大型仓储系统的调度算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自动化仓储系统(AS/RS)是现代物流和CIMS中的重要环节,对现代企业的生产发挥着日益重要的作用。AS/RS是一个离散的、随机的、动态的、多因素、多目标的复杂系统,对AS/RS的智能化管理将导致复杂的系统优化问题。大型仓储系统作为自动化仓储系统的一个重要发展方向,具有控制更为复杂、优化效率要求更高等特点,而传统的优化方法求解过程不仅时间较长、成本较高,而且不易求得最优解。
     本文将快速遗传算法的理论研究,与首都国际机场大型货运站仓储系统工程项目相结合,以进一步完善大型仓储系统的智能化管理、提高系统整体效率为目标,开展了大型仓储系统优化方法的研究。该项研究,对于提高大型仓储系统的智能化水平,提高仓库的运行效率,降低运行成本,提高物流运营企业和设计研发企业的竞争力等方面,都具有重要的工程意义;对于如何获得高效、稳定、可靠的快速遗传算法,遗传算法如何更好地模拟复杂系统的适应性过程和进化行为、在优化问题求解中如何才能具备全局攻敛性、搜索效率如何评价、如何与其他算法结合、如何更好地适应工程的需要等遗传算法的主要研究方向上,都具有重要的理论价值。
     论文主要工作如下:
     (1)以首都国际机场大型货运站仓储系统为例,分析了AS/RS,特别是大型仓储系统的工作流程和特点,提出了智能控制的方向和内容,建立了大型仓储系统的优化模型,选择遗传算法作为主要的优化算法,提出了大型仓储系统优化的目标函数和约束条件。
     (2)设计了一种快速单目标约束遗传算法。该算法提出一种既利用不可行解扩大搜索范围、又不引入惩罚因子的约束处理方法;设计了一种具有“记忆”能力的交叉算子,能够阻止个体的“返祖”现象,避免了重复搜索,提高了搜索效率;设计了搜索步长和方向可变的非均匀变异算子,可以保证算法在前期的快速搜索能力和后期的最优解的保持能力;采用“精英”保持策略,将父代的最优个体合并到子代,使算法具有较强的鲁棒性。.性能分析表明,该算法为1阶快速收敛的遗传算法,收敛速度优于其它3种对照的遗传算法,而且参数的选择对于算法的收敛速度没有本质的影响,一般能很快找到全局最优解或近似最优解。
     (3)设计了一种快速多目标约束遗传算法。该算法提出一种能够从可行解空间和不可行解空间同时搜索(边界搜索)的交叉算子,将约束条件和目标结合在一起,引入一种新的偏序关系用于比较个体之间的优劣;提出一种新的Niche值计算方法作为维持群体均匀性的主要动力,并采用已搜索解集避免了算法的重复搜索。采用Markov链作为分析工具,证明了算法的收敛性。仿真结果表明,与同类进化算法相比,该算法能够快速收敛到Pareto前沿,并能很好地维持群体的多样性。
     (4)采用遗传算法,进行自动化仓库的货位和拣选路径的优化。在AS/RS中,提出了基于随机存储策略的库区分配优化、货位分配优化、行驶时间优化的优化控制目标,采用罚函数法对堆垛机的容量和行驶速度、多任务作业周期中先存后取、由近及远存储、由远及近出库等约束条件进行处理。利用遗传算法,在已经存储一定数量的货物的大型自动化仓库中,求出了动态货位分配和拣选路径优化的Pareto最优解。实验表明,该方法能够很好地满足立体仓库优化控制的工程实际需要。
     (5)进行AS/RS中堆垛机动态待命位的研究。由存储时间优先的出库策略确定了m个可能的访问点{Pi|i=1,...,m},由随机存储策略得到了这m个可能的访问点分别具有的流通率{Ii|i=1,...,m},证明了这m个可能的访问点属于格拉斯曼空间。利用多质点重心法,通过格拉斯曼空间到仿射空间的映射,求出了堆垛机动态待命位。计算结果表明,该方法总体性能优于已有的研究结果。
     (6)在上述研究的基础上,分析了该大型仓储系统的性能。利用遗传算法确定了自动化仓库的动态拣选路径,采用多质点重心法获得了堆垛机的动态待命位,之后,利用堆垛机的加速和减速曲线,得到堆垛机在自动化仓库中的平均作业时间,最终获得该大型仓储系统的出入库能力,并分析了货位分配、拣选路径优化和堆垛机的动态待命位对提高出入库能力的贡献,从而也体现了本文研究的工程价值。
     本文的研究结果,已经在首都国际机场大型货运站仓储系统工程项目中部分使用,并取得了良好的优化效果。
Automated storage and retrieval systems (hereafter, "AS/RS") have been a significant link in modern logistics and CIMS and have been playing an increasingly role in the production of modern enterprise. AS/RS is defined as a complex system with the discrete, random, dynamic, multi-factor and multi-objective characteristics. To realize the intelligent management for AS/RS leads to the complex optimization problems. As an important development for the automated warehousing system (AS/RS), the large warehouse systems are the kinds of systems which need more complex control strategies and higher optimize efficiency requirements. The traditional optimization methods for solving these problems require longer time, higher costs and more difficult to obtain the optimal solution.
