光催化降解五氯苯酚过程及数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
五氯苯酚是一种典型的有机氯农药,属于持久性有机污染物,对人类和环境具有很大的危害,对五氯苯酚处理技术的研究一直是国际关注的热点。本文采用了光催化降解技术来处理废水中的五氯苯酚,从光催化降解影响因素、降解过程分析以及工艺开发和过程数值模拟等方面进行了系统的研究。
     通过五氯苯酚在催化剂表面吸附等温线的测定,得到五氯苯酚在催化剂表面的吸附符合Langmuir吸附方程并获得相应吸附特性参数;推导得到了低浓度时五氯苯酚光催化降解的一级动力学方程;通过对五氯苯酚光催化降解过程的研究,检测到三种五氯苯酚光催化降解的中间体,分别为2,3,4,5-四氯酚、2,3,4,6-四氯酚和2,5-二氯酚。
     考察了溶液的pH值、催化剂投加量、紫外灯光强、曝气流速和过硫酸钾投加量对光催化降解五氯苯酚的影响进行研究,发现在光催化降解水中五氯苯酚过程中,溶液pH值越大越利于降解反应进行,紫外灯光强越大降解越快,而曝气流速、催化剂投加量和过硫酸钾投加量分别存在较优值。通过TOC的检测和亚甲基兰的退色反应验证了超声波对光催化降解五氯苯酚有明显的协同促进作用。
     将超声、光催化和微滤膜有机结合,开发出新型的膜外置式超声协同光催化反应器,并利用响应面实验设计方法获得应用该反应器光催化降解五氯苯酚在TiO_2投加量0.97g,气体流速0.19m~3·h~(-1),K_2S_2O_8投加量17.00mg的操作条件下降解效率最高,降解率可达98.6%。
     分析光催化降解五氯苯酚反应所具有的动力学特点,结合反应速率表达式的分析,采用计算流体力学的方法对该光催化反应进行数值模拟,并利用实验数据对模拟结果的可信度进行了验证。在此基础上选用两相流模型对反应器内流场和质量场进行模拟计算,结果得到单股上方进料的方式要优于单股下方进料的方式;单股倾斜进料时,60°夹角进料的方式最佳。
Pentachlorophenol (PCP) is a typical organic chloric pesticide, which is one of the most persistent organic pollutants. It is harmful to human and the environment. The research on reducing and controlling pollutions caused by PCP has attracted wide interests in the field of chemical engineering internationally. This study focuses on the photocatalytic degradation of pentachlorophenol and the effects of photocatalytic degradation, process analysis, technique development and mathematic simulation have been investtigated.
     The adsorption characteristics of PCP on the surface of catalyst were determined from the adsorption isotherm experiments. The results are used to fit the absorption parameters of the Langmuir model. The kinetic equation of the photocatalytic degradation of pentachlorophenol at lower concentration, which was said as L-H equtions, has been presented. From the study of PCP’s photo catalytic degradation process, three intermediate were detected: 2,3,4,5-tetrachlorophenol, 2,3,4,6- tetrachlorophenol and 2,5- dichlorophenol.
     The effects of of pH of the solution, quantity of catalyst, light intensity, sparging rate and dosage of potassium persulfate on the photocatalytic degradation process of PCP have been investigated. The results showed that degradation rate could be accelerated by a higher pH or a more powerful light intensity, but the quantity of catalyst, sparging rate and dosage of potassium persulfate exhibited optimal values respectively. The synergistic effect of ultrasonic to photocatalytic degradation process of PCP has been proved by mesurement of TOC and the experiments of discorloring of methylene blue.
     Ultrasonic, photocatalysis and membrane were combined to develop a self-style recirculated membrane ultrasonica assisted photocatalytic reactor. With the response surface method (RSM), the optimal operationing conditions of this reactor were obtained: 0.97 g of TiO_2, 0.19m~3·h~(-1) of sparging rate, 17.00 mg dosage of K_2S_2O_8, and 98.6% degradation rate.
