高速移动子网的切换与漫游关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着Internet服务以及网络技术的不断发展,越来越多的应用系统被迁移到有线网络或者无线网络环境中,人们的生活与工作也越来越依赖网络。高带宽、低延时、灵活接入以及可移动性成为网络发展的新目标。移动网络的终端设备不仅可以是单个节点,更可扩展为一些移动的小网络,即移动子网。移动子网需要提供更高速度、更高带宽的接入方式。因此,移动子网的整体接入机制很有研究价值。
     移动子网的整体接入首先要解决移动子网在不同接入点之间的快速切换和无缝切换问题,减少因切换时链路中断造成的数据丢失;其次要解决移动子网在不同IP网络间的漫游,使之在不中断数据传输、不改变自身IP地址的条件下仍能接入不同的网络。本文研究的移动子网切换与漫游关键技术可解决上述问题。
     本文首先全面分析了各种无线和移动网络中的单个移动节点在接入点或基站间的切换机制,然后研究了网络层的移动性解决方案,主要包括可用于网间漫游的移动IP协议以及对它的各种改进。现有技术主要针对单节点的移动漫游通信,无法对移动子网的整体漫游提供支持。本文研究了可支持移动子网整体切换与漫游的关键技术,论文的主要研究成果包括:
     1)提出了在单无线链路中切换的触发时机决策算法。通过AP的实际分布位置、无线信号衰减规律,以及STA的移动规律和移动位置确定移动和漫游的切换时机进行切换触发,可以减少切换延迟;提出独立于各种应用的数据链路缓存算法,修改节点的无线驱动模块,保存在链路切换期间网络层交付的数据,待切换完成后重新发送,进一步减少切换过程中的丢包,提高无线链路的服务质量。
     2)提出在遵循IEEE802.11协议的无线网络中基于双链路实现软切换的DSH机制。设计了可支持双链路切换的无线信道分配机制,并针对小尺寸STA的特点确定了应用DSH的无线信道分配方式;通过全局信号量协同双链路的工作,确定两条链路各自的切换触发时机,确保两条链路不同时进入切换状态,在任何时刻均存在一条可以提供稳定数据传输服务的链路,提高移动传输的可靠性。DSH机制只要求对STA进行功能扩展,不需要修改AP的底层通信机制,在DSH中可以使用支持IEEE 802.1 1协议的任何AP产品,使DSH机制有较好的通用性。
     3)提出IMIP-RS机制,扩展了移动IP协议,使之可以支持移动子网的整体漫游。IMIP-RS可克服移动IP协议仅支持单个节点漫游的限制,通过家乡代理、外区代理和网内选路代理的服务,结合隧道技术、STA/AP网关技术等实现了多跳的移动IP,可实现高速移动子网的宽带接入。在底层硬件采用IEEE 802.11g标准时,采用TCP传输应用的最高数据传输率可达29Mbps;在要求快速响应的低吞吐量应用中,最大响应时间小于10毫秒。
     4)在自行研制的STA和AP设备上验证了上述关键技术。综合应用上述单链路快速切换与链路缓存算法、基于双链路的软切换DSH机制和基于扩展移动IP的子网整体漫游IMIP-RS机制,设计并实现了基于无线局域网可支持高速移动子网漫游的通信平台MP-RRS的原型系统。MP-RRS可在轨道交通控制系统的数据通信子系统上应用,经实际测试验证了MP-RRS中各项关键技术的可行性。测试结果显示,通过MP-RRS可实现高速移动子网的宽带接入,在军事和民用领域有着广阔的应用前景。
     基于上述关键技术的可支持高速移动子网漫游的通信平台已在江苏省重大成果转化专项“城市轨道交通列车自动控制系统”项目得到应用。
Grown with internet service and network technology, more and more applications have been moved to network (wire network & wireless network). More and more people’s life and work depend on the network environment. Wide bandwidth, low latency, more flexibility and mobility are goals of the network. Roaming network is not only one client terminal, but also a small network, i.e. a mobile subnet. So mobile subnet’s connection strategy should be investigated and smart technical solution is requested.
