节理裂隙岩体隧道爆破仿真分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自然界的岩体中存在着节理、裂隙、断层、泥化夹层等软弱面,这些软弱面对隧道工程钻爆法开挖效果有着很重要的影响,因此研究节理裂隙岩体中隧道在爆炸载荷作用下的动力响应机制,对于合理采用凿岩爆破参数、提高爆炸能量利用率、改善爆破效果等均有其实际意义和理论指导作用。
     本文在综合分析和研究已有节理岩体爆破理论、试验研究现状及爆破模型发展动态的基础上,以工程项目实体为基础,开展数值模拟研究。选取隧道内RK343+665、RK343+667、RK343+669、RK343+698、RK343+719、RK343+735六个典型断面作为实体,建立节理裂隙岩体隧道爆破模型,重现隧道光面爆破开挖过程。将实际断面模型与完整岩体爆破模型进行对比,分析工程中存在的节理对隧道爆破成型效果的影响,从中分析引起隧道产生超欠挖的原因,继而提出软弱带内部不宜放置炸药的建议,并从能量的角度进行阐述和论证。
     考虑到节理的物理力学特征,即节理产状、节理宽度、节理间距对隧道成型效果的影响,采用优化拉丁方方法进行DOE试验设计,基于Isight平台做了43组模拟实验,得到了这些影响因素对超挖的影响规律。
     岩体中的节理是自然形成的,想获得较好的隧道爆破效果主要的方法是调整炸药参数及装药结构。因此本文以减少超欠挖量、提高炸药能量利用率为目标进行了不同炮孔间距、装药密集系数情况下节理岩体的爆破优化分析。
Rock mass blasting is one of the most effective technologies for rock mass excavation in tunnel engineering. The numerical modeling of tunnel blasting serves as a link between the theoretical developments and the engineering practice. It simulates the dynamic blasting of the rock mass by employing mathematical physical models approximating the real situation, with a view to revealing the actual transient blasting process and the subsequent effect, and obtaining a better understanding of the rock mass blasting and failure mechanism. At the same time, the credibility of the numerical simulation can be testified by in-situ large-scale experiments. A process consisting of numerical simulation, physical experiment and theoretical investigation has been involved in various mechanical and engineering fields for a systematic and integrated analysis.
     The dynamic Finite element analysis commercial package ANSYS/LS-DYNA is employed to assist the analysis carried out in this project. The numerical modal for the blasting of the jointed rock mass is efficiently constructed using the ANSYS specified parametric language. The Lagrange algorithm is adopted in the analysis. The unbounded rock mass is modeled by non-reflecting artificial boundary conditions. Relevant materials in this study include rock, joints, air and explosive, with corresponding material types in the numerical model being concrete, rate-independent bilinear kinematic hardening model, high explosive and null-material modals, respectively. Six selected sections of the Gaoling tunnel are examined in this study to explore the failure characteristics and the overbreak/underbreak mechanisms of the jointed rock mass blasting. The DOE technique is adopted to investigate the influence of the geological properties and the blasting parameters on the jointed rock mass blasting. Satisfactory blasting phenomenon is achieved by adjusting the designing blasting parameters according to optimization method.
     The main conclusions are summarized as follows:
     1.The influence of joints to the blasting phenomenon is intuitively observed by examining the Six typical sections, i.e., RK343+665, RK343+667, RK343+669, RK343+698, RK343+719 and RK343+735 of the Gaoling tunnel, that is, the closed joints enforce negligible influence on the blasting, whereas the influence from the filled joints mainly depends upon the spacial arrangement of the blastholes:
     (1)With blastholes being positioned inside the joints, the joint strength decreases dramatically after blasting, secondary stretching faults are resulted from the stress wave reflection between the rocks at the two sides of the joint, leading to severe damages, even to the surrounding rock out of the designing scope.
     (2)When blastholes are within the vicinity of the joints, the blasting energy can be partially absorbed by the joints, with a correspondingly partial reflection, which may result in massive overbreak.