     Based on the analysis of kinetic characteristics of photocatalytic degradation of PCP and the expressions of reactive equations, computational fluid dynamics simulations were done to study this photocatalytic degradation process. The simulation results agree well with the experimental data.. At last, the model of two phases was used to simulate the hydraulics and concentration field. The results showed that top inlet was better than inferior inlet, and 60°was the better choice in one inclined inlet.
引文
[1]薛建华,王近中,辛佩珠等,氯仿、氯苯和多氯联苯对染毒家兔红细胞脂质过氧化和膜流动性的影响,中华预防医学杂志,1994,28(5):294-296
    [2] Toppari J, Larsen J C, Christiansen P, Giwercman A, et al. Male reproductive health and environmental xenoestrogens, Environ Health Perspect, 1996, 104(Suppl 4): 741-803
    [3] Rateliffe D A. Decrease in eggshell weight in certain birds of prey, Nature ,1967 , (215): 208 -210
    [4] Rateliffe D A, Changes attributable to pesticides in egg breakage frequency and eggshell thickness in some British birds, ApplEcol, 1970, 7 (6): 67 -115
    [5] Pearcep A, Peakall D B, Reynolds L M. Shell thinning and residues of organochlorines and mercury in seabird eggs EastenCanada 1970-1976. Pestic Monit J, 1979 , (13):61 -68
    [6] Giesy J P, Ludwig J P, Tillitt D E. Deformities in birds of the Great Lakes region, Environ Sci Technol ,1994 , 28(3):128A-135A
    [7] Bosveld A T C, Martin V D. Effects of polychlorinated biphenyls, dibenzo-p-dioxins, and dibenzofurans on fish-eating birds, Environ Rev,1994, (2):147 -166
    [8] Karmous W, Wolf N. Reduced birthweight and length in the offspring of females exposed to PCDFs, PCP and lindane. Environ Health Perspect, 1995, 103(12):1120-1125
    [9]于慧芳,婴儿自母乳中摄入有机氯农药量的估算,卫生研究,2002, 31(1):17-18
    [10]Jiyeon Yang. PCDDs, PCDFs, and PCBs concentrations in breast milk from two areas in Korea: body burden of mothers and implications for feeding infants. Chemosphere, 2002, 46(3): 419-428
    [11]国家环境保护总局《2005年中国环境状况公报》,北京:国家环境保护总局,2006.6.26
    [12]丁辉,大沽排污河POPS归趋行为:[博士学位论文],天津;天津大学,2006
    [13]王俊,天津市大沽排污河五氯酚和六氯苯污染特征及解析动力学的研究:[硕士学位论文],天津;天津大学,2006
    [14]安凤春,莫汉宏,郑明宏等,DDT污染土壤的植物修复技术,环境污染治理技术与设备,2002,3(7):39-45
    [15]李国学,孙英,高温堆肥对六六六(HCH)和滴滴涕(DDT)的降解作用,农业环境保护,2000,19(3):141-144
    [16]Tomas S M, Zhuolian S, Gireesh K M P. The combination of photocatalysis and Ozonolysis a new approach for cleaning 2,4-Dichlorophenoxyaceticacid polluted water, Chemosphere, 1998, 36 (9):2043-2055
    [17]Gevao B, Mordaunt C, Kirk T S, et al. Bioavailability of nonextractable (bound) pesticide residues to earthworms, Environ Sci Technol, 2001, 35(3): 501-507
    [18]Gullett B K, Touati A. PCDD/F emissions from forest fire simulations. Atmospheric Environment, 2003, 37(6):803-813
    [19]Wikstrom E, Marklun S. Secondary formation of chlorinated dipenzo-p-diokins, dibenzofurans, biphenyls, benzenes and phenols during MSW combustion, Environ Sci Technol, 2000, 34(4):604-609
    [20]金相灿,有机化合物污染化学-有毒有机物污染化学,北京:清华大学出版社,1990
    [21]张宗炳,杀虫剂的分子毒理学,北京:农业出版社,1987
