相变蓄热技术及理论在空调蓄热装置中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摘 要
     能源是推动社会进步和人类赖以生存的物质基础。近 100 年来,全球能源消
    耗平均每年以 3﹪的速度递增,大量能源的消耗,同时带来了十分严重的环境问
    题,如气候变暖、生态破坏、大气污染等。这一切都严重制约着人类社会、经济
    活动的发展。我国能源与环境状况更是如此。开发新能源、提高能源利用率、利
    用节能技术已成为全球的迫切需要。随着经济高速增长和人民生活水平的提高,
    人们对工作和生活环境提出了更高的要求,采暖、通风和空调用能也随之急剧增
    长,并导致电网负荷峰谷差进一步增大。利用蓄热装置来协调热能供求在时间和
    强度上的不匹配是经济和可行的办法。研制应用于空调领域的蓄热设备能够将用
    电低谷期廉价的电能转化为热能储存起来,在用电高峰期再将这部分储存的热能
    释放出来,以减少高峰期用电量,实现“削峰填谷”,这样做不仅大大节约了空
    调运行费用,也减轻了电网负担,使用电时段的分配更加合理。因此研制空调用
    蓄热装置具有重大的现实意义和广阔前景。
     本研究是北京市科委下达课题――新型空调蓄热装置的研制(课题编号:
    H020520010120)的一部分,主要研究内容是以本课题组开发的新型相变蓄热材
    料和填充了该相变材料的蓄热槽为研究对象,研究核心是:在满足蓄热量要求的
    情况下,如何缩短相变材料的蓄、放热时间,提高蓄放热效率。影响相变材料蓄
    热量和蓄放热时间的因素分为两大部分:相变材料与热媒体。热媒体的流量、材
    料的几何形状和材料的物性是其中的重要影响因素。因此我们建立了蓄热槽的数
    学模型,采用数值计算方法对其进行求解分析,搭建了相变材料的蓄放热实验台,
    对该材料进行了反复的蓄放热实验,通过对蓄热槽的数值模拟计算以及对实验数
    据的分析,初步掌握相变蓄热装置的几何特性、热媒体的流动特性以及相变材料
    的物化特性对蓄放热过程的影响,为蓄热槽的设计、优化、评价提供参考依据。
    具体研究方法和过程是:
     1、分析了相变传热问题的特点、建立了相变传热问题的数学模型、对相变
    传热问题的求解方法进行了分析和比较,详述了采用数值方法求解相变传热问题
    的步骤;
     -I-
    
    
    北京工业大学工学硕士学位论文
    2、引入二维板状模型,对二维模型进行合理简化,建立二维模型的控制方
    程。采用显热容法、利用数值手段对控制方程进行求解。分析和研究了影响相变
    材料蓄放热特性的因素,通过数值模拟计算的方法,找到这些影响因素的影响规
    律以及它们之间的内在关系。
    3、根据相变蓄热装置蓄放热特性的实验要求,设计并搭建了蓄放热实验台;
    设计了多组蓄放热实验方案并进行了实验,对实验结果进行了分析,并把实验台
    的实验结果与数值模拟结果进行比较,分析了偏差的原因并验证了理论模型的适
    用性。
    通过对二维板状模型的数值模拟计算研究以及填充了新型板状相变材料的
    蓄热装置的蓄放热特性实验结果的分析,初步掌握了板状相变材料的高度、厚度、
    导热系数、流体流速、换热系数对相变蓄热装置蓄放热特性的影响规律,对所研
    制的相变蓄热装置首次提出了优化设计的方案,为相变蓄热装置的设计、优化、
    评价提供了参考依据。
ABSTRACT
     Energy is the base of pushing the society progress and survive of humankind. In
    the latest 100 years, world energy wastage increased averagely 3﹪ every year, at the
    same time the depletion of large quantity energy brought the very serious environment
    problems, for example the weather changing warm, environment destroyed, air
    pollution etc. All these restrict badly the development of mankind society and
    economic activities. In our country energy and environment condition is also such.
    Developing the new kinds of energy, increasing the energy utilization efficiency,
    making use of the technique of saving energy have become the world urgent demand.
    With the rapid development of economy and the improvement of standard of living,
    people bring forward the higher request of the environment of work and living, and
    the energy consumed about heating, ventilation and air conditioning increases rapidly,
    so the burthen difference of the peak and vale is further aggrandized. Making use of
    the thermal storage equipment to balance the thermal energy supply on time and the
    strength is an economic and viable way. The thermal storage equipment can use the
    low valley period of electricity and translate the cheap electric power to the thermal
    energy and store the thermal energy. At the high peak period of energy, the thermal
    energy stored is released out to reduce the quantity of electricity, and realize“ cut
    peak and fill vale”.These not only save consumedly the running cost of the air
    condition, but also alleviate the burden of electric power;And it makes the allotment
    of time more reasonable about using electricity. Therefore researching the thermal
    storage equipment used in the air conditioning system has important realistic meaning
    and vast foreground.
     This study is a part of the subject from Beijing Science Institution. The subject is
    studying and manufacturing a new kind of air-conditional thermal storage equipment
    (subject number: H020520010120). Our subject group develops a new kind of phase
    change material. The study object is the PCM and the heat-storing bed filled with the
     -III-
    