     To make the mobile subnet roaming as a whole, two problems should be solved. The first is the fast and seamless handoff among access points, which aims at shortening the handoff latency and decreasing the data lose during handoff. The second is to allow the mobile subnet access network without interrupting data transmission and without changing its IP address. The dissertation researches core techniques of handoff and roam to solve the above problems. It analyzes the handoff scheme of single mobile node in data link layer, and researches the mobility management in network layer.
     The mobile subnet connects to the network through only one STA. Therefore the existing techniques supporting one node roaming can’t support the subnet roaming as a whole. The main contributions of the dissertation are summarized as follows:
     1) A novel handoff opportunity decision scheme is proposed. It aims at triggering accurately to decrease the handoff latency and avoid the“Ping-Pang”handoff. It considers several important factors in the subnet roaming environment, including the distributions of access points, the attenuation law of radio signal, the moving speed and direction of the STA and the subnet. It decreases the handoff latency of a wireless link. And a layer2 Handoff-Buff algorithm independent with applications is proposed to avoid data lose during the handoff. It modifies the wireless driver, saves unsuccessfully sent data and resends them after link restoral. It diminishes the packet loss ratio and improves the QoS of the link.
     2) A novel soft-handoff scheme in WLAN realized by dual link is proposed. Channel allocating manners are designed for soft handoff in WLAN, and one of them is chosen for small STA and DSH. The proposed DSH scheme cooperates the working of dual wireless network adaptors in one STA by a global semaphore. STA maintains two active links to forward and backward APs respectively, and they never do the handoff simultaneously. The DSH ensures at least one data link to remote network at any moment. DSH is realized on the STA side, so AP can use any standard product. It achieves seamless data transmission during STA’s fast motion and enhances the link reliability.
     3) A novel improved mobile IP (IMIP-RS) is proposed to support subnet’s roaming. IMIP-RS extends the mobile IP to support muliti-hops connection. It allows the mobile network roaming as a whole. IMIP-RS integrates the home agent, foreign agent and intra-domain agent to transfer packets from remote nodes to mobile nodes in the mobile subnet. In IMIP-RS, STA and AP work as gateways at layer 3 to forward packets instead of as layer 2 device. While adopting IEEE 802.11g wireless devices, the mobile subnet applying IMIP-RS can achieve 29Mbps as the maximum application throughput by TCP data transmission.
     4) A mobile platform for rapid roaming subnet (MP-RRS) is realized in our developed AP and STA based on the infrastructure of WLAN. The discussed technologies are integrated into the platform, including fast handoff and buffer in data link, soft handoff scheme based on dual-link, and the IMIP-RS. The MP-RRS is applied to the data communication sub-system of the automatic train control system in urban subway. Testing results indicate that the core techniques in MP-RRS are feasible, and broad band connection is provided for fast moving subnet.
     The MP-RRS is applied to an important production transformation project in Jiangsu province.
引文
[1]中国互联网络信息中心,中国互联网络发展状况统计报告(2009年1月)[R],北京:中国互联网络信息中心, 2009.
    [2]贺昕,李斌.异构无线网络切换技术[M].北京:北京邮电大学出版社, 2008.
    [3]韦惠民,李国民,暴宇.移动通信技术[M].北京:人民邮电出版社, 2006:228-254.
    [4] TS23.060-2005. Technical Specification Group Services and System Aspects,General Packet Radio Service(GPRS), Service description[S]. 3GPP, 2005.
    [5] TS44.065-2005. Digital cellular telecommunications system (Phase 2+); Mobile Station (MS) Serving GPRS Support Node (SGSN); Subnetwork Dependent Convergence Protocol (SNDCP)[S]. 3GPP, 2005.