     (3)When a couple of or more than two sets of joints are closely located or intersect, a back-and-forth reflection of the stress wave will be created, yielding stretching failure of the rocks in between the joints. This, however, may lead to underbreak if the rocks, on the other side of the joints, are protected without any blasthole arranged.
     ( 4) It is therefore suggested for rock mass blasting with filled joints that Large-diameter blastholes should be designed with little or no explosive. No explosive should be placed inside the joints.
     2. The characteristics of the joints, i.e., the orientation, width, and the spacing, have different influence on the jointed rock mass blasting, varying from negligible effect to significant overbreak/underbreak, which may unnecessarily increase the blasting cost. Based on the ISIGHT platform, Optimal Latin Hypercube Method is employed in the smooth blasting design of the jointed rock mass. 43 sets of simulations are carried out with the input variables being joint- blasthole center angle, joint width, joint spacing, blasthole spacing, the Intensive factor of peripheral holes and number of explosive, and the output variables being the amount of overbreak or underbreak.
     (1)Mutil-factor least squared method is utilized to obtain the following conclusions: the weighting ratio of each factor influencing the overbreak/underbreak of the smooth blasting of the joined rock mass is localized within 10%. The first five factors are: the linear affect of the joint- blasthole center angle to the overbreak which takes up to 9.8%; the linear primary effect of the explosive and the interact effect of the joint width JW1 and the joint spacing JD both take up to 7.3%;the second primary effect of Jw2 takes up 6.8% and the interact affect the joint width Jw2 and the joint spacing Jd takes up to 6%.
     (2)RBF neutral network is adopted in the multi-dimensional spacial approximation of the data constructive modal. a non-linear interact phenomenon is observed with relative complexion.
     3.Experimental optimization design provides valuable information for acquiring more appropriate blasting parameters. An optimal software platform ISIGHT is used to perform the optimized numerical modeling of the joint rock mass blasting. The optimal blasthole spacing and the Intensive factor of peripheral holes are obtained by inspecting two objective values: the volume of the overbreak/underbreak and the effectiveness of the explosive energy. More variables and objective values can be taken into consideration in this analysis with more practical significance.
     The main innovation spots in this paper:
     1.The complex jointed rock mass blasting model is constructed in this study, with a satisfactory simulation of the overbreak and the underbreak of the tunnel blasting. A suggestion that no explosive should be placed inside the filled jointed is provided. Discussions are presented in terms of the energy point of view with empty blasthole.
     2.The interaction effect between the geological information and blasting parameters are taken into account. The least squared multi-factor formulations are presented. Radial based neutral network is used for the construction of spacial date approximation, which ensures the visualization of the multi-factor interaction effect in multi-dimensions.
引文
[1]王梦恕.中国隧道及地下工程修建技术[M].北京:人民交通出版社,2010
    [2]陈建平.超、欠挖及其对隧道成本的影响[J].爆破,1995,:48-51
    [3]钱七虎,王明洋,赵跃堂.岩石中爆炸与冲击作用研究进展[C].中国岩石力学与工程学会第四次学术大会文集.北京:中国科学技术文献出版社,1996:53–65.
    [4]钱七虎.岩石爆炸动力学的若干进展.岩石力学与工程学报,2009,28(10):1945-1969
    [5]高安泽,张宪宏.各向异性节理岩体应力应变关系探讨[J]水力发电学报, 1983,(02) .
    [6]周维垣,杨延毅.节理岩体的损伤断裂模型及验证[J]岩石力学与工程学报, 1991, (01) .