    
    北京工业大学工学硕士学位论文
    PCM. The study core is: at the request of satisfying the heat-storing quantity, how to
    shorten the heat charge and discharge time of PCM and increase the heat charge and
    discharge efficiency. The influence factors of the heat-storing quantity and the heat
    charge and discharge time are divided into two parts: PCM and hot medium. The flux
    of the hot medium, the figure of PCM, the physical parameters of PCM, thermal
    conductivity and heat-transfer coefficient are the important influence factors.
    Therefore we establish the mathematics model of heat-storing bed and adopt the
    numerical method to solve and analysis it and set up the experiment equipment of
    thermal storage and discharge and do experiment again and again. By the calculation
    using the numerical method and analyzing experiment data, we master the influence
    of geometric characteristics of phase change thermal storage equipment and flow
    characteristics of fluid media and physical and chemic characteristics of phase change
    material in thermal storage and discharge process .So we provide reference base for
    designing, optimizing and evaluating the phase change thermal storage equipment.
    The study method and process is as follows:
     1、Analyzing the characteristics of the phase change problem, establishing the
    mathematics model of the phase change problem, comparing and analyzing the
    methods used to solve the phase change problem, introducing in detail the process of
    solve the phase change problem by using numerical method;
     2、Introducing the two-dimensional model, proceeding reasonable simplification,
    establishing the control equations of the two-dimensional model. Adopting specific
    heat method and making use of numerical method to solve the control equations,
    proceeding numerical calculation about the influence factors, analyzing these factors
引文
1 张寅平,胡汉平,孔祥东,苏跃红.相变贮能——理论和应用.中国科学技术大
     学出版社.1996:145~248
    2 张洪济.相变热传导.重庆大学出版社.1991
    3 陈文振,程尚模.矩形腔内相变材料接触融化的分析.太阳能学报.1993.14(3):
     202~208
    4 陈文振,程尚模,罗臻.水平椭圆管内相变材料接触融化的分析.太阳能学报.
     1995.16(1):68~71
    5 王剑峰,郑飞,陈光明.组合式相变材料蓄热系统中相变温度分布研究.太阳能
     学报.1998.19(3):294~298
    6 方贵银.冰蓄冷平板堆积床动态蓄冷特性理论研究.暖通空调.2002.32(4):
     10~13
    7 康艳兵,张寅平,江亿,朱颖心.相变蓄热球体堆积床传热模型及热性能分析.
     清华大学学报(自然科学版).2000.40(2):106~109
    8 刘中良,马重芳,孙旋.相变潜热随温度变化对固-液相变过程的影响.太阳能
     学报.2003.24(1):53~57
    9 江浥,张寅平,徐继军,江亿,康艳兵.板式相变储换热器的储换热性能实验
     研究.太阳能学报.2000.21(4):358~363
    10 郭英奎,梁新刚,张寅平.(相变)复合材料瞬态导热性能的简化计算方法.
     太阳能学报.2001.22(1):40~45
    11 李明海,任建勋,梁新刚,过增元.微重力下套管式蓄冰器的充释冷特性分析.
     2002.23(Suppl.):20~24
    12 汤勇,王小伍,曾志新.纤维复合相变材料的传热模型及性能分析.华南理工
     大学学报(自然科学版).2001.29(8):33~35
    13 李震,张寅平,江亿.非理想相变特性材料热性能简化分析方法及适用条件.
     太阳能学报.2002.23(1):27~31
    14 郭文,卢文强,马重芳.热储能系统相变材料多重相变问题的数值模拟——周
     -90-
    