    [6] TS48.018-2005. Digital cellular telecommunications system (Phase 2+);General packet Radio Service (GPRS); Base Station System (BSS)-Serving GPRS Support Node (SGSN); BSS GPRS Protocol (BSSGP)[S]. 3GPP, 2005.
    [7] M. Etoh, Next Generation Mobile Systems 3G and Beyond[M], Wiley Press, 2005.
    [8] I.F. Akyildiz, J. XIE, S. Mohanty. A survey of mobility management in next- generation all-IP-based wireless systems, IEEE Wireless Communications [J]. 2004(8):16-28.
    [9] TS23.228 v7.6.0-2006. IP Multimedia Subsystem(IMS) Stage 2(Release7)[S]. 3GPP, 2006.
    [10] TS23.002 v7.l.0-2006. Network Architecture (Release7)[S]. 3GPP, 2006.
    [11] SAMSUNG. On intra-access mobility for LTE_ACTIVE UEs[R]. 3GPP TSG-RAN WG3 meeting#48bis, Cannes, France, 2005.
    [12] NTT DoCoMo, Nokia. Data forwarding in Intra-LTE Handovers[R].3GPP TSG-RAN WG2 meeting#53, China, 2006.
    [13] SAMSUNG. Handover procedure for LTE_ACTIVE UEs[R]. 3GPP TSG-RAN WG3#50, SoPhia-AntiPolis, France, 2006.
    [14] TR25.897-2003. Feasibility on the evolution of UTRAN arehitecture[S]. 3GPP, 2003.
    [15] TR25.882-2006. 3GPP system architecture evolution: Report on technical options and conclusions[S]. 3GPP, 2006.
    [16] Bluetooth Special Interest Group[EB/OL]. http: //www. bluetooth. com/. 2007-1-20/2007-3-28
    [17] Bluetooth SIG. Core Specification of the Bluetooth System version 2.0[S]. 2007.
    [18] IEEE 802.11. Wireless LAN Medium Access Controland Physical Layer Specification[S]. USA:IEEE,1999.
    [19] IEEE 802.11b-1999. Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications: Higher-Speed Physical Layer Extension in the 2.4 GHz Band[S]. USA:IEEE, 2000.
    [20] IEEE 802.11g. Amendment 4 to IEEE Std 802.11-Further Higher Data Rate Extension in the 2.4 Ghz Band[S]. USA:IEEE, 2003.
    [21] IEEE 802.11f. IEEE Trial-Use Recommended Practice for Multi -Vendor Access Point Interoperability via an Inter-Access Point Protocol Accross Distribution Systems Supporting[S]. USA:IEEE, 2003.
    [22] IEEE 802.11k/D4.0. Draft Amendment to Standard for Information TechnologyTelecommunications and Information Exchange Between Systems LAN /MAN Specific Requirements Part 11: WirelessMedium Access Control (MAC) and physical layer (PHY) specifications Amendment 9: Radio ResourceMeasurement[S]. USA:IEEE, 2006.
    [23] IEEE 802.11r/D2.0. Draft Amendment to IEEE Std. 802.11: Wireless Medium Access Control (MAC) and physical layer (PHY) specifications: Amendment: Fast BSS Transition[S]. USA:IEEE, 2006.
    [24] IEEE 802.11s/D0.01 Draft Amendment to IEEE Std. 802.11: ESS Mesh Networking [S]. USA: IEEE, 2006.
    [25] IEEE 802.16e. Air Interface for Fixed and Mobile Broadband Wireless Access Systems[S]. USA:IEEE, 2005.
    [26] IEEE 802.20. Mobile Broadband Wireless Access (MBWA) [S]. USA:IEEE, 2006.
    [27] S. Corson, J. Macker. IETF RFC 2501: Mobile Ad hoc Networking (MANET): Routing Protocol Performance Issues and Evaluation Considerations[S]. IETF, 1999.
