基于无线传感器网络的污染源定位研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
污染监测与污染源定位对环境保护有重要意义。无线传感器网络具有节点分布密集、多节点协同工作、成本相对低廉、监测范围广、地理位置限制小等诸多优点,其在污染源监测与定位中的应用越来越广泛,是遥感探测、移动机器人探测、人工探测等常用方法的重要补充。本文研究了多污染对象监测网络覆盖问题、不同地形条件下的水污染源定位问题和移动的污染源追踪问题。主要内容如下:
     1.提出并解决了多种污染源监测情形下无线传感器网络多重覆盖问题。针对节点随机分布的无线传感器网络,提出一种平均子网寿命模型,在给定成本预算与各子对象的基本覆盖率需求下,给出一种基于整数向量规划的多目标多重覆盖算法。首先求取监测不同子对象的传感器数量,然后基于平均子网寿命模型,求取不同类型的异构节点数量。针对向量规划问题,文中给出两种不同次优解法。在仿真实验部分,将不同次优解法进行了对比,并分析了算法计算复杂度。仿真示例验证了所提出的多重覆盖算法的有效性。
     2.提出了具有较高稳健性的SL-n (Samples for Localization-n nodes)估计算法。在SL-n算法中,先将目标源周围所有观测节点以n个节点为一组进行分组,通过局部最小二乘方法求出每组观测值的估计样本,然后基于样本集数据估计源位置。运用该算法解决了无边界静态水体中的污染源定位问题。在仿真实验部分,对比了最小二乘算法,SL-n算法,最小一乘算法随观测点个数,观测误差变化的定位性能,验证了SL-n算法的优越性。
     3.分析了静态水体中边界影响下的近岸污染源扩散过程,提出了一种分段浓度模型,结合不同应用需求分别应用非线性最小二乘方法与无迹卡尔曼滤波方法进行参数估计问题建模,给出了通用模型法、近似函数法、基于无迹卡尔曼滤波(UKF)的估计法三种近岸污染源定位算法。在仿真实验部分,对近岸污染源扩散过程进行了水文模拟,根据MODFLOW模拟数据对比了不同算法的性能。结果表明三种算法各有优势,通用模型法可快速获取目标源相关信息,近似函数法有更稳健的参数估计性能,基于无迹卡尔曼滤波的估计方法可权衡数值计算复杂度与估计性能。
     4.分析了移动的污染扩散源的扩散过程,给出一种离散化浓度场模型。将连续线源目标追踪问题转化为离散点源目标追踪的次优问题,提出了一种离散化移动扩散源追踪算法。先采用约束最小二乘方法估计目标实时位置,到达时间等相关参数,并进一步采用仅针对位置序列的Sage-Husa卡尔曼滤波方法优化初始位置估计。该算法克服了一般基于动态序列的追踪方法无法直接应用于离散移动扩散源追踪问题的不足。在仿真实验中,分别在匀速率平滑曲线运动与变速非平滑曲线运动的情形下进行追踪实验,分析了追踪精度与采样间隔以及观测节点密度的关系。仿真结果说明了本文移动扩散源追踪方法的有效性。
The reasearch of pollution monitoring and pollution source localization has importantsignificance to environmental protection. The sensor networks is based on collaborate effort of alarge number of low-cost nodes, which are densely deployed, and can monitor large-scale area.The deployment is not restricted by geographical environment. Because of these advantages,wireless sensor network has been widely used in pollution monitoring and pollution sourcelocalization, making up the shortcomings of the traditional methods, such as remote sensing,mobile robot detection and artificial detection. This disertation study some problems, includingthe coverage problem in the multiple pollution objects monitoring applications, the waterpollution source localization problems under different terrain conditions and the mobile pollutionsource tracking problem. The main research contents of this paper are as follows:
     1. The multi-coverage problem in the multi-objects source monitoring applications isproposed and solved. In sensor networks with random distributed nodes, an average subnetlifetime model is proposed. Given the constraints of cost budget and area coverage of differentobjects, a multi-objective multi-coverage algorithm based on integer vector programming isproposed. The first step is to compute the number of each type of sensors used to monitor onesubobject, and the second step is to determine the number of different kinds of heterogeneousnodes based on the average subnet life model. To solve the proposed vector programming issues,two suboptimal methods are given. In the simulation experiments, different suboptimal methodsare compared, and the computational complexity of the proposed algorithm is analysed.Simulation examples verify the effectiveness of the proposed algorithm.