    
    参考文献
     期性加热冷却第三类边界条件.太阳能学报.2002.23(5):634~640
    15 徐翠薇.计算方法引论.高等教育出版社.1985:141~160
    16 孔祥谦.有限单元法在传热学中的应用.科学出版社.1998:199~216
    17 郭宽良,孔祥谦,陈善年.计算传热学.中国科学技术大学出版社.1988:18~
     28,31,84~155
    18 郭宽良.数值计算传热学.合肥:安徽科学技术出版社.1987:137~145
    19 帕坦卡.S.V.传热与流体流动的数值计算.张政.科学出版社.1984:49~53
    20 杨世铭,陶文铨.传热学(第三版).高等教育出版社.1998:146
    21 陶文铨.数值传热学.西安交通大学出版社.1988
    22 陶文铨.计算传热学的近代进展.科学出版社.2000:19~20
    23 N. Shamsundar. , E.M. Sparrow. Analysis of Multidimentional Condition Phase
     Change Via the Enthalpy Model. Journal of Heat Transfer. 1975,:333~340
    24 V.R. Voller, C.R. Swaminathan. Fixed Grid Techniques for Phase Change
     Problems: a Review. International Journal for Numerical Methods in Engineering.
     John Wiley & Sons Ltd. 1990,30:875~898
    25 V.R. Voller. Implicit Finite-difference Solutions of the Enthalpy Formulation of
     Stephan Problems. IMA Journal of Numerical Analysis. 1985,5:201~214
    26 J. Kelly Kissock, J. Michael Hannig. Early Results from Testing Phase Change
     Wallboard. Thomas I. Whitely, Michael L. Drake. IEA Annex 10, Phase Change
     Materials and Chemical Reactions for Thermal Energy Storage. Adana, Turkey.
     1998. Turkey. First Workshop. 1998,69~78
    27 Y. Cao, A. Faghri. Performance Characteristics of a Thermal Energy Storage
     Module: a Transient PCM/Forced Convection Conjugate Analysis. Int. J. Heat
     Mass Transfer. Pergamon Press plc. 1991,34(1):93~101
    28 Yousef H. Zurigat, Pedro R. Liche, Afshin J. Ghajar. Influence of Inlet Geometry
     on Mixing in Thermalcline Thermal Energy Storage. Int. J. Heat Mass Transfer.
     Pergamon Press plc. 1991,34(1):115~125
    29 Sanjay K. Roy, Subrata Sengupta. Gravity-assisted Melting in a Spherical
     Enclosure: Effects of Natural Convection. Int. J. Heat Mass Transfer. Pergamon
     -91-
    
    
    北京工业大学工学硕士学位论文
     Press plc. 1990,33(6):1135~1147
    30 A.W. Date. A Strong Enthalpy Formulation for the Stephan Problem. Int. J. Heat
     Mass Transfer. Pergamon Press plc. 1991,34(9):2231~2235
    31 石川正昭,平田哲夫,玉木恕乎. カプセル形潛熱蓄熱ミステムの性能評價
     シミュレーション. 日本機械學會論文集(B 編). 1996,62(597):327~334
    32 石川正昭,平田哲夫,玉木恕乎,小原公和. 一樣流中に置かれた潛熱蓄熱
     カプセルの熱特性. 日本機械學會論文集(B 編). 1993,59(568):251~258
    33 宮武修,森田拓記,瓜生勝嗣,米盛勉. 粒狀架橋樹脂を充填した潛熱蓄熱
     槽の放熱特性. 日本化學工學會第 27 回秋季大會. 名古屋. 1994,735~740
    34 飛松浩樹,米盛勉,宮武修,森田拓記,瓜生勝嗣. パラフィンヮックスに
     ょる潛熱蓄熱. 空氣調和·衛生工學會論文集. 1992,50:33~39
    35 宮武修,森田拓記,柴田健次郎. 融解·凝固履歷を有する粒狀架橋樹脂を
     充填した固定層内にぉける熱傳達. 日本化學工學會第27回秋季大會. 名古
     屋. 1994,662~668
    36 Yasushi Koito, Kotaro Tagawa, Yasuhiro Maruta, Kazuyoshi Tanaka, Osamu
     Miyatake. Effect of Pellet Size on Discharge Characteristics of Latent Heat
     Storage Columns Packed with Cross-linked Polymer Pellets. Journal of Chemical
     Engineering of Japan. 2001,34(6):819~827
    37 Zhang Y.P., Liang X.G. Numerical Analysis of Effective Thermal Conductivity of
     Mixed Solid Materials. Materials & Design. 1995,16(2):91~95
    38 Zhang Y.P., Liang X.G. Effective Thermal Conductivity of Composite Materials
     with Metal Matrix. Proc. of the 4th Int. Symposium of Heat Transfer with
     Exhibition. Beijing, China. 1996
    39 Noye. B.J. An Introduction to Finite Difference Techniques. Noye. B.J. An
     International Conference on Numerical Methods in Fluid Dynamics.
     Springer-Verlag. 1974. University Colorado. 1974:269
    40 Giovanni Casano, Stefano Piva. Experimental and Numerical Investigation of the
     Steady Periodic Solid-Liquid Phase-Change Heat Transfer. International Journal
     of Heat and Mass Transfer . 2002,45:4181-4190
    41 C.BELLECCI, M.CONTI. Phase Change Thermal Storage: Transient Behaviour
     -92-
    
    
    参考文献
     Analysis of a Solar Receiver/Storage Module Using the Enthalpy Method.
     Int.J.Heat Mass Transfer. 1993,36(8):2157-2163
    42 A.A.SAMARSKⅡ, P.N.VABISHCHEVICH, O.P.ILIEV, A.G.CHURBANOV.
     Numerical Simulation of Convection/Diffusion Phase Change Problems—a
     Review. Int. J. Heat Mass Transfer. 1993,17:4095-4106

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700