    [28]谢希仁.计算机网络(第五版)[M].北京:电子工业出版社, 2008.1:336-353.
    [29]刘乃安.无线局域网(WLAN)——原理、技术与应用[M].西安:西安电子科技大学出版社, 2004: 464-477.
    [30] K. Ahmavaara, H., Haverinen, R. Pichna. Interworking architechture between 3GPP and WLAN systems[J]. IEEE Communications Magazine, 2003, vol.11:74-81.
    [31] A. K. Salkintzis. Interworking techniques and architectures for WLAN/3G integration toward 4G mobile data networks[J]. IEEE Wireless Communications, 2004, vol. 6:50-61.
    [32] TS 23.23.v.1.10.0, Group Services and System Aspects, 3GPP Ssytems to Wireless Local Area Network (WLAN) Interworking System Description (Release 6)[S].3GPP. May 2003.
    [33] C. Perkins, IP Mobility Support[S]. RFC 2002, IETF, Oct. 1996.
    [34] A. T. Campbell, J. Gomez, S. Kim, et al. Cellular IP[S], Internet Draft, IETF, 2000.
    [35] R. Ramjee, T. LaPorta, S. Thuel, et al. IP micro-mobility support using HAWAII[S], Internet Draft, IETF, 2000.
    [36] J. Arkko, V. Devarapalli, F. Dupont. Using IPsec to Protect Mobile IPv6 Signaling Between Mobile Nodes and Home Agents[S]. RFC 3776, IETF, 2004.
    [37] D. Johnson, C. Perkins, J. Arkko. Mobility Support for IPv6[S]. RFC3775, IETF, 2004.
    [38] H. Soliman, C. Catelluccia, K. E. Malki, et al. Hierarchical Mobile IPv6 mobility management[S]. Internet Draft, draft-ietf-mipshop-hmipv6-04.txt, IETF, 2004.
    [39] S.Das, A. Misra, P. Agrawal, S. IK. Das. TeleMIP: telecommunications-enhanced MIPv4 architecture for fast intradomain mobility[S]. IEEE Personal Communications. 2000:50-58.
    [40] A. Argyriou, V. Madisetti. A soft-handoff transport protocol for media flows in heterogeneous mobile networks[J]. Computer Networks, 2006 (50):1860–1871.
    [41] K. Hur, D. S. Eom, Y. W. Lee, J. H. Lee, S. Kang. Priority forwarding for improving the TCP performance in mobile IP based networks with packet buffering[J]. Computer Communications, 2007(30):1337–1349.
    [42] J. Rosenberg, K.A. Schulzrinne, G. Camarillo, et al. SIP: Session Initiation Protocol[S]. RFC 3261, IETF, 2002.
    [43] H. Schulzrinne, E. Wedlundb. Application-Layer Mobility Using SIP[J]. Mobile Computing and Communications Review, 2000, 1(2).
    [44] C. E. Perkins. Ad Hoc Networking[M]. NJ: Addison-Wesley, 2000: 53-255.
    [45] J. P. Macker, S. Corson. MANET: Routing Technology for Dynamic, Wireless Networking[A] In: S. Basagni, eds. Proc. Mobile Ad hoc networking[C]. New York: IEEE Press, 2003
    [46] H. Velayes, G. Kdsson, Techniques to Reduce IEEE 802.llb MAC Layer Handover Time[R]. Tech. Rep. TRITA-IMIT-LCN R 03:02, ISRN KTH/IMIT/LCN/R-03/02-SE, KunglTekniska Hogskolen. Stockholm. Sweden, 2003:1651~7717.
    [47] S. X. Cheng, The Intra-domain WLAN handoff for real-time applications and its implementation suggestion[D], School of Computing Science, Simon Fraser University, 2004.