     2. The SL-n (Samples for Localization-n nodes) algorithm is proposed to obtain robustposition estimation. In the algorithm, all samples using partial least square from everycombination of n observing nodes were obtained first, then the location of the source wereestimated based on the samples. To solve the localization problem of the diffusion source whichis in static water without boundaries, the SL-n algorithm is applied. In the simulation part, thelocalization errors varying with the number of observing nodes and different observation errorswere compared between least squares, SL-n and least absolute localization methods. Thesimulation results prove the advantages of the SL-n algorithm.
     3. Offshore plume source diffusion in static water is analysed and a piecewise concentrationmodel is put forward. Combining with different application requirements, nonlinear least squaresmethod and Unscented Kalman Filter(UKF) method were applied to the localization problemmodeling of the pollution source which nears the impervious boundary in static water. Threedifferent algorithms called the general localization model algorithm, the approximate functionalgorithm and the algorithm based on (UKF) are proposed. In the simulation part, thehydrological simulation of source diffusion exhibits the diffusion processes. Different parametersestimation algorithms are compared based on the MODFLOW simulation data. The results illustrate that, through the general localization model algorithm, source parameters can beacquired promptly, the approximate function algorithm is more robust in parameters estimatingcompared to the general localization model algorithm,and the algorithm based on UKF balancesthe computation complexity and the estimation accuracy well.
     4. The diffusion process of mobile diffusion source is analyzed, and a discretizationconcentration model is proposed. The continuous line diffusion source trajectory estimationproblem is transformed into the suboptimal problem which is tracking the moving diffusion pointsource. A mobile diffusion source tracking algorithm based on the discretization concentrationmodel has been proposed. In the algorithm, a constrained least square method is adopted toestimate the related parameters including initial positions and arrival times first. And then, theSage-Husa kalman filter method is used to obtain the optimal estimation of the target positions inreal time. The algorithm overcomes the shortcoming that the general tracking methods based ondynamic sequence can not be applied to the discrete mobile diffusion source tracking directly.The simulation experiments are carried out in two scenarios, in one of which the target movesalong a smooth curve with a constant rate, and the other a non-smooth curve with varyingvelocity. In the simulations, the tracking effects varying with sampling density and nodes densityare also studied. The results illustrate the effectiveness of the proposed algorithm.
引文
[1] Akyildiz I, Su W, Sankarasubramanian Y and Cayirci E. A survey on sensor networks [J].IEEE Communications Magazine,2002,40(8):102-114.
    [2]任丰原,黄海宁,林闯.无线传感器网络[J].软件学报,2003,14(7):1282-1291.
    [3]马祖长,孙怡宁,梅涛.无线传感器网络[J].通信学报,2004,25(4):114-124.
    [4] Karl H and Willig A. Protocols and Architectures for Wireless Sensor Network [M].Chichester: John Wiley&Sons, Ltd,2005.
    [5]孙利民,李建中,陈渝,朱红松.无线传感器网络[M].北京:清华大学出版社,2005.
    [6]王雪,无线传感器网络测量系统[M].北京:机械工业出版社,2007.
    [7] Sohraby K, Minoli D and Znati T. Wireless Sensor Networks: Technology, Protocols andApplications [M]. Chichester: John Wiley&Sons, ltd.2007.
    [8]王营冠,王智.无线传感器网络[M].北京:电子工业出版社,2012.
    [9] Culler D, Hill J, Horton M, et al.. MICA: The commercialization of microsensor motes [J].Sensors, http: www.sensorsmag.com/networking-communications/mica-the-commercialization-microsensor-motes-1070.2013.5.
    [10] TinyOS官网. TinyOS [OL]. http://www.tinyos.net/.2013.5.
