数据挖掘在陶瓷涂层制备中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要研究采用热化学反应法在Q235钢基体上制备Al_2O_3基陶瓷涂层,并用X射线衍射分析(XRD)、扫描电镜(SEM)等实验手段和力学分析方法,利用小样本数据挖掘技术对陶瓷涂层配方进行优化,并系统的研究了涂层制备工艺、优化涂层试样的组织结构、抗热震性和耐蚀性等。
     研究结果表明:通过小样本数据挖掘优化方案,采用热化学反应法在Q235钢基体材料表面制备的陶瓷涂层的性能得到了很大的提高。小样本数据挖掘得出:骨料中Al_2O_3的含量80%、粘结剂与固化剂之比5:1、骨料与粘结剂之比1.25:1为最佳方案,该方案在预喷涂Ni-Al中间层的Q235钢基体上制备出了性能较好的氧化铝基陶瓷涂层。X射线衍射分析结果表明:陶瓷涂层在600℃固化后有新相产生。扫描电镜结果表明:陶瓷涂层比较均匀致密,涂层具有网络结构,涂层与基体之间已无明显界限,两者结合良好。涂层性能检测结果表明:热化学反应陶瓷涂层使Q235钢的耐蚀性与耐磨性明显提高。
In this paper, the author prepared the ceramic coating on the Q235 by thermo-chemical reaction method on the basis of the foundation carries of the predecessor. The X-ray diffraction, scanning electron microscopy and mechanics analysis methods were performed to analyze, Using small sample data mining techniques to optimize the formulation of the ceramic coating the organization structure, the thermal shock resistance, the corrosion resistance and so on.
     The investigated results indicated that through the small sample data mining optimization plan, the performance of ceramic coating covered on the Q235 matrix by thermo-chemical reaction method were obtained a very big promotion. The small sample data mining proved that, the best solution was that the Al_2O_3 content is 80% in the aggregate; the ratio between aluminum phosphate caking agent and the firming agent is 5:1, and the ratio between aggregate and the caking agent is 1.25:1. Through the thermo-chemical reaction method, it gained nice properties based on aluminum oxidation in pre-spraying Ni-Al coating of Q235. Its X-ray diffraction analysis results indicated that ceramic coating after 600℃solidification produced several new phases which strengthened binding force between the coating and the matrix. The result of scanning electron microscope indicated that the ceramic coating is quite even compactly and the coating has network structure. Besides, there is not obvious boundary between them and the bonding force is perfect. The result of coating performance test manifested that the ceramic coating has highly enhanced the corrosion resistance and wear resistance of Q235 steel.
引文
[1]刘福田,李兆前,黄传真.金属陶瓷复合涂层技术[J].济南大学学报,2002,3:84-91.
    [2]周健儿,李家科,江伟辉.金属基陶瓷涂层的制备、应用及发展[J].陶瓷学报,2004,25(3):179-180.
    [3]李文虎.金属陶瓷复合涂层制备技术的研究现状[J].陶瓷,2008,4:20-25.
    [4]张黎.激光熔覆微纳米WC-Co涂层组织硬度与相分析[J].矿山机械,2007,3(4):23-26.
    [5]孙希泰,等.表面强化技术[M].北京:化学工业出版社,2005,4:58.
    [6]徐滨士,刘世参.表面工程新技术[M].北京:国防工业出版社,2002,178-183.
    [7]钟诚.复合电镀的研究新进展[J].四川化工,2004,7(1):16-19.
    [8] Konishi T,Tsujikawa S,Photo-effect of sol-gel derived TiO_2 coating on type 304 stainless steel,Zairyo-to-Kankyo,1997,46(5):709-716.
    [9] Yuan J,Tsujikawa S,Photo-effects of sol-gel derived TiO_2 coating on carbon steel in alkaline solution,Zairyo-to-Kankyo,1995,44(7):534-542.
    [10] Yuan J,Shinohara T,Tsujikawa S,Effects of interfacial iron oxides on corrosion protection of carbon steel by TiO_2 coating under illumination,Zairyo-to-Kankyo,1997,46(6):651-661.
    [11] Huang J,Shinohara T,Tsujikawa S,Protection of carbon steel from atmospheric corrosion by TiO_2 coating,Zairyo-to-Kankyo,1999,48(2):575-582.
    [12] Ohko Y,Saitoh S,Tatsuma T,et.al,Photoelectrochemical anticorrosion and self-cleaning effects of a TiO_2 coating for type 304 stainless steel ,J.Electrochem.Soc,2001,148(1):24-28.