    [48] S. Shin, A. S. Rawat, H. Schulzrinne. Reducing MAC layer handoff latency in IEEE 802.11 wireless LANs[C]. ACM MobiWac'04, Philadelphia, Pennsylvania. Oct 2004.
    [49] H. S. Kim, S. H. Park, C. S. Park, J. W. Kim, and S. J. Ko. Select Channel Scanning for Fast Handoff in Wireless LAN using Neighbor Graph[C]. International Technical Conference on Circuits Systems, Computers and Communications, Sendai/Matsusima, July 2004.
    [50] J. Kempf. Requirements for Layer 2 Protocols to Support Optimized Handover for IP Mobility [S], Internet Draft, IETF, 2000.
    [51] Jae-Woo So. Vertical handoff in integrated CDMA and WLAN systems[J]. Int. J. Electron. Commun. (AEǖ), 2008(62):478-482.
    [52] S. Mohanty, I.F. Akyildiz. A Cross-Layer(Layer2+3) Handoff Management Protocol for Next-Generation Wireless Systems[J]. IEEE Trans. Mobile Computing, 2006, vol.5(10): 1347-1360.
    [53] P. Khadivi, T. D. Todd, S. Samavi, H. Saidi, D. Zhao. Mobile ad hoc relaying for upward vertical handoff in hybrid WLAN/cellular systems[J]. Ad Hoc Networks, 2008, vol.6(2):307-324
    [54] Paulo Pinto, Luis Bernardo, Pedro Sobral. Seamless continuity of PS-services in WLAN/3G interworking[J]. Computer Communications, 2006(29):1005-1064.
    [55] Y.C. Chen, J.H. Hsia, Y.J. Liao. Advanced seamless vertical handoff architecture for WiMAX and WiFi heterogeneous networks with QoS guarantees[J]. Computer Communications, 2009(32):281-293.
    [56] R.H. Jan, W.Y. Chiu. An approach for seamless handoff among mobile WLAN/GPRS integrated networks[J]. Computer Communications, 2005 (29):32-41.
    [57] S. Pack, J. Choi, T. Kwon, Y. Choi. Fast-Handoff Support in IEEE 802.11 Wireless Networks[J]. IEEE COMMUNICATIONS, 2007, Vol. 9(1).
    [58] A. Mishra, M.Shin, W. Arbaugh. An empirical analysis of the IEEE802.11 MAC layer handoff process [C]. ACM SIGCOMM Computer Communication Review, 2003, vol. 33(2):93-102.
    [59] S. Shin, A. G. Forte, A. S. Rawat, et al. Reducing MAC layer handoff latency in IEEE 802.11 wireless LANs[C]. Proc. of the 2nd international workshop on Mobility management & wireless access protocols, USA: ACM Press, 2004: 19-26.
    [60] N. Mustafa, W. Mahmood, A.A. Chaudhry, C.M. Ibrahim. Pre-Scanning and Dynamic Caching for Fast Handoff at MAC Layer in IEEE 802.11 Wireless LANs[C]. Proc. 2005 IEEE Int’l Conf. Mobile Adhoc and Sensor Systems, Nov. 2005.
    [61] I. Ramani, S. Savage. SyncScan: Practical Fast Handoff for 802.11 Infrastructure Networks[C]. Proc. IEEE Infocom 2005, Mar. 2005.
    [62] V. Brik, V. Mishra, S. Banerjee. Eliminating Handoff Latencies in 802.11 WLANs using MultipleRadios: Applications, Experience, and Evaluation[C]. Proc. ACM Internet Measurement Conf. 2005, Oct. 2005.
    [63] H. Velayos, G. Karlsson. Techniques to Reduce IEEE 802.11b MAC Layer Handover Time[C]. Proc. IEEE ICC 2004, June 2004.
    [64] M. Shin, A. Mishra, W. Arbaugh. Improving the Latency of 802.11 Handoffs using Neighbor Graphs[C]. Proc. ACM MobiSys 2004, June 2004.