    [11] Kulik J, Heinzelman W and Balakrishnan H. Negotiation-based protocols for disseminat-ing information in wireless sensor networks [J]. Wireless Networks,2002,2-3(8):169-185
    [12] Heinzelman W, Chandrakasan P and Balakrishnan H. An application-specific protocolarchitecture for wireless microsensor networks [J]. IEEE Transactions on Parallel andDistributed Systems,2002,4(1):660-670.
    [13] Shi L, Cheng P and Chen J M. Sensor data scheduling for optimal state estimation withcommunication energy constraint [J]. Automatica,2011,47(8):1693-1698.
    [14]梁炜,曾鹏,于海斌等.一种基于IEEE802.15.4的工业无线通信方法[P].中国,200810229994,2010.
    [15]梁炜,于海斌,曾鹏等.一种面向工业无线网络的混合介质访问控制方法[P].中国,200810229991,2010.
    [16]梁炜,李强,张晓玲等.基于搜索和均衡思想的工业无线网络通信资源分配方法[P].中国,200910011633,2010.
    [17]朱洪波,杨龙祥,于全.物联网的技术思想与应用策略研究[J].通信学报,2010,31(11):2-9.
    [18]谢东亮,时岩.物联网与泛在智能[J].中兴通讯技术,2010,16(50):57-59.
    [19]程良伦. RFID传感器网络关键问题研究[OL].http://gdauto.gdut.edu.cn/lab1/labintro/RFIDguojia.asp,2013.5.
    [20] Zigbee Alliance. Zigbee specifications[OL]. http://www.zigbee.org/,2013.5
    [21] Comaniciu C, Mandayam N B and Poor H V. Wireless Networks: Multiuser Detection inCross-Layer Design [M]. New York: Springer,2005.
    [22] Heidemann J, Silva F, Intanagonwiwat C, et al.. Building efficient wireless sensornetwork with low-level naming[C]. In Proceedings of the Symposium on OperatingSystem Principles, Lake Louise: IEEE,2001:146-159.
    [23] Mills K L. A brief survey of self-organization in wireless sensor networks [J]. Journal ofWireless Communications&Mobile Computing.2007,7(7):823-834.
    [24] Werner-Allen G, Johnson J, Ruiz M, et al.. Monitoring volcanic eruptions with a wirelesssensor network [C]. In: Proceedings of the Second European Workshop on WirelessSensor Networks, Istanbul: IEEE,2005:108-120.
    [25] Stoianov I, Nachman L, Madden S, Tokmouline T, et al.. Pipenet: A wireless sensornetwork for pipeline monitoring [C]. In: Proceedings of International Conference onInformation Processing in Sensor Networks, Cambridge: IEEE,2007:264-273.
    [26] Corchado J M, Bajo J, Tapia D I and Abraham A. Using heterogeneous wireless sensornetwork in a telemonitoring system for healthcare [J]. IEEE Transaction on InformationTechnology in Biomedicine,2010,14(2):234-240.
    [27] Singhvi V, Krause A, Guestrin C, et al.. Intelligent light control using sensor networks
    [C]. In Proceedings of the Third International Conference on Embedded NetworkedSensor Systems, San Diego: IEEE,2005:218-229.
    [28]王桥,杨一鹏,黄家柱等.环境遥感[M].北京:科学出版社,2005.
    [29]刘伟明,郝静茹.水下机器人定位算法[J].传感器与微系统.2007,26(9):70-71.
    [30]彭泽洲,杨天行,梁秀娟.水环境数学模型及其应用[M].北京:化学工业出版社,2007.
    [31] He S B, Chen J M and Sun Y X. Coverage and connectivity in duty-cycled wirelesssensor network for event monitoring [J]. IEEE Transactions on Parallel and DistributedSystems,2012,3(23):475-482.
    [32]刘丽萍,王智,孙优贤.无线传感器网络部署及其覆盖问题研究[J].电子与信息学报,2006,28(9):1752-1757.
    [33] Tan R. Exploiting data fusion to improve the coverage of wireless sensor networks [J].IEEE/ACM Transactions on Networking,2012,20(2):450-462.