    [7] T.E.Francis.Determination of the influence of joint orientation on rock mass classification for tunnelling using a stereographic overlay[J].Quarterly Journal of Engineering Geology, 1991, 24:267-273
    [8]于亚伦,赵进谦.裂隙发育岩体爆破块度的预测[J].中国矿业,1993,2(5)
    [9]郭文章,王树仁,刘殿书,陈寿峰.节理岩体爆破损伤演化机理探讨[J].工程爆破, 1998, (02)
    [10] T.G.Sitharam, J.Sridevi, N.Shimizu.Practical equivalent continuum characterization of jointed rock massesInternational Journal of Rock Mechanics and Mining Sciences,2001,38(3):437-448
    [11] T.G.Sitharam, G.Madhavi Latha.Simulation of excavations in jointed rock masses using a practical equivalent continuum approach International Journal of Rock Mechanics and Mining Sciences.2002,39(4):517-525
    [12] Fa-quan Wu, Si-jing Wang A stress-strain relation for jointed rock masses International Journal of Rock Mechanics and Mining Sciences,2001,38(4):591-598
    [13]李建林,哈秋舲.节理岩体拉剪断裂与强度研究[J]岩石力学与工程学报, 1998, (03)
    [14]李建林,孙志宏.节理岩体压剪断裂及其强度研究[J]岩石力学与工程学报, 2000, (04) .
    [15] Amit K.Verma,T.N.Singh.Modeling of a jointed rock mass under triaxial conditions[J].Arab J Geosci,2010,3:91-103
    [16]陈爱国.多排同段爆破技术的机理探讨[J].长沙矿山研究院季刊,1986,9(2):50-54
    [17]张奇.层状岩体光面爆破效果的理论分析[J].爆炸与冲击;1988(01):60-66
    [18]李守巨.爆炸荷载作用下球面应力波特性的研究[J].中国矿业大学学报, 1989, 18(1):117-122
    [19]张奇.层状岩体内光面爆破断裂过程的研究[J].东北煤炭技术,1989,(2):29-33
    [20]阳友奎.断裂控制爆破中裂面控制的断裂力学分析[J].重庆大学学报(自然科学版), 1991, (06) :91-96
    [21]杨善元.岩石爆破动力学基础[M].北京:煤炭工业出版社,1991
    [22]郭子庭,吴从师.岩石爆破破碎的能量分析[A].第三届全国岩石动力学学术会议论文选集[C], 1992
    [23]李夕兵,赖海辉,古德生.爆炸应力波斜入射岩体软弱结构面的透反射关系和滑移准则[J].中国有色金属学报,1992,2(1):9-14
    [24] Fordyce DL.,Fourney WL.,Dick RD.and Wang XJ.Effect of open Joints on Stress Wave Transmission[C].Fourth Ineternational Conference on Fragmentation by Blasting, Vienna,Austria, 1993:47-54
    [25]张守中.爆炸与冲击动力学[M].北京:兵器工业出版社,1993
    [26]倪芝芳,李玉民.岩石爆破孔壁初始冲击波压力的理论计算与拟合[J].岩石力学与工程学报,1996,15(Supp):511-514
    [27]李守巨,刘迎曦,吴玉良.爆破漏斗形成过程的拉伸和剪切理论[J].岩石力学与工程学报,1996,15(supp):525-528
    [28]王明洋,钱七虎.应力波作用下颗粒介质的动力特性研究[J].爆炸与冲击,1996,16(1):11-20
    [29]宗琦,杨吕俊.岩石中爆炸冲击波能量分布规律初探[J].爆破,1999,16(2):1-6
    [30]郭文章,冯顺山,王树仁,陈寿峰.节理岩体爆破研究进展[J].工程爆破,1999,5(4):72-77
    [31] Fa-quan Wu, Si-jing Wang.A stress–strain relation for jointed rock masses[J].International Journal of Rock Mechanics and Mining Sciences,2001,38(4):591-598
    [32]王明洋,葛涛,戚承志,钱七虎.爆炸荷载作用下岩石的变形与破坏研究Ⅰ[J].防灾减灾工程学报,2003,23(2):43-54
    [33]王明洋,葛涛,戚承志,钱七虎.爆炸荷载作用下岩石的变形与破坏研究Ⅱ[J].防灾减灾工程学报,2003,23(3):9-20
    [34] M.Cai, P.K.Kaiser, H.Uno, Y.Tasaka, M.Minami.Estimation of rock mass deformation modulus and strength of jointed hard rock masses using the GSI system[J].International Journal of Rock Mechanics and Mining Sciences,2004,41(1):3-19
    [35]戚承志,王明洋,钱七虎,罗键.冲击载作用下岩石变形破坏的细观结构特性[J]岩石力学与工程学报, 2007,(S1) .
