SP, et al. The gene expression profiles of medulloblastoma cell lines resistant to preactivated cyclophosphamide [J]. Curr Cancer Drug Targets,2008,8(3):172-179.
    [13]Liang R, Huang G S, Wang Z, et al. Effects of human bone marrow stromal cell line (HFCL) on the proliferation, differentiation and apoptosis of acute myeloid leukemia cell lines U937, HL-60 and HL-60/VCR [J]. Int J Hematol,2008, 87(2):152-166.
    [14]Duan Z, Foster R, Brakora KA, et al. GBP1 overexpression is associated with a paclitaxel resistance phenotype [J]. Cancer Chemother Pharmacol,2006,57(1):25-33.
    [1]Perez-Tomsa R. Multidrug resistance:retrospect and prospects in anti-cancer drug treatment [J]. Curr Med Chem,2006,13(16):1859-1876.
    [2]SHI H, LU D, SHU Y, et al. Expression of multidrug-resistance-related proteins P-glycoprotein, glutathione-S-transferases, topoisomerase-Ⅱ and lung resistance protein in primary gastric cardiac adenocarcinoma [J]. Cancer Invest,2008,26(4): 344-351.
    [3]Tsourouflis G, Theocharis SE, Sampani A, et al. Prognostic and predictive value of thymidylate synthase expression in colon cancer [J]. Dig Dis Sci,2008,53(5): 1289-1296.
    [4]刘坤平,罗枫,彭辉,等.大肠癌多种耐药相关蛋白表达与预后关系的探讨[J].广东医学,2009,30(8):1081-1083.
    [5]Wong N A, Pignatelli M. Beta-catenin--a linchpin in colorectal carcinogenesis? [J]. Am J Pathol,2002,160(2):389-401.
    [6]刘坤平,彭辉,罗枫,等.结直肠癌发生发展过程中P-gp与β-catenin、 E-cadherin相关性变化及意义[J].中华肿瘤防治杂志,2010,17(22):1835-1839.
    [7]Lim J C, Kania K D, Wijesuriya H, et al. Activation of β-catenin signalling by GSK-3 inhibition increases p-glycoprotein expression in brain endothelial cells [J]. Journal of neurochemistry,2008,106:1855-1865.
    [8]Lim JC, Mickute Z, Zaman M, et al. Decreased expression of multidrug efflux transporters in the brains of GSK-3beta transgenic mice [J]. Brain Res,2009, 18(1276):1-10.
    [9]Yamada T, Takaoka A S, Naishiro Y, et al. Transactivation of the multidrug resistance 1 gene by T-cell factor 4/beta-catenin complex in early colorectal carcinogenesis [J]. Cancer Res,2000,60(17):4761-4766.
    [10]Yamada T, Mori Y, Hayashi R, et al. Suppression of intestinal polyposis in Mdrl-deficient ApcMin/+ mice [J].Cancer Res,2003,63(5):895-901.
    [11]Chikazawa N, Tanaka H, Tasaka T, et al. Inhibition of Wnt signaling pathway decreases chemotherapy-resistant side-population colon cancer cells [J]. Anticancer Res,2010, (6):2041-2048.
    [12]Kasahara M, Takahashi Y, Nagata T, et al. Thymidylate synthase expression correlates closely with E2F-1 expression in colon cancer [J].Clin Cancer Res,2000, 6(7):2707-2711.
    [13]Belvedere O, Puglisi F, Di Loreto C, et al. Lack of correlation between immunohistochemical expression of E2F-1, thymidylate synthase expression and clinical response to 5-fluorouracil in advanced colorectal cancer [J]. Ann Oncol,2004, 15(1):55-8.
    [14]Gribaudo G, Riera L, Rudge TL, et al. Human cytomegalovirus infection induces cellular thymidylate synthase gene expression in quiescent fibroblasts [J]. J Gen Virol, 2002,83(12):2983-2993.
    [15]Gribaudo G, Riera L, Lembo D, et al. Murine cytomegalovirus stimulates cellular thymidylate synthase gene expression in quiescent cells and requires the enzyme for replication [J]. Journal of Virology,2000,74,4979-4987.
    [16]Chung-Tsen Hsueh, David Kelsen, Gary K. Schwartz. UCN-O1 suppresses Thymidylate Synthase Gene expression and enhances 5-Fluorouracil-induced apoptosis in a sequence-dependent manner [J]. Clinical Cancer Research,1998, 9(4):2201-2206.
    [17]Dong S, Lester L, Johnson LF, et al. Transcriptional control elements and complex initiation pattern of the TATA-less bidirectional human thymidylate synthase promoter [J]. Journal of Cellular Biochemistry,2000,77,50-64.
    [18]Li Q, Dashwood WM, Zhong X, et al. Bcl-2 overexpression in PhIP-induced colon tumors:cloning of the rat Bcl-2 promoter and characterization of a pathway involving beta-catenin, c-Myc and E2F-1 [J].Oncogene,2007,26(42):6194-6202.
    [19]Abramova MV, Zatulovskiy EA, Svetlikova SB, et al. E2F-1 Gene is a new member of Wnt/beta-catenin/Tcf-regulated genes [J].Biochem Biophys Res Commun, 2010,391(1):142-146.
    [20]Beurel E, Kornprobst M, Blivet-Van Eggelpoul M J, et al. GSK-3beta inhibition by lithium confers resistance to chemotherapy-induced apoptosis through the repression of CD95 (Fas/APO-1) expression [J]. Experimental cell research,2004, 300(2):354-364.
    [21]Yong-Yu Liu, Vineet Gupta, Gauri A. Glucosylceramide synthase upregulates MDR1 expression in the regulation of cancer drug resistance through cSrc and β-catenin signaling [J]. Molecular Cancer,2010,9:145.
    [22]Lilly Y. W. Bourguignon, Weiliang Xia, Gabriel Wong. Hyaluronan-mediated CD44 Interaction with p300 and SIRT1 Regulates P-Catenin Signaling and NFκB Specific Transcription Activity Leading to MDR1 and Bcl-xL Gene Expression and Chemoresistance in Breast Tumor Cells [J]. The Journal of Biological Chemistry, 2009,284,2657-2671.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700