    [34] Wang B. Coverage Control in Sensor Networks [M]. New York: Springer,2010.
    [35] Liu B and Towsley D. A study of the coverage of large-scale sensor networks[C]. In:Proceedings of the2004IEEE International Conference on Mobile Ad-hoc and SensorSystems, Florida: IEEE,2004:475-483.
    [36] Liang T, Zhou H, Xie J, et al.. Multi-objective coverage control strategy for wirelesssensor networks[J]. Chinese Journal of Sensor and Actutors,2010,23(7):995-999.
    [37] Aziz N A, Mohemmed A W, Alias M Y, et al.. Coverage maximization and energyconservation for mobile wireless sensor networks: A two phase particle swarmoptimization algorithm[C]. In: Proceedings of Sixth International Conference onBio-Inspired Computing: Theories and Applications, Penang: IEEE,2011:64-69
    [38] Meguerdichian S, Koushanfar F, Potkonjak M and Srivastava M B. Coverage problems inwireless ad-hoc sensor networks [C]. In: Proceedings of IEEE INFOCOM2001,Anchorage: IEEE,2001:1380-1387
    [39] Rourke J O. Art Gallery Theorems and Algorithms [M]. New York, USA: OxfordUniversity Press,1987.
    [40] Heppes A. Covering a planar domain with sets of small diameter [J]. PeriodicaMathematica Hungarica,2006,53(1-2):157-163.
    [41] Chakrabarty K, Iyengar S S, Qi H and Cho E. Grid coverage for surveillance and targetlocation in sistributed sensor networks [J]. IEEE Transactions on Computers,2002,51(12):1448-1453.
    [42] Dhillon S S, Chakrabarty K, and Iyengar S S. Sensor placement for grid coverage underimprecise detections[C]. In: Proceedings of the International Conference on InformationFusion(FUSION2002), Annapolis: IEEE,2002:1581-1586.
    [43] Ke W C, Liu B H and Tsai M J. The critical-square-grid coverage problem in wirelesssensor networks is NP-Complete [J]. The International Journal of Computer andTelecom-munications Networking,2011,55(9):2209-2220.
    [44] Shakkotai S, Srikant R and Shroff N B. Unreliable sensor grids: coverage, connectivityand diameter[C]. In: Proceedings of INFOCOM2003, San Francesco: IEEE,2003:1073-1083
    [45] Xu K, Takahara G and Hassanein H. On the robustness of grid-based deployment inwireless sensor networks[C]. In: Proceedings of the2006International Conference onWireless Communications and Mobile Computing, Columbia: ACM,2006:1183-1188.
    [46] Commuri S and Watfa M K. Coverage strategies in wireless sensor networks [J].International Journal of Distributed Sensor Networks,2006,4(2):333—353.
    [47] Bettstetter C. On the connectivity of ad hoc networks [J]. The Computer Journal,2004,4(47):432-447.
    [48] Santi P and Blough D M. The critical transmitting range for connectivity in sparsewireless ad hoc networks [J]. IEEE Transactions on Mobile Computing,2003,2(1):25-39.
    [49] Dousse O, Thiran P and Hasler M. Connectivity in ad-hoc and hybrid networks [C]. In:Proceedings of IEEE INFCOM2002, New York: IEEE,2002:1078-1088
    [50] Huang C F and Tseng Y C. The coverage problem in a wireless sensor network [J]. ACMMobile Networks and Applications,2005,10(4):519-528.
    [51] Wang Q, Yan W J and Shen Y. N-person card game approach for solving set K-coverproblem in wireless sensor networks [J]. IEEE Transactions on Instrumentation andMeasurement,2012,61(5):1522-1535.
    [52] Ashouri M, Zali Z, Mousavi S R and Hashemi M R. New optimal solutions to disjoint setK-coverage for lifetime extension in wireless sensor networks [J]. IEEE Transactions onInstrumentation and Measurement,2012,61(5):1522-1535.
    [53] Ammari H M and Das S K. A study of k-Coverage and measures of connectivity in3Dwireless sensor network [J]. IET Wireless Sensor Systems,2012,2(1):31-39.