    [22]Arcand Y, Hawari J, Guiot S K. Solubility of pentachlorophenol in aqueous solutions: the pH effect. Water research.1995, 29 (1): 131-136
    [23]Crosby D G. Environmental chemistry of pentachlorophenol, Pure&APP. Chem.,1981,53:1051-1080
    [24]迟杰,五氯酚在区域水环境中归趋的研究:[博士学位论文],天津;南开大学,2000
    [25]Wild S R, Harrad S J, Jones K C. Chlorophenls in digested U .K. sewage sludges. Water Research.1993, 27:1527-1534
    [26]Tanjore A, Viraraghavan T. Pentachlorophenol water pollution impacts and removal technologies. Int J Environ Studies. 1994, 45(2): 155-164
    [27]郭家钢,郑江,中国血吸虫病流行与防治,疾病控制杂志,2000, 4(4):289-293
    [28]张兵,郑明辉,五氯酚在洞庭湖环境介质中的分布,中国环境科学,2001,21(2):165-167
    [29]王宏,杨霓云,沈英娃等,海河流域几种典型有机污染物环境安全性评价,环境科学研究, 2003,16 (6):35-37
    [30]张春桂,许华夏,姜晴楠,五氯酚的微生物降解与光解.生态学杂志,1997,16 (3):19-22
    [31]Berry D F, Francis A J, Bollag J M. Microbial metabolism of hemicyclic and heterocyclic aromatic compounds under anaerobic conditions. Microbiological reviews.1987, 51(1):43 -59
    [32]Thompson T S. Preliminary results of a survey of pentachlorophenol levels in human urine. Bull. Environ. Contam. Toxicol. 1994, 53(2): 274-279
    [33]Cessna A J. Concentrations of pentachlorophenol in atmospheric samples from three Canadian locations, 1994. Bull.Environ.Contam.Toxicol.1997, 58(4): 651-658
    [34]任引津,张寿林,急性化学物中毒救援手册,上海:上海医科大学出版社,1994
    [35]Makinen P M, Theno T J, Fergusor J F. Chlorophenol toxicity removal and monitoring in aerobat treatment: recovery from process upset. Environ Sci Technol,1993, 27(14): 1434-1439
    [36]Engwall M A, Pignatello J J. Grasso D. Degradation and detoxification of the wood preservatives creosote and pentachlorophenol in water by the photo-Fenton reaction. Water Research,1999, 33(5): 1151-1158
    [37]Packham E D, Duxbury C L, and Mayfeld C I, et al. Quantitative analysis of pollutant-induced lethal and sublethal damage in cultured mammalian cells Bull.Environ.Contam. Toxicol. 1982, 29(6): 739-746
    [38]Salminen J, Haimi J. Effects of PCP on soil organisms and decomposition forest soil. Journal of applied ecology.1997, 34 (1):101-110
    [39]Zheng M, Zhu L. Toxicity effects of pentachlorophenol on Brachydanio rerio. Applied Ecology, 2005,16(10): 1967-1971
    [40]刘希涛,袁星,赵元慧等,应用AM1法研究取代芳烃化合物对水生生物的急性毒性,化学学报,2002,4(1):223-224
    [41]Iounes N, Guerbet M, Jouany J M, Hamel J. Acute comparative toxicity of phenol and some chlorophenols on aquatic and terrestrial organisms. Revue des Sciences de l'Eau, 2000, 13(2): 167-173
    [42]陆光华,耿亮.取代芳烃对藻类毒性与结构参数之间的定量关系研究,环境科学研究,2004,17(6):73-75
    [43]堵锡华.结构信息廉洁性指数用于取代芳烃生物毒性与性质的研究,化学通报,2005, http://www.hxtb.org
    [44]张景明,刘建琳,周雯,水样中痕量有机物分析的前处理方法,中国环境监测,2001,17(3):31-33
    [45]盖新杰,贾春明,钱进,城市河流与湖库中痕量有机污染物的研究,环境污染与防治,1998,20(3):42-44
    [46]贾金平,何翊,黄骏雄,固相微萃取技术与环境样品前处理,化学进展,1998,10 (1):74-84
    [47]Shelton D R, Tiedje J M. General method for determining anaerobic biodegradation potential, Appl. Environ. Microbiol, 1984, 47(4): 850-857
    [48]Boyle M. The environmental microbiology of aromatic decomposition, Environ Quality,1989,18(4): 395-402
    [49]刘桂明,邓义敏,水中苯酚、五氯酚、2,4,6-三氯酚的高效液相色谱法,环境科学导刊,2000,12(19):59-61