     In this thesis, the optimization-methods researches of AS/RS are carried out by combining the theoretical research of fast genetic algorithms (hereafter, "GA") with the large warehouse system of institute of electrical and mechanical project of Beijing capital international airport in order to improve the intelligent management and the overall system efficiency of the large warehouse. The study has an important engineering significance for improving the intelligence level of the large warehouse system, increasing the warehouse efficiency, reducing the operating costs and improving the competitiveness of logistics operations, research and development enterprise. The important theoretical values of the research lie on the main research objectives of genetic algorithms, such as how to obtain an efficient, stable, fast and reliable GA, how to better simulate the adaptive process and evolution behavior of the complex systems, how to reach a global convergence in solving optimization problem, how to assess the search efficiency, how to combine with other algorithms and how to better meet the engineering needs.
     The main contents of the thesis are as follows:
     1. To take the catering automated warehouse of Beijing Capital International Airport as the example, the AS/RS workflow and characteristic are analyzed, especially for the large warehouse system. Then, the direction and content about intelligent control parts are proposed and the optimization models of the large warehouse system are established. In addition, GA is adopted as the main optimization algorithm with the optimization objective functions and the constraints of the large warehouse system.
     2. A fast single-objective constrained GA is designed. The constraint handling method of the algorithm is proposed by using infeasible solutions to expand the search scope and it can avoid the introduction of the penalty factor as well. Meanwhile, we designed a kind of "remember" cross-operator that could prevent the phenomenon of individual's "atavism" avoid the repeated search and improve the efficiency of search. The mutation operators with the various step length and direction are developed to ensure the quick search capabilities in the early period and the retention capacity of the optimal solution in the later period. The elitism strategy is used to make the best individuals of the parent to pass down to their offspring. Thus, the algorithm has strong robustness. The performance analyses show that the algorithm is a first-order and fast convergence GA, which has the convergence rate three times over the other genetic algorithms. As for the convergence rate, it will be no influence with the different choice of parameters. Thus, this algorithm could find the global optimal solution after the fifth iterations.
     3. A fast multi-objective constrained GA is proposed. A kind of crossover operator that could simultaneously search from the feasible solution space to the infeasible solution space is designed. Combining the constraint conditions with the objectives, a new partial-order relation for comparing the merits among the individuals is introduced. Thus, a new Niche computation method for maintaining the diversity of population is suggested and the repeated search is avoided using the searched solution space. To use Markov chains as an anal tical tool, the convergence of the algorithm is proved. The simulation results show that this algorithm could rapidly converge at global Pareto solutions and maintain the diversity of population comparing with the current MOEAs.
     4. Genetic algorithms are adopted to optimize the cargo space and the picking-up path of the automated warehouse. For an AS/RS, the optimal control objectives, such as the optimal warehouse assignments, the optimal locations assignments and the optimal travel time, are proposed based on a stochastic storage strategy. To use the penalty function methods, the constraints conditions are handled including the capacity and the travel speed of storage/retrieval machines (SRMs), the rules of SRMs in a multi-command cycle such as storage first and retrieval last, storage from near to far and retrieval from far to near. The optimal Pareto solution of the dynamic location assignment and the optimal picking-up path were obtained by using GA in the large automated warehouse, in which some spaces have been already occupied. The experiments show that the methods proposed in the thesis could meet the practical engineering needs of the optimal control warehouse.