    [13] Tatsuma T,Ohko Y,Saitoh S,et.al,TiO_2/WO_3 photoelect rochemical anticorrosion system with an energy storage ability,Chem.Mater,2001,13(2):2838-2842.
    [14]曾爱香,唐绍裘.陶瓷涂层结合性能研究[J].现代技术陶瓷增刊,1998,759-763.
    [15]徐滨士,李长久,刘世修,等.表面工程与热喷涂技术及其发展[J].中国表面工程,1998,(1):3-9.
    [16]许泊藩,张细菊,蒙鹏博,等.铝热自蔓延高温合成钢内衬陶瓷涂层的研究[J].材料工程,1998,27(3):13-15.
    [17]王双喜,王建江,李俊寿,等.氧化铝陶瓷内衬不锈钢复合钢管的组织与性能[J].硅酸盐学报,1998,26(6):808-812.
    [18] D.A.Boarrw.Surfce and Coatings Tehnology,1995,76-77:113.
    [19]王零森.特种陶瓷[M].湖南长沙:中南工业大学出版社,1994,431-433.
    [20]袁润章.自蔓延高温合成技术研究进展[M].湖北:武汉工业大学出版社,1994.
    [21]曾晓雁,吴鼓平.表面工程学[M].北京:机械工业出版社,2001,4.
    [22]穆柏春,张丽娟,谷志刚.化学反应制备陶瓷涂层的研究[J].新技术新工艺,1997,18(6):43-44.
    [23]万怡灶,罗红林,周贤良,等.用热化学反应法制备金属陶瓷涂层工艺的研究[J].材料工程,1997(10):25-28.
    [24]张景德,伊衍升等.陶瓷涂层材料的应用与发展[J].机械工程材料,2002,26(ll):8.
    [25]姜兆岭.前景广阔的陶瓷涂层[J].山东陶瓷,1994,17(3):18.
    [26]温金海,黄伯云,吕海波,等.高性能抗磨损涂层的进展[J].材料导报,1994,(4):19-23.
    [27]马壮,孙方红.热化学反应制备纳米复合陶瓷涂层的制备及工艺研究[J].陶瓷学报,2007,28(2):112-116.
    [28] DELANNYF,FROYENL,DERUYTTEREA,et.al, Preparation of nickel-coated alumina compositepowder by an aqueous-phase reeducation process. Journal of Materials Science,1987,22(1):1-5.
    [29]陈建康,屠平亮,周建初.用热化学反应法制备金属陶瓷涂层—涂层技术值得重视的新发展[J].材料工程,1991,17(4):17-20.
    [30]马壮,孙方红,李智超等.热化学反应法制备金属基陶瓷涂层的现状和发展[J].电镀与涂饰,2006,8(25):48-50.
    [31]马壮,魏宝佳.Q235钢热化学反应制备玻璃质陶瓷涂层的研究[J].电镀与涂饰,2007,26(9):54-56.
    [32]李浩群,杨政,陈大融.铝合金基体上Al_2O_3基陶瓷涂层形成机理[J].清华大学学报(自然科学版),2000,4(40):92-95.
    [33]孙立全,董奇志.表面处理方法对电弧喷涂涂层强度影响的实验研究[J].焊接技术,1998,10(5):6-7.
    [34]赵越超,高红.料浆法陶瓷涂层用胶粘剂研究现状[J].中国胶粘剂,2006,11(15):50-52.
    [35] ODAWARAO, LKEACHIJ. Alumina and zirconium ceramic lined pipes produced by centrifugal termiteProcess.[J].J.Trans Jpn Inst Met,1986, 27(9):2-7.
    [36] D.Keieh Patrick. Ceramic coatings for thermal processing applications. Industrial heating.2000,67(2):59-60.
    [37]孙方红.热化学反应制备Al_2O_3基纳米复合陶瓷涂层的制备及性能研究[D].辽宁:辽宁工程技术大学材料科学与工程系,2007.
    [38]高红.热化学反应制备SiO_2基纳米复合陶瓷涂层的制备及工艺研究[D].辽宁:辽宁工程技术大学材料科学与工程系,2007.
    [39]马壮,魏宝佳,李智超.热化学反应法陶瓷涂层研究现状及工艺名称商榷[J].硅酸盐通报,2007,26(5):991-993.
    [40]陈建康,屠平亮,周建初.用热化学反应法制备热障涂层的研究[J].航天工艺,1995,13(1):6-8.
    [41]夏火松.数据仓库与数据挖掘技术[M].北京:科学出版社,2004.