    [50]Weast R C , Astle M S, Beyer W H., CRC Handbook of Chemistry and Physics, CRC Press, Inc. Boca Raton, Florida, 1985
    [51]夏曙演,魏兴义,光催化氧化处理水中有机污染物,上海环境科学, 1994, (6):9-14
    [52]Fujishima A, Honda K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature, 1972, 37(1): 238-245
    [53]Foc M A, Dulay M Y. Heterogeneous photocatalysis, Chem. Rev, 1993, 93(1): 341-357
    [54]Linsebiglar A L, Lu G, Yates J Y. Photocatalysis on TiO2 Surfaces: principles, mechanisms, and selected results, Chem. Rev., 1995, 95(3): 735-758
    [55]Hoffmann M R, Martin S T. Environmental applications of semiconductor photocatalysis, Chem. Rev., 1995, 95(1): 69-96
    [56]郑怀礼,张峻华,熊文强,纳米TiO2光催化降解有机污染物研究与应用新进展,光谱学与光谱分析,2004,24(8):1003-1008
    [57]John H, Carey. Photodechlorination of PCB's in the Presence of Titanium Dioxide in Aqueous Suspensions. Bull. Environ, Coutam. Toxic., 1976, 16(6): 697-701
    [58]Frank S N, Bard A J. Photoassisted oxidations and photoelectrosynthesis at polycrystalline TiO2 electrodes. J. Am. Chem. Soc ,1977 , 99 (14): 4667 -4675
    [59]Matthews R W. Solar-electric water purification using photo oxidation with TiO2as a stationary phase, Solar Energy, 1987, 38(6): 405-413
    [60]丰桂珍,光催化氧化技术降解难降解有机物的研究及应用:[硕士论文],南昌;华东交通大学,2006
    [61]时桂杰,光催化氧化处理水中污染物的研究现状及发展趋势,环境科学与技术,1998,82(3):65-73
    [62]孙奉玉,吴鸣,李文钊等,二氧化钛的尺寸与光催化活性的关系,催化学报,1998,19(3):229-233
    [63]王有乐,张庆芳,马炜,光催化剂TiO2改性技术的研究进展,环境科学与技术, 2002, 25(1): 40-42
    [64]Augustynski. The role of the surface intermediates in the photoelectrochemical behaviour of anatase and rutile TiO2, Electrochim Acta, 1993, 38(1): 43-46
    [65]Sclafani A, Herrmann J M. Comparison of the photoelectronic and photocatalytic activities of various anatase and rutile forms of titanic in pure liquid organic phases and in aqueous solutions Phys Chem, 1996, 100(32): 13655-13661
    [66]Bahneman D W. Mechanisms of Organic Trans Semiconducto Particles, Solar Energy Materials and Solar Cells, 1991, 24(3): 564-583
    [67]Vinodgopal K. Enhanceed Rates of Photocatalytic Degradation of an Azo Dye Using Sn02/Ti02 Coupled Semiconductor Thin Films, Environ Sci Technol, 1995, 29(3): 841-845
    [68]Wang K H. Photocatalytic degradation of 2-chlorophenol in titanium dioxide aqueous suspension, M. S. Thesis. National Chung Hsing University, Taichung, Taiwan, 1991
    [69]Bahneman D W. Mechanistic studies of water detoxification illuminated Ti02 suspensions, Solar Energy Materials, 1991,24:564-583
    [70]夏璐,王双飞,有机氯化物光催化反应动力学的研究,中国造纸学报,2006,21(1):82-87
    [71]傅剑峰,光催化模反应器和电光催化反应器对天然有机物富里酸的降解机理与动力学研究:[博士学位论文],天津;天津大学,2006
    [72]施利毅,李春忠,房鼎业等,二氧化钛超细粒子的制备及其光催化降解含酚溶液,华东理工大学学报,1998,24 (3):291-297
    [73]Sandra G M, Renato S F, Nelson D. Degradation and toxicitv Redution of Textile Effluent by Combined Photocatalvlic and Ozonation Process, Chemosphere, 2000, 40(4): 369-373
    [74]Irmalc S, Kusvuran E. Degradation of 4-chloro-2-melhylphenol in Aqueous Solution by UV Irradiation in the Presence of Titanium Dioxide, Applied Catalysis B: Environmental, 2004, 54(2): 85-91