     5. The dynamic standby position of stacker is studied in the AS/RS. According to the library strategy of the storage time priority, m possible access points{Pi|i=1,..., m} are determined. The flow rates of those points are determined using random storage strategy one by one. Meanwhile, it has been proved that m possible access points were the parts of Glassman space. The dynamic standby position of stacker is solved by using multi-particle center of gravity method, which are the mapping from Glassman space to affine space. The results show that the overall performances of the proposed methods are superior to the existing research results.
     6. Based on the above research results, the performances of a large storage system are analyzed. Dynamically selecting of the cargo space is determined by means of GA in automated warehouse and the dynamic standby position of stacker is obtained by using multi-particle center of gravity method. Moreover, we found the average operating time of the stacker in the automatic warehouse by the use of the acceleration and deceleration curves and obtained the storage capacity of the automatic warehouse ultimately. By then, the contribution of the improvement of out of storage capacity the location assignment, the optimal picking-up path and the dynamic standby position were analyzed. Accordingly, the results reflect the engineering value of this research project.
     The research results of the thesis have been partly implemented in the large warehouse system of Institute of Electrical and Mechanical project of Beijing Capital International Airport with the excellent optimization effect.
引文
[1]陈宏勋.国外期刊文摘[J].起重运输机械,2003,(3):45-48.
    [2]刘增晓.自动化立体仓库下位控制系统的开发与优化调度[D].济南:山东大学,2006.
    [3]赵骏.成都卷烟厂自动化物流系统[J].物流技术与应用,2006,(11):53-59.
    [4]中国仓储协会秘书处.2009年中国仓储行业发展综合报告[J].物流工程与管理,2009,31(8):7-15.
    [5]李梅娟.自动化仓储系统优化方法的研究[D].大连:大连理工大学,2008.
    [6]Van den Berg JP, Zijm WHM. Models for warehouse management:Classification and examples[J].Int J Prod Econ,1999,59:519-528.
    [7]Vaughan TS, Petersen CG. The effect of warehouse cross aisles on order picking efficiency[J]. Int J Prod Res.1999,37:881-897.
    [8]Rouwenhorst B., Reuter B., Stockrahm V., et al.. Warehouse design and control:Framework and literature review[J]. European Journal of Operational Research.2000,122:515-533
    [9]Manzini R, Gamberi M, Regattieri A. Design and control of an AS/RS[J]. Int J Adv Manuf Tech.2005,28(7-8):766-774.
    [10]Malmborg CJ, Krishnakumar B. Optimal storage assignment policies for multiaddress warehousing systems[J]. IEEE Trans Syst, Man, Cybern.1989,19:197-204.
    [11]柳赛男,柯映林,李江雄,等.基于调度策略的自动化仓库系统优化问题研究[J].计算机集成制造系统,2006,12(9):1438-1443.
    [12]Haskett JL. Cube-per-order index-a key to warehouse stock location[J]. Transp Distrib Manage.1963, (3):27-31.
    [13]Potrc I, Lerher T, Kramberger J, Sraml M. Simulation model of multi-shuttle automated storage and retrieval systems[J].J MATER PROCESS TECH 2004,157-158:236-244.
    [14]H. D. Ratli.,A. S. Rosenthal, Order-picking in a rectangular warehouse:A solvable case of the traveling salesman problem [J]. Operations Research.1983,31(3):507-521.
    [15]Heragu SS, Mazacioglu B, Fuerst KD. Meta-heuristic algorithms for the order picking problem[J]. Int J Ind Eng-Appl Pract.1994,1:67-76.
    [16]Makris PA, Giakoumakis IG. k-Interchange heuristic as an optimization procedure for material handling applications[J]. Appl Math Model.2003,27:345-358.
    [17]Bozer, A. Y. and White, J. A.. Travel-time models for automated storage/ retrieval systems [J]. IIE Trans.1984,16(4):329-338.
    [18]Pan CH, Wang CH. A framework for the dual command cycle travel time model in automated warehousing systems[J]. Int J Prod Res.1996,34(8):2099-2117.