    [36] S.K.Mandal,M.M.S.Dasgupta.Theoretical concept to understand plan and design smooth blasting pattern[J].Geotech Geol Eng,2008,26:399-416
    [37] Qi chengzhi,Chen canshou, Qian qihu.Dynamic instability of tunnel in blocky rockmass[J].Trans.Tianjin Univ.2008,14:457-463
    [38] S.Maghous, D.Bernaud, J.Fréard, D.Garnier.Elastoplastic behavior of jointed rock masses as homogenized media and finite element analysis[J].International Journal of Rock Mechanics and Mining Sciences,2008,45(8):1273-1286
    [39]许年春,吴德伦等.节理产状的应力波反射法反演研究[J].岩石力学与工程学报,2008,27(Supp.2):3585-3591
    [40]李业学,谢和平等.应力波穿越分形节理时的透反射规律研究[J].岩石力学与工程学报,2009,28(1):120-129
    [41] J.E.Field,A.Pedersen.The importance of the reflected stress wave in rock blasting[J].Rock.Mech Min.Sci.,1971,8:213-226
    [42] S.Bhandari.On the role of stress waves and quasi-static gas pressure in rock fragmentation by blasting[J].Acta Astronautica, 1979, 6(3-4):365-383
    [43]杨永琦,方文儒.爆炸应变波和裂缝形成的模型试验研究[J].中国矿业大学学报,1984,1(1):81-88
    [44]陶纪楠,秦明武.光面爆破参数的规范化研究及参数优化试验[J].爆炸与冲击,1987,7(1):339-347
    [45] Bhandri S.and Badal R.Relationship of joint orientation with hole spacing parameter in multihole blasting.Proc 3rd International Symposium on Rock Fragmentation by Blasting[C], Brisbane, 1990, 26-31:225-231
    [46]赵震英.节理岩体数值分析及模型试验研究[J].岩石力学与工程学报,1991,10(1):55-62
    [47]朱振海.爆炸应力波对高速扩展裂纹影响的动态光弹性试验研究[J].爆炸与冲击,1993,13(2):178-185
    [48] A.K.Chakraborty, J.L.Jethwa, and A.G.Paithankar.Assessing the effects of joint orientation and rock mass quality on fragmentation and overbreak in tunnel blasting.Tunnelling and Underground Space Technology[J], 1994,9,(4):471-482
    [49] A.K.Chakraborty,J.L.Jethwa,A.G.Paithankar.Effects of joint orientation and rock mass quality on tunnel blasting[J].Enginnering Geology,1994,37(3/4):247-262
    [50]乔河,柴华友.爆炸作用下花岗岩动态本构关系试验研究[J].岩石力学与工程学报,1996,15(Supp):446-451
    [51] Khosrow Bakhtar.Impact of joints and discontinuities on the blast-response of responding tunnels studied under physical modeling at 1-g[C].ISRM International Symposium 36th U.S.Rock Mechanics Symposium,International Journal of Rock Mechanics and Mining Sciences, 1997,34(3-4):21.e1-21.e15.
    [52] E.Hoek,E.T.Brown. Practical estimates of rock mass strength[J].Int.J.Rock Mech.Min.Sci.1997, 34(8):1165-1186
    [53]王家来.爆生气体作用过程的模拟试验研究[J].爆破,1998,15(2):5-9
    [54]杨小林,员小有,梁为民.不偶合装药爆炸作用机理及试验研究[J].煤炭学报,1998,23(2):130-134
    [55]员永峰,张玉明等.节理岩体爆破超动态应变模拟试验技术[J].西安矿业学院学报,1999,19(suppl):156-159
    [56]于滨,刘殿书,乔河,王树仁.爆炸载荷下花岗岩动态本构关系的试验研究[J].中国矿业大学学报,1999,28(6):552-555
    [57] Hong Hao, Yaokun Wu, Guowei Ma, Yingxin Zhou.Characteristics of surface ground motions induced by blasts in jointed rock mass[J].Soil Dynamics and Earthquake Engineering, 2001, 12: 85-98.