    [75]Ku Y, Wang L S, Shen Y S. Decomposition of EDTA in aqueous solution by UV H202 process, J Hazard. Mat., 1998, 60: 41-45
    [76]Rosana M, Alberici, Wilson F, Jarmin. Photocatalytic Degradation of Phenol and Chlorinated Phenols Using Ag-TiO2 in a Slurry Reactor, Water Research 1994, 28(8): 1845-1849
    [77]金建国,张文丽,邱继军等,Ti02光催化剂的应用及其关键技术,陶瓷学报,2001,22(4):276-279
    [78]Kamat P V, Patrick B. Photophysics and photochemistry of quatized ZnO colloids, J. Phys. Chem., 1992, 96(16): 6829-6834
    [79]Serpone N, Maruthamuthu P, Pichat P, et al. Exploiting the interpartical electron transfer processes in the photocatalysed oxidation of phenol, 2-chlorophenol and pentachlorophenol: chemical evidence for electron and hole transfer between coupled semiconductors, J. Photochem. Photobiol. A: Chem., 1995, 85(3): 247-255
    [80]冯小刚,戎非,袁春伟,TiO2光催化降解有机污染物的协同效应研究,环境污染治理技术与设备,2004,5(9):12-17
    [81]胡春,王怡中,汤鸿霄,多相光催化氧化的理论与实践发展,环境污染治理技术与设备,1995,3(1):55-64
    [82]Ollis D. F. Al-Ekabi H (Editor), Photocatalytic purification and treatment of water and air. Elsevier, 1993
    [83]Serpone N, Pelizzetti E. (Editor), Photocatalysis fundamentals and applications. New York: Jeha Wiley &Sens. 1989
    [84]Schiavello M., Photocatalysis and Environment Trends and Applications, Dordrecht, Kluwer Academic Publishers, 1987
    [85]Doong R A, Chen C H, Maithreepala R A, Chang S M. The influence of pH and cadmium sulfide on the photocatalytic degradation of 2-chlorophenol in titanium suspensions, Water Res, 2001, 35(12): 2873-2880
    [86]Ku Y, Leu R M, Lee K C, Decomposition of 2-chlorophenol in aqueous solution by UV irradiation with the presence of titanium dioxide, Water Res 1996, 30(11): 2569-2578
    [87]Chan Y Ch, Chen J N, Lu M C. Intermediate inhibition in the heterogeneous UV-catalysis using a TiO2 suspension system, Chemosphere, 2001, 45(1): 29-35
    [88]Bandara J, Mielczarski J A, Lopez A, Kiwi J. Sensitized degradation of chlorophenols on iron oxides induced by visible light.Comparison with titanium oxide, Applied Catalysis B: Environmental , 2001, 34(4): 321-333
    [89]Androulaki E, Hiskia A, Dimotikali D, Minero C, Calza P, Pelizzetti E, Papaconstantinou E. Light induced elimination of mono and polychlorinated phenols from aqueous solutions by PW12O403- The case of 2,4,6-Trichlorophenol, Environmental Science and Technology, 2000, 34(10): 2024-2028
    [90]Herrmann J M, Guillard C, Disdier J, Lehaut C, Malato S, Blanco J, New industrial titania photocatalysts for the solar detoxi-fication of water containing various pollutants, Applied Catalysis B: Environmental, 2002, 35(4): 281-294
    [91]Matos J, Laine J, Herrmann J M, Effect of the type of activated carbons on the photocatalytic degradation of aqueous organic pollutants by UV-irradiated titania, Journal of Catalysis, 2001, 200(1): 10-20
    [92]Jardim W F, Moraes S G, Takiyama M M K. Photocatalytic degradation of aromatic chlorinated compounds using TiO2:toxicity of intermediates, Water Res 1997, 31(7): 1728-1732