    [65] Y. Lin, V. W. S. Wong. An admission control algorithm for multi-hop 802.11e-based WLANs[J]. Computer Communications, 2008 (31):3510–3520.
    [66] K. Chi, J. Jiang, L. Yen. Cost-Effective Caching for Mobility, Support in IEEE 802.1X Frameworks[J]. IEEE Trans. Mobile Computing, 2006, vol. 5(1):1547–60.
    [67] S. Pack, Y. Choi. Fast handoff scheme based on mobility prediction in public wireless LAN systems[J]. IEEE Proc.-Comm., 2004, Vol. 151(5).
    [68] A. Mishra, M. Shin, W. Arbaugh. Context Caching using Neighbor Graphs for Fast Handoffs in a Wireless Network[C]. Proc. IEEE INFOCOM 2004, Mar. 2004.
    [69] S. Pack et al., SNC: A Selective Neighbor Caching Scheme for Fast Handoff in IEEE 802.11 Wireless Networks[C]. ACM Mobile Computing and Commun. Review, 2005, vol. 9(4): 39–49.
    [70] M. Rahman, F. Harmantzis. Low-latency handoff inter-WLAN IP mobility with broadband network control[J]. Computer Communications, 2007(30):750-766.
    [71] N. Hegde, K. Sohraby. On the impact of soft handoff in cellular systems[J], Computer Networks, 2002, vol. 38:257–271.
    [72] M. Portoles, Z. Zhong, S. Choi, C.T. Chou. IEEE 802.11 link-layer forwarding for smooth handoff[C]. Proceedings of IEEE on PIMRC 2003:1420-1424.
    [73] J.W. Florolu, R. Ruppelt, D. Sisalem, J. Voglimacci. Seamless handover in trestrial radio access networks: a case study[J]. IEEE Commun. Mag. 2003, Vol.41(11):110-116.
    [74] W.I. Kim, C.S. Kang. An adaptive soft handover algorithm for traffic-load shedding in the WCDMA mobile communication system[C]. WCNC 2003, Vol. 2:1213-1217.
    [75] S. Mohanty, J. Xie. Performance analysis of a novel architecture to integrate heterogeneous wireless systems[J]. Computer Networks, 2006, vol. 51(4):1095-1105.
    [76] R. Chandra, P. Bahl, P. Bahl. MultiNet: Connecting to Multiple IEEE 802.11 Networks Using a Single Wireless Card[C]. IEEE Infocom 2004.
    [77] S.L. Tsao, P. H. Lo. DualMAC: A soft handoff mechanism for real-time communications in secured WLANs[J]. Computer Communications, 2007, vol. 30:1785–1793.
    [78] P. Rodriguez, R. Chakravorty, J. Chesterfield, I. Pratt, S. Banerjee. MAR:A Commuter Router Infrastructure for the Mobile Internet[C]. ACM Mobisys, June 2004.
    [79] C. Perkins. IP Mobility Support for IPv4[S]. IETF RFC3344, August 2002.
    [80] P.P. LAM, S.C.LIEW, J.Y.B.LEE. Cellular universal IP for nested network mobility[J]. Computer Networks, 2007 (51):3617–3631.
    [81] C. Perkins, D. Johnson. Route optimization in mobile IP[S]. IETF Internet Draft, 2000.
    [82] R. Hsieh, Z. G. Zhou, A.Seneviratne. S-MIP: A seamless handoff architecture for Mobile IP[C]. Proc. IEEE INFOCOM 2003, 2003(3):1774–1784.
    [83] A. Kamal, E.R. Hesham, U.M. Raza. Optimal and approximate approaches for selecting proxy agents in mobile IP based network backbones[J]. Parallel Distributed Computer, 2004(64):554–568.
    [84] C. Perkins. IP Encapsulation Within IP[S]. RFC2003, IETF, Oct. 1996.