    [58] Li ning,Zhang ping and Duan qingwei.Dynamic damage model of the rock mass medium with microjoints[J].International journal of damage mechanics,2003,12:163-173
    [59]赵跃堂,郑守军,郑大亮,罗昆升.爆炸波在饱和土介质中传播时压力变化规律的试验研究[J].防灾减灾工程学报,2004,24(1):60-65
    [60]赫建明,赵学,柳崇伟.爆炸冲击作用导致岩体损伤的模型试验研究[J].西安科技学院学报,2004,24(1):49-52
    [61]李建军,段祝平.节理裂隙岩体波安排试验研究[J].爆破,2005,22(3):12-16
    [62]李建军,段祝平.岩体中的节理裂隙对爆破影响的试验研究[J].矿冶工程,2005,25(5):1-3
    [63] Peng Shao,Yong Zhang and Yong Nian He.Fracture characteristics of intermittent jointed rock masses under blast loading[J].Key Engineering Materials,2005,297-300:2660-2666
    [64]邵鹏,张勇等.应力波反复作用下断续节理岩体疲劳破坏试验研究.岩石力学与工程学报,2005, 24(22):4180-4184
    [65]谭海文,吴仲雄,马瑞军.岩体节理裂隙对巷道掘进爆破影响的研究与实践[J].金属矿山,2007(9):42-45
    [66]韩嵩,蔡美峰.节理岩体物理模拟与超声波试验研究[J].岩石力学与工程学报,2007, 26(5):1026-1033
    [67]杨仁树,岳中文,肖同社等.节理介质断裂控制爆破裂纹扩展的动焦散试验研究[J].岩石力学与工程学报,2008,27(2):244-250
    [68]肖同社,杨仁树,庄金钊等.节理岩体爆生裂纹扩展动态焦散模型试验研究[J].爆炸与冲击,2007,27(2):159-164
    [69] Abdellah Hafsaoui,Korichi Talhi.Influence of joint direction and position of explosive charge on fragmentation[J].The Arabian Journal for Science and Engineering,2008,34(2A):125-132
    [70]郑志辉,胡时胜.爆炸冲击波通过砾石层衰减规律的试验研究[J].工程爆破,2008,14(1):1-3,7
    [71] Abdellah Hafsaoui, Korichi Talhi.Influence of joint direction and position of explosive charge of gragmentation[J].The Ariabian Journal for Science and Engineering, 2009, 34(2):125-132.
    [72]李清.爆炸致裂的岩石动态力学行为与断裂控制试验研究[J].中国矿业大学(北京)博士学位论文,2009
    [73]欧阳吉,郑爽英等.爆破作用对软弱夹层岩质边坡稳定性影响试验研究[J].爆破,2009,26(1):10-14
    [74] A.M.Kilic, E.Yasar, Y.Erdogan and P.G.Ranjith.Influence of rock mass properties on blasting efficiency[J].Scientific Reasearch and Essay, 2009, 4(11): 1213-1224.