    [93]Giménez J, CurcóD, Queral M A. Photocatalytic treatment of phenol and 2,4-dichlorophenol in a solar plant in the way to scaling-up, Catal Today, 1999, 54(2-3): 229-243
    [94]Yue B, Zhou Y, Xu J, et al. Photocatalytic degradation of aqueous 4-chlorophenol by silica-immobilized polyoxometalates, Environmental. Science Technology, 2002, 36(6): 1325-1329
    [95]Sun Y, Joseph J, Evidence for a surface dual hole-radical mechanism in the titanium dioxide photocatalytic oxidation of 2,4-D, Environmental Science and Technololy, 1995, 29(8): 2065-2072
    [96]付贤智,李旦振,提高多相光催化氧化过程效率的新途径,福州大学学报,2001,29(6):104-114
    [97]郑宜,李旦振,付贤智,C2H4的微波场助气相光催化氧化,高等学校化学学报,2001,22(3):443-445
    [98]姚清照,刘正宝,光电催化降解染料废水,工业水处理,1999,19(6):15-25
    [99]吴合进,吴鸣,谢茂松等,增强型电场协同助光催化降解有机污染物,催化学报,2000,21(5):399-403
    [100]郭银松,磁化处理对水体的复氧速率及生物效应影响的研究,重庆环境科学,1996,18(3):20-23
    [101]Euhene J K. Magnetic field effects on electrochemical reactions occurring at metal flowing-electrolyte Interfaces, J. Electrochem. Soc., 1977, 124(7): 987-994
    [102]蒋秉植.磁场对某些化学反应的影响,化学通报,1991, 10:11-15
    [103]程华,磁场影响化学反应,化学通报,1989,5:35-38
    [104]Wu C D, Liu X H, Wei D B, et al. Photosonochemical degradation of phenol in water, Water Res., 2001, 35(16): 3927-3933
    [105]Mason T J. Current trend in sonochemistry. The Royal Society of Chemistry, Cambridge,1992
    [106]Selli E, Sianchi L C, Pirola C, et al. Degradation of methyl tert-butyl ether in water: effects of the combined use of sonolysis and photocatalysis, Ultrason Sonochem, 2005, 12 (5): 395-400
    [107]顾浩飞,安太成,超声协同纳米Ti02光催化降解活性染料的初步研究,中山大学学报,2001,40(5):131-132
    [108][108]王君,韩健涛, TiO2催化超声降解的甲基橙溶液.应用化学,2004,21(1): 32-33
    [109]白波,赵景联,冯宵,超声光催化降解酸性粒子元青染料的研究,化工环保,2002,22(6):319-323
    [110]顾浩飞,安太成,超声光催化降解苯胺及其衍生物研究,环境科学学报,2003,23(5): 593-597
    [111]葛建团,曲久辉,超声-MnO2协同降解偶氮染料酸性红B,高技术通讯,2003,4: 92-94
    [112]Gura S, Kohno M, Ogura S, Sato K and Y moue. A tracer study of a radical produced by UV irradiation on BaTi4O9 photocatalyst surface. Chemical Physics Letters, 2000, 319(5-6): 451-456
    [113]Wyness P, Klausner J F, Goswami D Y, et al. Performance of Nonconcentrating Solar Photocatalytic Oxidation Reactors: Part1. Flat-Plate Configuration. Journal of Solar Energy Engineering, 1994, 116(l): 2-7
    [114]Wyness P, Klausner J F, Goswami D Y, et al. Performance of Nonconcentrating Solar Photocatalytic Oxidation Reactors: Part 2. Shallow Pond Configuration. Journal of Solar Energy Engineering, 1994, 116(1): 8-13
    [115]崔鹏,范益群,徐南平等,Design And Application Of Fluidized Bed Photocatalytic Reactor.化工学报,2001,52(3):195-19
    [116]崔鹏,范益群,徐南平等,三相流化床中光催化降解反应特性的研究.高校化学工程学报,2002,16(1):53-57
    [117]Peill N J, Hoffmann M R. Chemical and Physical Characterization Of A TiO2-Coated Fiber Optic Cable Reactor. Environ Sci Technol, 1996, 30(9): 2806-2812
    [118]Pareek V K, Yap Z, Brungs M P, et al .Particle residence time distribution(RTD) in three-phase annular bubble column reactor. Chem Eng Sci, 2001, 56(21-22): 6063-6071
    [119]Pareek V. A New Simplified Model for Light Scattering in Photocatalytic Reactors. Ind Eng Chem Res, 2003, 42(1): 26-36
