基于郎之万振子的直线式超声波振动给料系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文结合国家自然科学基金项目“用于振动给料的超声波驱动理论与方法的研究(项目编号:50575088)”开展研究工作。根据压电及超声波驱动技术,结合相关的理论分析和计算,提出一种以纵向振动模式的郎之万振子为激振源的直线式超声波振动给料系统(简称为超声波振动给料系统),完成了样机的设计与制作,进行了相关的试验测试与分析。
     本文介绍了振动给料器在国内外的发展状况,阐述了在超声振动状态下完成物料输送、实现给料功能的优缺点及应用前景;结合压电学相关知识和压电换能器的基础理论,选择了纵向振动模态的螺栓紧固型压电换能器(亦称郎之万振子),并进行了设计和计算,应用有限元法分析了换能器的振动模态,利用精密阻抗分析仪测试了所设计的郎之万振子的谐振频率和阻抗等参数,同时设计了换能器端面振幅测量装置,测试了换能器在谐振状态下的端面纵向振幅;分析了超声波振动给料系统的工作原理及物料的运动状态,对超声波振动给料系统的结构进行了设计和加工制造,并对给料系统样机进行了初步试验,测试了超声波振动给料系统的谐振频率、输送能力以及工作噪音,对试验结果进行了分析,得出了研究结论。
In this paper, with the National Natural Science Foundation“The Drive Theory And Research Methods On The Ultrasonic Vibration For Material Feeding”, the linear ultrasonic vibration feeding system (called the ultrasonic vibration feeding system for short), using the Langevin Transducer as the vibration source, is proposed. According to the piezoelectric and ultrasonic driving technology, the relevant theoretical analysis and calculation has been done, and an ultrasonic vibration feeding system has been designed and manufactured. some experiments about the Langevin Transducer and the ultrasonic vibration feeding system are carried on, and some conclusions are obtained.
     The paper consists of six chapters, given as follows:
     Chapter 1: Introduction
     As one of the materials transmission equipment which is regularly used in the automatic processing and assembly enterprises, vibration feeder is mainly used in light industry, electronic products industry, and its driving mode is mainly based on electromagnetism and piezoelectricity. But the traditional feeders(electromagnetic and piezoelectric vibration feeder) are limited in certain degree in the clean and low noise occasions. Based on a full study on the development of the structure of the domestic and international multiple forms of vibration feeder, the linear ultrasonic vibration feeding system, using the Langevin Transducer as the vibration source, is proposed in the paper, and its advantages, disadvantages and application prospect are analyzed.
     Chapter 2: The basic theory of piezoelectricity
     In this chapter, the basic concepts of piezoelectric effect is mainly expounded; the type of piezoelectric material, the preparation and polarization of piezoelectric ceramic is introduced; the four kinds of piezoelectric equation is listed; and the six kinds of performance parameters about the piezoelectric ceramic materials is analyzed. Through the introduction on piezoelectric physics foundation, the theory is provided for the design of the Langevin Transducer.
     Chapter 3: The piezoelectric transducer
     In this chapter, advantages, applications and performance indicators of the ultrasonic transducers are expounded. The types of the piezoelectric transducer are introduced. The vibration mode of the ultrasound transducer is analyzed. Based on the above theory, the paper selects the bolts fastening type piezoelectric transducer (also called the Langevin Transducer) as excitation source of the ultrasonic vibration feeding system, which can provide vertical vibration mode. According to the corresponding boundary conditions, the transducer frequency and use requirements, the transducer’s vibration equation is established, its structure is designed.
     Chapter 4: Design of the linear ultrasonic vibration feeding system
     In this chapter, working principle of the ultrasonic vibration feeding system is expounded. The eibration model and the mechanics model of the ultrasonic vibration feeding system are analyzed, the conditions which make materials produce slip movement and jumping movement is established. And based on them, the structure and the components of the ultrasonic vibration feeding system are designed and manufactured.
     Chapter 5: The experimental test and analysis on the ultrasonic vibration feeding system
     In this chapter, fiestly, the vibration model of the Langevin Transducer is analyzed by ANSYS; resonant frequency and impedance are tested by the Impedance Analyzer; the vertical vibration amplitude is tested by the Laser Rangefinder. Moreover, the system’s resonant frequency of the ultrasonic vibration feeding system’s prototype is tested by the Impedance Analyzer; through testing the performance of transmission capacity, the impact of drive power, frequency and amplitude on the transmission rate is discussed; the noise of the ultrasonic vibration feeding system’s prototype which works in the best condition is tested by the Audio Analyzer, and is compared with it. the work noise of the traditional feeders.