    [85] C. Perkins. Minimal Encapsulation within IP[S]. RFC 2004, IETF, Oct. 1996.
    [86] J.Solomon. Applicability Statement for IP Mobility Support[S]. RFC 2005, IETF, Oct. 1996.
    [87] D.Cong, M.Hamlen, C.Perkings. The Definitions of Managed Objects for IP Mobility Support using SMIv2[S]. RFC 2006, IETF, Oct, 1996.
    [88] D.Clark, L.Chapin, V. Cerf, R.Braden, R.Hobby. Towards the Future Internet Architecture[S], RFC1287, IETF, Dec. 1991.
    [89] Y. Rekher. Address Allocation for Private Internets[S]. RFC1918, IETF, Feb. 1996.
    [90] P. Srisuresh, M.Holdrege. IP Network AddressTranslator (NAT) Teminology and Considerations [S]. RFC2663, IETF, August1999.
    [91] P. Srisuresh, K. Egevang. Traditional IP Network Address Translator (NAT)[S]. RFC 3022, IETF, Jan. 2001.
    [92] http://www.hjortskov.dk/apparater.dk/maindoc/node116.html[OL].
    [93]罗远军,华云,苏德福.移动IP实现系统的分析[J].广西科学院学报, 2008, 18(4):230– 234.
    [94]李建东,盛敏,刘乃安.宽带无线IP技术与系统[J].中兴通讯技术, 2002, 8(1).
    [95] M. Chakraborty, I.S. Misra, D. Saha, A. Mukherjee. TLMM: MIP-based three level mobility model[J]. Computer Communications, 2007(30):1244-1257.
    [96] Y.F. Huang, M.H. Chuang. Fault tolerance for home agents in mobile IP[J]. Computer Networks, 2006 (50):3686-3700.
    [97] S. Deering, R. Hinden. Internet Protocol, version 6 (IPv6) specification[S]. RFC 2460, IETF, 1998.
    [98] T. Narten, E.Nordmark, A. Simpson. Neighbor discovery for IP version 6 (IPv6)[S]. RFC 2461, IETF, 1998.
    [99] S. Thomson, T. Narten. IPv6 stateless address autoconfiguration[S]. RFC 2462, IETF, 1998.
    [100] S. Kent, R. Atkinson. Security architecture for the Internet protocol[S]. RFC 2401, IETF, 1998.
    [101] R. Koodli. Fast handovers for mobile IPv6[S]. RFC 4068, IETF, 2005.
    [102] H.F. Chen, J. Zhang. Pre-binding of fast handovers for mobile IPv6. draft-chen-mipshop- fast- handovers-prep-binding-02.txt[S]. IETF, April 2006.
    [103] D. H. Kwon, W. J. Kim, Y. J. Suh. An efficient mobile multicast mechanism for fast handovers: A study from design and implementation in experimental networks[J]. Computer Communications, 2008(31):2162–2177.
    [104] N. V. Hanh, S. Ro, J. Ryu. Simplified fast handover in mobile IPv6 networks[J]. Computer Communications, 2008 (31):3594–3603.
    [105] L. A. Villasenor-Gonzalez, A. L. Gonzalez-Sanchez, J. Sanchez-Garcia, R. Aquino-Santos. Macromobility support for mobile ad hoc networks using IPv6 and the OLSR routing protocol[J]. Computer Communications, 2008 (31):3137–3144.
    [106] H. S. Park, H. W. Lee, D. H. Lee, H.K.Ko. Multi-protocol authentication for SIP/SS7 mobile network[J]. Computer Communications, 2008(31):2755–2763.
    [107] S. Pack, W. Lee. Dual home agent (DHA)-based location management scheme in integrated cellular–WLAN networks[J], Computer Networks, 2008(52):3273–3283.
    [108] C. Makaya, S. Pierre. Adaptive handoff scheme for heterogeneous IP wireless networks[J].Computer Communications, 2008 (31):2094–2108.