    [120]Pareek V K, Brungs M P, Adesina A A, et al. Computational fluid dynamic(CFD) simulation of a pilot-scale annular bubble column photocatalytic reactor. Chem Eng Sci, 2003, 58(3-6): 859-865
    [121]Pareek V K, Brungs M P, Adesina A A. Artificial neural network modeling of a multiphase photodegradation system. J Photochem Photobiol A: Chem, 2002, 149(1-3): 139-146
    [122]Tmoschuk R, Alfano O M, Cassano A E. The Multitubular Photoreactor. 1. Radiation Field For Constant Absorption Reactors. Ind Eng Chem Res, 1993, 32(7): 1328-1341
    [123]Tmoschuk R, Alfano O M, Cassano A E. The Multitubular Photoreactor. 2. Reactor Modeling and Experimental Verification. Ind Eng Chem Res, 1993, 32(7): 1342-1353
    [124]Cassano A E, Alfano O M, Martin C A, et al. Photoreactor Analysis and Design: Fundamentals and Applications. Ind Eng Chem Res,1995, 34(7):2155-2201
    [125]Fox M A. Dulay M T. Heterogeneous Photocatalysis. Chem Rev, 1993, 93(1): 341-357
    [126]朱长乐,膜科学技术,北京:高等教育出版社,2004
    [127]邵刚,膜法水处理技术,北京:冶金工业出版社,2000
    [128]Hagen K. Removal of particals, bacteria and parasites with ultrafiltration for drinking water treatment, Desalination, 1998, 119(1-3): 85-91
    [129]Cere A R. Microfiltration operation costs, J. Am. Water Works Assoc., 1997, 89(10): 40-49
    [130]Panglisch S, Dauzenberg W, Kiepke O, et al. Ultra- and microfiltration in drinking water production from surface water, Wat. Supply, 2000, 18(1-2): 415-418
    [131]Wilemse R J N, Brekvoort Y. Full-scale recycling of backwash water from sand filters using dead-end membrane filtration, Wat. Res., 1999, 33(15): 3379-3385
    [132]Jason A, Toole G O, Singh M, et al. A 273000m3/d immersed membrane system for surface water treatment: pilot system results and full-scale system design. IWA Special Conference June 7-10 Conference: Water Environment-Membrane Technology, Seoul National University, 2004: 1531-1538
    [133]增田,用膜法处理下水及上水.中国水污染与废水资源化研究中心编,第二届中日水处理技术国际研讨会议论文集,北京,中国环境科学出版社,1996:104-109
    [134]Kunikane S, Magara Y. The role of Micro- and ultrafiltration in drinking water treatment, Wat. Supply, 1996, 14(3-4): 473-477
    [135]Kelley W A, Olson R A. Selecting MF to satisfy regulations, J. Am. Water Works Assoc., 1999, 91(6): 52-56
    [136]Westerhoff G P, Thompson M A, Vickers J C. Experiences in the application of microfiltration and ultrafiltration membrane technology in drinking water treatment, Wat. Supply, 1996, 14(3-4): 482-486
    [137]Agbekobo K M, Legube B, Cote P. Organic in NF permeate, J. Am. Water Works Assoc., 1996, 88(54): 67-74
    [138]黄霞,桂萍,膜生物反应器废水处理工艺的研究进展,环境科学研究,1998,11(1):40-44
    [139]Weimin Xi, Geissen S U. Separation of titanium dioxide from photocatalytically treated by cross-flow microfiltration, Water Research. 2001, 35(5): 1256-1262
    [140]Molinari R, Mungari M. Study on a photocatalytic membrane reactor for water purification, Catal. Today, 2000, 55: 71-78
    [141]Sopajaree K, Qasim S A, Basak S, et al. An integrated flow reactor-membrane filtration system for heterogenerous photocatalysis. Part 1: Experiments and modeling of a batch-recirculated photoreactor, J. Appl. Electrochem., 1999, 29(5): 533-539