    [75]赵建平,徐国元,黄戡.不耦合装药爆炸波分离及衰减规律的试验研究[J].中南大学学报(自然科学版),2011,42(2):482-489
    [76] Oriad, L.L.. Blasting effect and their control[M]. In: W. Hustrulid (Editor), Underground Mining Methods Handbook. Soc. Mining Engg., AIME, New York,1982
    [77] Forsyth.W.W.A discussion of blast-induced overbreak around underground excavations[C].Proc.4th International Symposium on Rock Fragmentation by Blasting, Fragblast-4, Vienna, Austria, 1993, 5(8):161-166
    [78] S.Paul Singh,Peter Xavier.Causes, impact and control of overbreak in underground excavations[J].Tunnelling and Underground Space Technology,2005,20:63-71
    [79] Holmberg, R. and Persson, P. A.Design of tunnel perimeter blasthole patterns to prevent rock damage[M]. Transc. Inst. Min. Metall, 1980
    [80] V.M.S.R Murthy and Kaushik Dey.Predicting Overbreak from Blast Vibration monitoring in a lake tap tunnel-a success story[J].Fragblast,2003,7(3):149-166
    [81] V.M.S.R Murthy, Kaushik Dey and Rajesh Raitani.Prediction of overbreak in underground tunnel blasting a case study[J].Journal of Canadian Tunneling Canadien,2003:109-115
    [82] V.M.S.R Murthy and Kaushik Dey.Development of predictive models for controlling blast-induced overbreak in tunnels.Journal of Rock Mechanics and Tunneling Technology,2004,10(1):31-47
    [83]吴继敏,A.Mahtab.节理岩体中地下洞室超挖预测[J].工程地质学报,1999,7(1):3-8
    [84] N.H.Maerz,J.A.Ibarra,J.A.Franklin.Overbreak and underbreak in underground openings part 1:measurement using the light sectioning method and digital image processing[J].Geotechnical and Geological Engineering,1996,14:307-323
    [85]王明年,关宝树.隧道超欠挖的统计规律及其对隧道可靠度的影响[J].岩土工程学报,1997,19(1):83-88
    [86]佘健,钟新樵.公路隧道超欠挖统计规律研究[J].重庆交通学院学报,2000,19(2):15-20
    [87]刘建民,陈文涛,丁泰山.地下洞室超欠挖问题非线性有限元分析[J].探矿工程,2007,8:70-72
    [88]孙少锐,吴继敏,魏继红.隧洞超挖问题中的广义分数维研究[J].岩石力学与工程学报,2005,24(24):4478-4483
    [89]肖云华等.隧道围岩超欠挖与节理和洞轴线之间的关系[J].吉林大学学报(地球科学版),2008,38(3):654-659
    [90]肖云华等.隧道超欠挖断面轮廓分形特征.吉林大学学报(地球科学版),2010,40(1):154-158
    [91]刘英杰,李守巨,潘天林.关于控制巷道超挖问题的试验研究[J].阜新矿业学院学报,1989,8(4):12-16
    [92] J.A.Ibarra,N.H.Maerz,J.A.Franklin.Overbreak and underbreak in underground openings part 2:causes and implications[J].Geotechnical and Geological Engineering,1996,14:325-340
    [93] M.A.Mahtab,K.Rossler,G.S.Kalamaras,P.Grasso.Assessment of geological overbreak for tunnel design and contractual claims[J].Int.J.Rock Mech.& Min.Sci.,1997,34(3-4):1-13
    [94]何林生,吴永清,王明年.钻爆法施工隧道的超欠挖控制[J].广东公路交通, 1998, 54(supp):88-92
    [95] S.K.Mandal and M.M.Singh.Evaluating extent and causes of overbreak in tunnels[J]. Tunnelling and Underground Space Technology,2009,24:22-36
    [96]李守巨,何庆志.柱状装药爆炸应力场的计算机数值模拟[C].第二届全国岩石动力学学术会议,宜昌,1990,10
    [97]边振华.用有限元动力分析法计算光面爆破的光面层厚度[J].爆破,1998,15(1):6-9
    [98]郑榕明,张勇辉,王可钧.耦合算法原理及有限元与DDA的耦合[J].岩土工程学报,2000,22(6):727-730
    [99]唐辉明,晏鄂川,胡新丽.工程地质数值模拟的理论与方法[M].中国地质大学出版社,2001
    [100]黄梦宏,唐礼忠.断续节理岩石破坏过程数值模拟研究[J].贵州工业大学学报(自然科学版), 2002, (05) .