     Chapter 6: Conclusion and expectation
     In this chapter, the conclusion of the paper is given and through the theoretical analysis and experimental studies, the corresponding conclusions is elicited. At the same time, in allusion to the questions found In the experimental study, the optimization design of the prototype structure of the existing ultrasonic vibration feeding system is proposed.
引文
[1] 王德石,吕志强.电磁振动给料机的研究与制造.海军工程学院学报.1998年第3期
    [2] 闻邦椿,刘凤翘.振动机械的理论及应用.北京:机械工业出版社,1982. 19-21,265--342
    [3] 杜玉明,关志华,刘久富,压电式振动给料机的技术反求,机械设计,1999年4月
    [4] 赵汗东,周远军.电磁振动给料机给料槽的改进.四川水泥.1999年第2期
    [5] 上羽贞行,富川义朗著. 超声波马达理论与应用.杨志刚,郑学伦译. 上海:上海科技出版社,1998
    [6] 青木登等著,庄恩保译,压电式零部件送料器系统及其应用实例,日刊:自动化技术,1988
    [7] Sprovieri John.piezoelectric feeder handle sensitive parts.Assemblly 46(4)(2003):10
    [8] Yamada Noriaki; Kato Terumasa.vibratory characteristics of newly designed fork-type piezoactuator.Japanese Journal of Applied Physics,Part1: Regular Papers and Short Notes and Review Papers 32(9B) (1993 9) 4202-4204
    [9] 丹原秀丹,浅浅浅浅.压电驱动补品供给装置.(日本)自动化术.1994
    [10] S.B.Choi; D.H.Lee.Modal analysis and control of a bowl parts feeder activated by piezoelectric actuators. Journal of Sound and Vibration 275 (2004) 452-458
    [11] S.B.Choi, D.H.Lee.Modal analysis and control of a bowl parts feeder activated by piezoceramic actuators.Smart Structures and Systems Laboratory, Department of Mechanical Engineering, Inha University ,Incheon 402-751, South Korea
    [12] Haitao Huang, Peter Hing.Energy Balance Model for the Vickers Hardness of Ferroelectric PZT Ceramics.Journal of Materials Science[J] ,1999, Vol.18:1675 -1677
    [13] 胡敏强,金龙,顾菊平编著.超声波电机原理与设计.北京:科学出版社,2005
    [14] Akehiro takano, Yoshiro Tomikawa. Characteristics of a Powder Supplying Device Using Flexural Progressive Waves in a Lossy Ultrsonic Transmission line. World Congress on Utrasonics, 1997(8):24-27
    [15] Takehiro Takano,Yoshiro Tomikawa.Excitation of a progressive wave in a lossy ultrasonic trans- mission line and an application to a powder-feeding device.Smart Struct,1998,7 (6):417-421
    [16] 高野刚浩,富川义朗.屈曲进行波利用すち粉体搬送デバィスと粉体流量せソサ.振动-音响新技术ッソボヅム讲演论论文集,1999
    [17] 佐 藤 壮 征 , 超 音 波 進 行 波 を 応 用 し た 粉 体 移 送 シ ス テ ム , 超 音 波TECHNO,1996.11,45-48
    [18] M.Mracek, J.Wallaschek.A system for powder transport based on pizo-electrically excited ultrasonic progressive waves.Materials Chemistry andPhysics, 2005(90)
    [19] 焦其伟,崔文会,孙宝元.压电式振动给料器的研制.传感器技术,2001
    [20] 何承宇.压电双晶片执行器的研究及其在振动给料器中的应用. 大连理工大学硕士论文,1999
    [21] 陈中奎.垂直驱动式压电振动给料器的设计和实验研究. 吉林大学硕士论文,2007
    [22] 郭浩.行波型超声粉体输送装置的研究.南京航空航天大学硕士学位论文,2002
    [23] 王宏祥.驻波型超声振动精密给料装置.专利号:200420031314.7
    [24] 何 勍,王宏祥,于 威. 一种新型高频低幅振动给料装置的研究. 机械科学与技术,2006. 9
    [25] 张福学,王丽坤.现代压电学(上,中,下).北京:科学出版社,2001
    [26] Doke,H.Tuboi,N.Parts Feeding Apparatus of the Piezoelectric Drive Type[p].US patent.No:4795025,1989.
    [27] 甘国友,严继康,孙加林等.压电复合材料的现状与展望.功能材料,2000,31(5): 456~459
    [28] 李尚平,徐永利,苏建华等.驱动器用陶瓷材料发展与展望.压电与声光,1999,2(6):483~487
    [29] 栾桂冬,王仁乾等.压电换能器和换能器阵.北京大学出版社,2005,7
    [30] 尹奇异,肖定全等.无铅压电陶瓷及应用.金属功能材料,2004,12
    [31] 任桂先.引爆压电陶瓷元件制造.国防工业出版社,1985,3
    [32] 田中哲郎等.压电陶瓷材料.科学出版社,1982,12,1-96
    [33](美)B.贾菲.压电陶瓷.科学出版社,1979,6
    [34] 陈桂生,超声换能器设计[M].海洋出版社,1984年.