    [54] Kumar S, Lai T H and Balogh J. On k-coverage in a mostly sleeping sensor network [C].In: Proceedings of the10th ACM annual international conference on Mobile computingand networking (MobiCom'04), New York: ACM,2004:144-158.
    [55] Li X Y, Wan P J and Frieder O. Coverage in wireless adhoc sensor networks [J]. IEEETransactions on Computers,2003,52(6):753-763.
    [56] Meguerdichian S, Koushanfar F, Potkonjak M and Srivastava M B. Coverage problems inwireless ad-hoc sensor networks [C]. In: Proceedings of IEEE INFOCOM2001,Anchorage: IEEE,2001:1380-1387.
    [57] Fan G J and Jin S Y. Coverage problem in wireless sensor network: a survey [J]. Journalof Networks,2010,5(9):1033-1040.
    [58] Meguerdichian S, Koushanfar F, Qu G and Potkonjak M. Exposure in wireless ad-hocsensor networks [C]. In: Proceedings of the7th Annual International Conference onMobile Computing and Networking, Rome: IEEE,2001:139-150.
    [59] Liu B and Towsley D. On the coverage and detestability of large-scale wireless sensornetworks [C]. In: Proceedings of WiOpt'03: Modeling and Optimization in Mobile, AdHoc and Wireless Networks, Sophia-Antipolis: ACM,2003.
    [60] Huang C F and Tseng Y C. The coverage problem in a wireless sensor network [C]. In:Proceedings of the2nd ACM International Workshop on Wireless Sensor Networks andApplications(WSNA'03), San Diego: IEEE,2003:519-528.
    [61] Tian D and Georgans N D. A Coverage-preserving node scheduling scheme for largewireless sensor networks [C]. In the1st ACM International Workshop on Wireless SensorNetworks and Applications (WSNA'02), Atlanta: ACM,2002:32-41.
    [62] Koskinen H. On the coverage of a random sensor network in a bounded domain [C]. In:Proceedings of the16th ITC Specialist Seminar. Anwerp: IEEE,2004:11-18.
    [63] Huang C F, Tseng Y C and Lo L C. The coverage problem in three-dimensional wirelesssensor networks [J]. Journal of Interconnection Networks,2007,8(3):209-227.
    [64] Wan P J and Yi C W. Coverage by randomly deployed wireless sensor networks [J]. IEEETransactions on Information Theory,2006,52(6):2658-2669.
    [65] Adlakha S. Critical density thresholds for coverage in wireless sensor networks [C]. In:Proceedings of Wireless Communications and Networking (WCNC2003), New Orleans:IEEE,2003:1615-1620.
    [66] Tynan R, DavidMarsh G M P O and Kane D O. Interpolation for wireless sensor networkcoverage [C]. In the Second IEEE Workshop on Embedded Networked Sensors(EmNetS-II), Sydney: IEEE,2005:123-131.
    [67]王宏斌,基于RSSI的无线传感器网络定位系统研究[D].[硕士学位论文],大连:大连理工大学,2013.
    [68] Shen G W, Zetik R and Thoma R S. Performance comparison of TOA and TDOA basedlocation estimation algorithms in LOS environment [C]. In Proceedings of the5thWorkshop on Positioning, Navigation and Communication, New York: IEEE,2008:71-78.
    [69] Savvides A, HAN C C and Srivastava M. Dynamic fine-grained localization in ad-hocnetworks of sensors [C]. In: Proceeding of the7th Annual International Conference onMobile Computing and Networking, Rome: ACM,2001:166-179.
    [70] Nicolescu D and Nath B. Ad-Hoc positioning systems (APS)[C]. In: Proceedings of the2001IEEE Global Telecommunications Conference, SanAntonio: IEEE,2001:29262931.
    [71] Niculescu D and Nath B. DV based positioning in ad hoc networks [J]. Journal ofTelecommunication Systems,2003,22(1/4):267280.
    [72] Savarese C, Rabay J and Langendoen K. Robust positioning algorithms for distributedad-hoc wireless sensor networks [C]. In: Proceedings of the USENIX Technical AnnualConference, Monterey: USENIX,2002:317327.