    [101] Wu CQ,Hao H,Zhou YX.Distinctive and fuzzy failure probability analysis of an anisotropicrock mass to explosion load[J].International Journal for Numerical Methods in Engineering, 2003,56(5):767-786
    [102]张力民,吕淑然,刘红岩.节理岩体爆破破坏模式的机理分析及数值模拟[J].金属矿山,2009,397(7):16-19
    [103] A.Mortazavi,P.D.Katsabanis.Modelling burden size and strata dip effects on the surface blasting process[J].International Journal of Rock Mechanics & Mining Sciences,2001, 38:481-498
    [104]朱焕春,Brummer richard,Andrieux Patrick.节理岩体数值计算方法及其应用(一):方法与讨论[J].岩石力学与工程学报,2004,23(20):3444-3449
    [105]朱焕春,Brummer richard,Andrieux Patrick节理岩体数值计算方法及其应用(二):方法与讨论[J].岩石力学与工程学报,2005,24(1):89-96
    [106]向文飞,舒大强,朱传云.起爆方式对条形药包爆炸应力场的影响分析[J].岩石力学与工程学报,2005,24(9):1624-1628
    [107]刘红岩,秦四清,杨军.爆炸荷载下岩石破坏的数值流形方法模拟[J].爆炸与冲击,2007,27(1):50-56
    [108]王志亮,郑明新.基于TCK损伤本构的岩石爆破效应数值模拟[J].岩土力学,2008,29(1):230-234
    [109] S.H.Cho, Y.Nakamura, B.Mohanty, H.S.Yang, K.Kaneko.Numerical study of fracture plane control in laboratory-scale blasting[J].Engineering Fracture Mechanics,2008,75 (13):3966-3984
    [110]张秀丽,焦玉勇,刘泉声等.节理对爆炸波传播影响的数值研究[J].岩土力学,2008,29(3):717-721
    [111] Li Chun-rui, Kang Li-jun, Qi Qing-xing, Mao De-bing, Liu Quan-ming, Xu Gang.The numerical analysis of borehole blasting and application in coal mine roof-weaken[J].Procedia Earth and Planetary Science,2009,1(1): 451-459
    [112] Zheming Zhu.Numerical prediction of crater blasting and bench blasting[J].International Journal of Rock Mechanics and Mining Sciences,2009,46(6):1088-1096
    [113] David Saiang.Stability analysis of the blast-induced damage zone by continuum and coupled continuum-discontinuum methods[J].Enginnering Geology, 2010,116(1): 1-11
    [114] Youjun Ning, Jun Yang, Xinmei An, Guowei Ma.Modelling rock fracturing and blast-induced rock mass failure via advanced discretisation within the discontinuous deformation analysis framework[J].Computers and Geotechnics, 2011, 38(1):40-49
    [115]孙建运.爆炸冲击荷载作用下钢骨混凝土柱性能研究[D].同济大学博士论文,2006
    [116] Holmquist T.J,Johnson G.R,Cook W.H. A computational consititutive for concrete subjected to large strains, high strain rates and high pressure[A].Proceeding of the Fourteenth International Symposium on Ballistics[C],1995:591-600
    [117]张凤国,李恩征.大应变、高应变率及高压强条件下混凝土的计算模型[J].爆炸与冲击,2002,22(3):198-201
    [118] Hallquist J.Q. LS-DYNA theoretical manual[M].Livermore Software Technology Corporation,Livermore,1988
    [119] LS-DYNA Keyword User’s manual(970V)[M].Livermore Software Technology Corporation, 2003
    [120]白金泽.LS_DYNA3D理论基础与实例分析[M].北京:科学出版社,2005
    [121]时党勇,李裕春,张胜民.基于ANSYS/LS-DYNA8.1进行显式动力分析[M].北京:中国清华大学出版社,2005
    [122] L.Agardh,L.Laine. 3D FE-simulation of high-velocity fragment perforation of reinforced concrete slabs.International journal of Impact Engineering, 1999,22:911-922
    [123]尚晓江,苏建宇.ANSYS/LS-DYNA动力分析方法与工程实例[M].北京:中国水利水电出版社,2005
    [124]陈建平,高文学,陶连金.爆破工程地质控制论[J].工程地质学报,2006,14(5):616-619
    [125] Cunnigham, C.V.B., Goetzsche, A.F. The specification of blast damage limitations in tunneling contracts[J]. Tunneling and Underground Space Technology, 1996, 5 (3), 23–27.
    [126] Lewandowski T., Luan Mai V.K. and Danell R. In?uence of discontinuities on presplitting eof surface on presplitting[C].
    [131] Proceedings of the 12th Symposium on Explosives and Blasting Research, Orlando, USA, 1996:186–195.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700