    [109] P. Bellavista, A. Corradi, L. Foschini. Context-aware handoff middleware for transparent service continuity in wireless networks[J]. Pervasive and Mobile Computing, 2007(3):439-466.
    [110] C.C. Yang, C.S. Tsai, J.Y. Hu, T.C. Chuang. On the design of mobility management scheme for 802.16-based network environment[J]. Computer Networks, 2007 (51):2049-2066.
    [111] Alcatel. Comparison of Handover Mechanisms for Intra-Access System Mobility[R]. 3GPP TSG-RAN WG3 meeting#50, SoPhia-AntiPolis, France, 2006.
    [112] E. Gustafsson, A. Jonsson, C. Perkins. Mobile IPv4 Regional Registration[S]. IETF Internet Draft. draft-ietf-mobileip-reg-tunnel-08.txt, 2003.
    [113] L. Peters , I. Moerman, B. Dhoedt, P. Demeester. Q-MEHROM: Mobility support and resource reservations for mobile senders and receivers[J]. Computer Networks, 2006 (50):1158–1175.
    [114] S.J. Koh, M.J. Chang, M. Lee. mSCTP for soft handover in transport layer[J]. IEEE Communication Letters 2004, 8(3):189–191.
    [115] W. He, I. R. Chen. Proxy-based hybrid cache management in Mobile IP systems[J]. Information Processing Letters, 2008 (106):26–32.
    [116] C. Politis, K.A.Chew, R.Tafazolli. Multilayer mobility management for all-IP networks: pure SIP vs. hybrid SIP/mobile IP[C]. Vehicular Technology Conference, the 57th IEEE Semiannual, 2003.
    [117] M. Chang, H. Lee, M. Lee. A per-application mobility management platform for application-specific handover decision in overlay networks[J]. Computer Networks, 2009 (53):1846-1858.
    [118] R. Pandya. Emerging Mobile and Personal Communication System[J], IEEE Comm. Magazine, 1995, vol.33(6):44-52.
    [119] Y.S. Chen, M.C. Chuang, C.K. Chen. DeuceScan: Deuce-Based Fast Handoff Scheme in IEEE 802.11 Wireless Network[J]. IEEE Transaction on Vehicular Technology. 2008, vol. 57(2): 1126-1140.
    [120] E. Wallenius, T. Hamalainen, T. Nihtila, J. Joutsensalo, K. Luostarinen. 3G interworking with WLAN QoS 802.11e[C]. IEEE 58th Vehicular Technology Conference, 2003.
    [121] A.A. Elmangosh, M.A. Ashibani, F. S. Ben. The interworking between EDCA 802.11e and DiffServ[C]. IEEE International Performance Computing and Communications Conference, 2007, Vol. 1 and 2 : 545-550.
    [122]卜鸥. Linux系统中网络设备驱动的研究[J].乐山师范学院学报, 2006(5):73-75.
    [123]蔡斌,万柳.基于Linux的网络设备驱动程序的机制分析[J].微计算机应用, 2006(7): 422-424.
    [124]施炜,薛向红. Linux虚拟存储浅析[J].南通航运职业技术学院学报.2006(6):57-59.
    [125] L.W. Jiun, K. C. Jung, C. C. Hei. Improving TCP Performance in Mobile Networks[J]. IEEE Tran. on Comm. , 2005, Vol.53(4):569-571.
    [126] M. Kulkarni. Mobile IPv4 Dynamic Home Agent (HA) Assignment[S]. RFC4433, IETF, 2006.
    [127] V. Devarapalli, R. Wakikawa, A. Petrescu, P. Thubert. Network Mobility (NEMO) Basic Support Protocol [S]. RFC 3963, IETF, Jan, 2005.
    [128] IETF Network Mobility (NEMO) Working Group. http://www.ietf.org/html.charters/nemo- charter.html[OL].

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700