    [73]余义斌,传感器网络定位算法及相关技术研究[D].[博士学位论文],重庆:重庆大学,2006.
    [74] Avvides A, Park H and Srivastava M B. The bits and flops of the N-hop multilaterationprimitive for node localization problems [C]. In: Proceedings of the1st ACMInternational Workshop on Wireless Sensor Networks and Applications, Atlanta: ACM,2002:112121.
    [75]王建刚,王福豹,段渭军.加权最小二乘估计在无线传感器网络定位应用中的应用[J].计算机应用研究,2006,23(9):41-43.
    [76] Milios E E and Nawab S H. Acoustic tracking from closest point of approach time,amplitude, and frequency at spatially distributed sensors [J]. The Journal of theAcoustical Society of Amercia,1990,87(3):1026-1034.
    [77] Michaelides M P and Panayiotou C G. Plume source position estimation using sensornetworks [C]. In: Proceedings of the13th Mediterranean Conference on Control andAutomation, Cyprus: IEEE,2005:731-736
    [78]匡兴红,邵惠鹤.无线传感器网络在气体源预估定位中的应用[J].华东理工大学学报.2006,32(7):780-783.
    [79]匡兴红,邵惠鹤.基于传感器网络的气体源定位方法研究[J].系统仿真学报.2007.19(7):1464-1467.
    [80]匡兴红,邵惠鹤.基于WSN的两种气体源定位算法研究[J].仪器仪表学报.2007,28(2):298-302.
    [81] Wang H, Zhou Y, Yang X L and Wang L R. Plume source localizing in differentdistributions and noise types based on WSN [C]. In: Proceedings of the2010International Conference on Communications and Mobile Computing, Caen: ACM,2010:63-66.
    [82] Mitra S, Duttagupta S P, Tuckley K, et al..3D ad-hoc sensor network based localizationand risk assessment of buried landfill gas source [J]. International Journal of CircuitsSystems and Signal Processing,2012,6(1):75-86.
    [83] Zhao T and Nehorai A. Distributed sequential Bayesian estimation of a diffusive sourcein wireless sensor networks [J]. IEEE Transactions on Signal Processing,2007,55(4):2213-2225.
    [84] Gunatilaka A, Ristic B, Skvortsov A and Morelande M. Parameter estimation of acontinuous chemical plume source [C]. In: Proceedings of the11th InternationalConference on Information Fusion, Cologne: IEEE,2008:1-8.
    [85] Huang C F, Hsing T, Cressie N, et al.. Bayesian source detection and parameterestimation of a plume model based on sensor network measurements [J]. AppliedStochastic Model in Business and Industry,2010,26(4):331-348.
    [86] Zoumboulakis M and Roussos G. Estimation of pollutant-emitting point-sources usingresource-constrained sensor network [C]. In: Proceedings of the3rd InternationalConference on Geosensor Networks, Berlin: Springer-Verlag,2009:21-30.
    [87] Laird C D, Biegler L T, and Van Bloemen Waanders B G. Mixed-integer approach forobtaining unique solutions in source inversion of water networks [J]. Journal of WaterResources Planning and Management,2006,132(4):242-251.
    [88] Cristo C D and Leopardi A. Pollution source identification of accidental contamination inwater distribution networks [J]. Journal of Water Resources Planning and Management,2008,134(2):197-202.
    [89] Tryby M, Propato M, and Ranjithan S. Monitoring design for source identification inwater distribution systems [J]. Journal of Water Resources Planning and Management,2010,136(6):637–646.
    [90]臧传志,梁韠,于海斌.无线传感器网络中基于移动智能体的目标追踪[J],控制理论与应用,2006,23(4):601-605.
    [91]孙晓艳,李建东,黄鹏宇,张文柱.距离加权的二进制传感器网络目标跟踪算法[J],通信学报,2010,31(12):140-146.