    [35] Yamada Noriaki; Kato Terumasa,vibratory characteristics of newly designed fork-type piezoactuator,Japanese Journal of Applied Physics,Part1:Regular Papers and Short Notes and Review Papers 32(9B) (1993 9) 4202-4204
    [36] 马海峰.压电陶瓷机械品质因数及其温度稳定性.湖北大学学报,2005,3
    [37] 张涛,孙立宁.压电陶瓷基本特性的研究.光学精密工程,1998.10,6(5):26-33
    [38] 林书玉.超声换能器的原理与设计.科学出版社,2004.6
    [39] 贾宝贤,边文凤,赵万生.压电超声换能器的应用与发展.压电与声光,2005.4
    [40] 尚志远.压电超声换能器的性能分析及应用领域[J].压电与声光,1994,16(1):29-33
    [41] 袁易全.超声换能器.南京大学出版社出版,1992.9
    [42] 林声和,叶至碧,王裕斌.压电陶瓷.国防工业出版社,1979,10
    [43] J.范兰德拉特,R.E.塞德林顿主编,彭浩波等译.压电陶瓷[M].北京:科学出版社,1981
    [44] 王琪山.螺栓紧固型纵振换能器设计考虑[J].应用声学,1998 V17N4:27~32
    [45] 彭太江.超声波悬浮与减摩能力的研究.吉林大学硕士学位论文,2003
    [46] 林书玉.夹心式压电超声扭转振动换能器的设计.压电与声光,1994.2
    [47] 彭太江,杨志刚,阚君武,曾 平.超声波悬浮能力及其实验研究.压电与声光,2006.4,第 28 卷第 2 期
    [48] Nebojsa I. Jaksic,Gary P. Maul,Development of a model for part reorientation in vibratory bowl feeders with active air jet tooling,Robotics and Computer Integrated Manufacturing 17(2001) 145-149
    [49] 骆有东.电磁振动给料器的性能及控制研究.包装工程Vo1.26 No.4 2005
    [50] 杨福馨,周罗轩.斗式电磁振动给料器的实用设计及研究.株洲工学院学报 Vol.6 No.2 1992年9月
    [51] 张西良,路 欣.电磁振动给料器工作特性分析及应用.农业机械学报,2003年9月第34卷第5期
    [52] 刘海芳.电子秤槽式电磁振动供料装置的研究.机械设计,2003 增刊:55-56
    [53] 伍利群.电磁振动供料器工件的受力和运动分析.研究·设计·制造,文章编号:100522895 (2003) 0120030203
    [54] 张琳琳.电磁振动给料系统结构动力学研究.燕山大学硕士学位论文,2006.2
    [55] 师汉民.机械振动系统.华中科技大学出版社 ,2004.3
    [56] 闻邦椿, 刘凤翘, 刘杰.振动筛 振动给料机 振动输送机的设计与调试.北京:化学工业出版社,1989:468
    [57] 张长键.垂直驱动式压电直线振动给料器的机理分析及实验研究.吉林大学硕士学位论文,2007.4
    [58] 苏妍,王月兵.用有限元分析拼镶式换能器.电子学与电子工程,2003(1)
    [59] 夏铁坚,周利坚,鲁诣斌,有限元和变界元在纵向式换能器设计中的应用,声学与电子工程,2000(1)
    [60] 龚曙光. ANSYS基础应用及范例解析.机械工业出版社
    [61] 博嘉科技编著. 有限元分析软件—ANSYS融会与贯通. 北京:中国水利水电出版社,2002
    [62] 王光灿,林宇,王丽坤,李光.Cymbal换能器的有限元动力学分析.压电与声光.2003.10,25(5)
    [63] 常 颖,吴博达,程光明,杨志刚,田丰君.超声波轴承用压电换能器模态分析及实验研究.哈尔滨工业大学学报,2006.5
    [64] 万德安,刘春节.超声变幅杆的模态分析[J].机械与电子,2004,(4):10-1
    [65] 刘井权,闫久春,杨士勤.超声刀切割系统的模态分析[J].哈尔滨工业大学学报,2001,33(4):435-438
    [66] 关春光.采用纵振换能器的超声振动给料系统的实验研究.吉林大学硕士学位论文,2007.4
    [67] Strugach Michael G(US).Piezoelectric vibrating device[P].Inventive Patent.Europe Bureau of Patent.No:552370.1995.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700