    [42]苏新宁,杨建林,邓三鸿,等.数据挖掘理论与技术[M].北京:科学技术文献出版社.2003:53-65.
    [43]吴修霆.SAS数据挖掘技术的实现[J].微电脑世界,2000,14:44-45.
    [44] INDERPAL BHANDARI,EDWARD COLET,JENNIFER PARKER,ZACHARYPINES,RAJIV PRATAP,KRISHNAKMAR RAMANUJAM.Advanced Scout: DataMining and Knowledge Discovery in NBA Data.Data Mining and Knowledge Discovery,1997,1:121-125.
    [45]刘辉,胡大治.数据挖掘技术发展及其应用[J].甘肃科技,2006,22(4):73-75.
    [46]王金龙.数据挖掘研究进展.青岛理工大学学报[J].2007,28(4)):80-83.
    [47]吴敏,岑丽辉,桂卫华.铅锌烧结过程透气性预测与操作优化系统[A]//过程控制科学与技术:第十三届中国过程控制年会文集[M].广州:华南理工大学出版社,2002:219.
    [48]岑丽辉,基于工况参数预测模型的铅锌烧结过程操作优化系统设计[D].中南大学,2006.
    [49]裴九芳,程晋石.基于故障树和灰关联的矿井提升机故障诊断[J].矿山机械,2008, (19):74-76.
    [50]夏陆岳,潘海天,蔡亦军,等.化工过程建模中的数据挖掘技术[[J].化工进展,,2003,22(5):516-519.
    [51]李小青.基于神经网络与遗传算法的传动部件设计优化[J].计算机测量与控制,2006, 14(2):253-255.
    [52]杜中华.基于试验、神经网络和遗传算法的一种优化设计方法[J].机械设计与制造工程,2001,30(6):22-24.
    [53] Inmon W H. Building the data warehouse [J].Decision Support System,1997 (7):45.
    [54] Anand Sarabjot S,Scotney Bryan W,Tan Mee G,et.al,Designing a kernel for data mining [J].IEEE Expert System,1997,2(2):22.
    [55]王月,陈波.金属表面耐热陶瓷涂层保护技术的研究[J].工业炉,1995,78(4):6-9.
    [56]杨伟群,于维平.不锈钢表面高温抗氧化涂层新工艺[J].新技术新工艺,1998,5:38-39.
    [57] R.W.卡恩,P哈森,E.J.克雷默,材料科学与技术丛书(陶瓷工艺)[M].北京:科学出版社,1999.
    [58]刘文超.磷酸盐结合剂及金属基高温耐磨陶瓷涂层的制备与性能的研究[D].湖南大学,2001.
    [59]刘继江.磷酸盐胶私剂的制备及性能研究[D].哈尔滨工程大学,2007.
    [60]方开泰,马长兴.正交与匀交试验设计[M].北京:科学出版社,2001.
    [61] Funahashi K I.[J].Neural Networks,1989,2(3):183-192.
    [62]飞思科技产品研发中心.MATLAB6.5辅助神经网络分析与设计[M].北京:电子工业出版社,2003.
    [63]胡海泉,张志良.SiC窖具材料抗氧化涂层的研究和应用[J].河北科技大学学报,2002,23(5):19-23.
    [64]胡传炘,宋幼慧.涂层技术原理及应用[M].北京:化学工业出版社,2000.
    [65]张颂阳,耿茂鹏.机械合金化过程中粉末变形与形成复合粉的工艺条件[J].材料科学与艺,1995,3(3):87-91.
    [66]王晓林等.机械力化学与机械合金化[J].云南冶金,2006,35(4):46-49.
    [67]张玉军,张伟儒等.结构陶瓷材料及其应用[M].北京:化学工业出版社,2005,3.
    [68]徐滨士,刘世参.表面工程[M].北京:机械工业出版社,2000,9.
    [69]徐滨士.纳米表面工程[M].北京:化学工业出版社,2003,9.
    [70]穆柏春,张丽娟,谷志刚.耐热防腐蚀复相陶瓷涂层的研究[J].材料保护,1997,30(6):24-26.
    [71]邓世均,等.高性能陶瓷涂层[M].北京:化学工业出版社,2004,1.
    [72]翟海潮,李印柏,林新松.粘结与表面粘涂技术(第二版)[M].化学工业出版社,1997,9.
    [73]吴玉程.纳米材料涂层[J].河北陶瓷,2001,29(1):31.
    [74]刘润,赵剑锋,黄因慧,等.纳米复合陶瓷涂层激光熔覆的组织与耐磨性能[J].中国表面工程,2003,16(5):39-42.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700