    [92] Qing Y, Lim A, Casey K and Neelisetti R K. Real-time Target Tracking with CPAAlgorithm in Wireless Sensor Networks [C]. In: Proceedings of the5th Annual IEEECommunications Society Conference on Sensor, Mesh and Ad Hoc Communications andNetworks, San Francisco: IEEE,2008:305-313.
    [93] Yang L Z, Feng C, Rozenblit J W and Qiao H Y. Adaptive tracking in distributedwireless sensor networks [C]. In: Proceedings of the13th Annual IEEE internationalsymposium and workshop on engineering of computer based systems, Potsdam: IEEE,2006:102-111.
    [94] Olfati S R, Jalalkamal P and Lim A. Collaborative target tracking using distributedkalman filtering on mobile sensor networks [C]. In: Proceedings of American ControlConference(ACC)2011, San Francisco: IEEE,2011:1100–1105.
    [95] Ahmed N, Rutten M, Bessel T and Rutten M. Detection and tracking usingparticle-filter-based wireless sensor networks [J]. IEEE Transactions on MobileComputing,2010,9(9):1332-1335.
    [96] Li D, Wong K D, Hu H Y and Sayeed A M. Detection classification and tracking oftargets in distributed sensor networks [J]. IEEE Signal Processing Magazine,2002,19(2):17-30.
    [97] Oh S, Sastry S and Schenato L A. A hierarchical multiple-target tracking algorithm forsensor networks [C]. In: Proceedings of the2005IEEE International Conference onRobotics and Automation, Barcelona: IEEE,2005:2197-2202.
    [98] Oh S, Russell S, and Sastry S. Markov chain Monte Carlo data association for generalmulti-target tracking problems [J]. IEEE Transactions on Automatic Control,2009,54(3):481-497.
    [99] Fuemmeler J A and Veeravalli V V. Smart Sleeping Policies f or Energy EfficientTracking in Sensor Networks [J]. IEEE Transactions on Signal Processing,2008,56(5):2091–2101.
    [100] Zhao T and Nehorai A. Detecing and estimating biochemical dispersion of a movingsource in a semi-infinite medium [J]. IEEE Transactions on Signal Processing,2008,54(6):2213–2225.
    [101] Nofsinger G T. Tracking based plume detection [D],[Ph. D. dissertation]. Hanover:Trustees of Dartmouth College,2006.
    [102] Nofsinger G T and Cybenko G V. Airborne plume tracking with sensor networks [C].In: Proceedings of Unattended Ground, Sea, and Air Sensor Technologies andApplications VIII}, Orlando: SPIE,2006,4:623112-1--623112-10.
    [103]陈希孺.最小一乘线性回归(上)[J].数理统计与管理,1989,5:48-55.
    [104]罗旭,杨君,柴利.无线传感器网络SL-n迭代定位算法[J].通信学报,2011,32(5):129-138,145.
    [105]斯伦贝谢水务公司. GMS manual [OL].http://www.swstechnology.com.cn/Software/View.aspx?id=366,2013.5.
    [106]冯民权,郑邦民,周孝德.水环境模拟与预测[M].北京:科学出版社,2008.
    [107] Radi M, Dezfouli B, Bakar K A and Lee M. Multipath routing in wireless sensornetworks: survey and research challenges [J]. Sensors,2012,12(1):650-685.
    [108]闫斌,周小佳,王厚军.一种基于地理位置信息的高能效无线传感器网络[J].自动化学报,2008,34(7):743-751.
    [109]蒋鹏.基于无线传感器网络的湿地水环境远程实时监测系统关键技术研究[J].传感技术学报,2007,20(1):183-186.
    [110] Zhuiykov S. Solid-state sensors monitoring parameters of water quality for the nextgeneration of wireless sensor networks [J]. Sensors and Actuators B: Chemical,2012,161(1):1-20.
    [111]易立新,徐鹤.地下水数值模拟: GMS应用基础与实例[M].北京:化学工业出版社,2009.
    [112]中国科学软件网. Visual MODFLOW [OL].http://www.sciencesoftware.com.cn/search/search soft detail12.asp?id=1077,2013.5
    [113]杨天行,傅泽周,刘金山,林学钰.地下水流向井的非稳定运动的计算原理及计算方法[M].北京:地址出版社,1979.