    [142]Sopajaree K, Qasim S A, Basak S, et al. An integrated flow reactor-membrane filtration system for heterogenerous photocatalysis. Part 2: Experiments on the ultrafiltration unit and combined operation, J. Appl. Electrochem., 1999, 29(9): 1111-1118
    [143]Molinari R, Borgese M, Drioli E, et al. Hybrid process coupling photocatalysis and membranes for degradation of organic pollutants in water, Catal. Today, 2002, 75(1-4): 77-85
    [144]Molinari R, Palmisano L, Drioli E, et al. Studies on various reactor configurations for coupling photocatalysis and membrane process in water Purification, J. Membr. Sci., 2002, 206(1-2): 399-415
    [145]Molinari R, Pirillo F, Falco M, et al. Photocatalytic degradation of dues by using a membrane reactor, Chem. Eng. Proc, 2004, 43(9): 1103-1114
    [146]Tusnelda E D, Frimmel F H. Cross-flow microfiltration with periodical back-washing for photocatalytic degradation of pharmaceutical and diagnostic residues-evaluation of the long-term stability of the photocatalytic activity of TiO2, Wat. Res., 2005, 39(5): 847-854
    [147]Mozia S, Tomaszewska M, Morawski A W. A new photocatalytic membrane reactor (PMP) for removal of azo-dye Acid Red 18 from water, Appl. Catal. B: Environ., 2005, 59(1-2): 131-137
    [148]Suegara J, Lee B D, Espino M P, et al. Photodegradation of pentachlorophenol and its degradation pathways predicted using density functional theory,Chemosphere, 2005, 61(3): 341-346
    [149]Field R W, Wu D, Howell J A, et al. Critical flux concept for microfiltration fouling, J. Membr. Sci. 1995, 100(3): 259-272
    [150]蒙哥马利,陈荣昭,汪仁官,实验设计与分析,北京:中国统计出版社出版, 1998
    [151]Sebastien Branchu, Robert T. Forbes, Peter York et al. A cental composite design to investigate the thermal stabilization of lysozyme, Pharmaceutical Research. 1999.16(5): 702-708
    [152]Manohar B, Divakar S. Application of central composite Rotatable design to lipase catalysed synthesis of m-cresyl acetate, World Journal of Microbiology & Biotechnology. 2002.18(8): 745-751
    [153]Reyes-Moreno C, Romero-Urias C, Milan-Carrillo J, et al. Optimization of the solid state fermentation process to obtain tempeh from hardened chickpeas(Cicer arietinum L.), Plant Foods for Human Nutritions. 2000.55(3): 219-228
    [154]Armando S. Mendes, Joao E. de Carvalho, Marta C. T. Duarte at al. Factorial design and response surface optimization of crude violacein for Chrombacterium violaceum production, Biotechnology Letters. 2001.23(23): 1963-1969
    [155]Box G E P, Hunter W G, Hunter J S. Statistics for Experiments-an Introduction to Design Data Analysis and Model Building, John Willey and Sons, New York, 1978
    [156]罗菊仙,赵中一,半导体多相光催化氧化技术在环境保护中的应用研究进展,中国地质大学学报,2000,25(5):536-542
    [157]左言军,习海玲,张建宏等,TiO2悬浮体系光催化降解反应动力学模型的建立,催化学报,2001,22(2):198-202
    [158]李凡修,陆晓华,梅平,氯酚类污染物的光催化降解活性与结构参数的关系研究,计算机与应用化学,2006,24(2):149-151

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700