    [114]陈宝林.最优化理论与算法(第二版)[M].北京:清华大学出版社,2005.
    [115] Coleman T F and Li Y Y. An Interior trust region approach for nonlinear minimizationsubject to bounds [J]. SIAM Journal on Optimization,1996,6:418-445.
    [116] Shan S D. A levenberg-marquardt method for large-scale bound-constrained nonlinearleast-squares,[Master. dissertation]. Wolfville: Acadia University,2006.
    [117] Coleman T F and Li Y Y. On the convergence of reflective Newton methods forlarge-scale nonlinear minimization subject to bounds [J]. Mathematical Programming,67(2),1994:189-224.
    [118] Cohon J L. Multiobjective Programming and Planning [M]. North Chelmsford: CourierDover Publications,2004.
    [119]宋学锋,魏晓平.运筹学[M].南京:东南大学出版社,2004.
    [120]沈荣芳.运筹学[M].北京:机械工业出版社,2004.
    [121] Gass S I. Linear Programming: Methods and Applications [M]. North Chelmsford:Courier Dover Publications,2010.
    [122]郭亚军,易平涛.线性无量纲化的方法的性质分析[J].统计研究,2008,25(2):93-100.
    [123]陈志平,卻峰.求解中大规模复杂凸二次整数规划问题的新型分枝定界算法[J].计算数学,2004,26(4):445-458.
    [124] Paris Q. Multiple optimal solutions in linear programming models [J]. AmericanJournal of Agricultural Economics,1981,63(4):724-727.
    [125]罗旭,柴利,杨君.异构传感器网络多目标多重覆盖策略[J].电子与信息学报, toappear.
    [126]王雷,秦念庆,杜晓通,王晓鹏.基于Tikhonov正则化方法的WSN空间定位算法[J].仪器仪表学报,2010,31(4):770-775.
    [127]陈希孺.最小一乘线性回归(下)[J].数理统计与管理,1989,6:48-56.
    [128] Dasgupta M and Mishra S K. Least absolute deviation estimation of linear econometricmodels: A literature review [OL]. http://mpra.ub.uni-muenchen.de/1781.2013.6
    [129]王文峰.基于LINGO的最小一乘线性回归的参数估计[J].贵州财经学院学报,2006,125(6):106-108.
    [130]杨君,柴利,罗旭.基于无线传感网络的湖库水环境污染源定位方法[C].第31届中国控制会议论文集,北京: IEEE,2012:6649-6654.
    [131] Luan F, Chai L and Yang J. Diffusion source localization with a water-proof boundary
    [C]. In: Proceedings of WICA2012, Beijing: IEEE,2012:164-169.
    [132] Gill P E, Murray W. Algorithms for the Solution of the Nonlinear Least Squares Proble-m [M]. London: National Physical Laboratory,1976.
    [133] Ristic B, Arulampalam S and Gordon N. Beyond the Kalman Filter: Particle Filter forTracking applications [M]. Boston London: Artech House press,2004.
    [134]程水英.无味变换与无味卡尔曼滤波[J].计算机工程与应用,2008,44(24):25-35.
    [135]李恒,张静远,罗轩,谌剑.无味卡尔曼滤波算法形式及性能研究[J].弹箭与制导学报,2012,32(3):189-196.
    [136]罗旭,柴利,杨君.无线传感器网络下静态水体中的近岸污染源定位[J].自动化学报, to appear.
    [137]唐勇,周明天,张欣.无线传感器网络路由协议研究进展[J].软件学报,2006,17(3):410-421.
    [138]田海,朱新岩.一种简化的SAGE-HUSA卡尔曼滤波[J].弹箭与制导学报,2011,31(1):75-84.
    [139] Sage A P and Husa G W. Adaptive Filtering with Unknown Prior Statistics [C]. In:Proccedings of Joint Automatic Control Conference, Colorado: IEEE,1969:760-769.
    [140]杨春玲,孙泓波,倪晋麟等.多传感器远距离目标跟踪精度分析[J].南京理工大学学报,1999,23(3):241-248.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700