    [19]Kim J, Seidmann A. A framework for the exact evaluation of expected cycle times in automated storage systems with fullturnover item allocation and random service requests[J].Comput Ind Eng.1990,18(4):601-612.
    [20]Hwang H,Lee SB. Travel-time models considering the operating characteristics of the storage and retrieval machine[J]. Int J Prod Res.1990,28(10):1779-1789.
    [21]P.J. Egbelu, Framework for dynamic position of storage/retrieval machines in an automated storage/retrieval system[J]. INT J PROD RES.1991,29(1):17-37.
    [22]H. Hwang, J. M.Lim. Deriving an optimal dwell point of storage/retrieval machine in an automated storage/retrieval system [J]. INT J PROD ECON.1993, (11):2591-2602.
    [23]赵炯,翁诚霖,周奇才.立体仓库中堆垛机待命位的动态确定及应用[J].上海铁道大学学报,1998,(4):118-121.
    [24]Jeroen P. van den Berg. Analutic expressions for the optimal dwell point in an automated storage/retrieval system[J]. INT J PROD ECON.2002, (76):13-25.
    [25]马永杰,蒋兆远.立体仓库中堆垛机的动态待命位的控制[J].起重运输机械,2008,(8):42-46.
    [26]田国会,刘长有,林家恒,等.自动化立体仓库若干优化调度问题及其研究进展[J].山东工业大学学报,2001,31(1):12-17.
    [27]Joon-Mook L. Genetie algorithm for detemining the optimal operating policies in a integrated -automatedmanufaeturingsystem[J]. Journal of Engineering Valuaion and Cost Analysis,2000,3(4):291-299.
    [28]田国会,张攀,等.基于混合遗传算法的固定货架拣选优化问题研究[J].机械工程学报,2004,40(2):141-144.
    [29]田国会,张攀,李晓磊,等.一类仓库作业优化问题的混合遗传算法研究[J].系统仿真学报,2004,16(6):1198-1201.
    [30]张攀,田国会,贾磊.旋转货架拣选作业优化问题的新型混合遗传算法求解[J].机械工程学报,2004,40(6):35-38.
    [31]商允伟,裘聿皇,刘长有.自动化仓库货位分配优化问题研究[J].计算机工程与应用,2006,(26):16-21.
    [32]常发亮,刘增晓,辛征,刘冬冬,等.自动化立体仓库拣选作业路径优化问题研究[J].系统工程理论与实践,2007(2):139-143.
    [33]刘巍巍,赵红,王迎春.遗传算法在自动化仓库路径调度问题中的应用[J].沈阳工业大学学报,2008,30(3):338-340.
    [34]宁春林,田国会,尹建芹,等.Max-Min蚁群算法再固定货架拣选路径优化中的应用[J].山东大学学报,2003,6(33):676-680.
    [35]李梅娟,陈雪波,张梅凤.丛于群集智能算法的路径规划问题[J].清华大学学报(自然科学版),2007,47(S2):1770-1773.
    [36]陈月婷,何芳.基于改进粒子群算法的立体仓库货位分配优化[J].计算机工程与应用,2008,44(11):229-231.
    [37]罗键,钟寿桂,吴长庆.丛于离散粒子群算法的AVS/RS货位优化[J].厦门大学学报(自然科学版),2009,48(2):212-215.
    [38]常发亮,刘长有.自动化立体仓库输送系统调度的优化仿真及其应用研究[J].系统仿真学报,1998,(10):14-19.
    [39]田国会.自动化立体仓库输送调度问题的建模与控制研究[J].控制与决策,2001,16(4):29-32.
    [40]罗键,程勇,吴长庆.基于着色赋时Petri网的堆垛机建模与调度研究[J].计算机工程与应用,2009,45(1):207-210.
    [41]徐香玲,傅卫平,李德信,等.基于专家系统的自动化立体仓库出入库调度研究[J].物流技术,2005(2):38-41.
    [42]田伟,田国会,张攀,等.应用LK算法求解固定货架拣优化问题[J].计算机应用,2004,6(24):167-170.
    [43]葛继科,邱玉辉,吴春明,蒲国林.遗传算法研究综述[J].计算机应用研究,2008,25(10):2911-2916.
    [44]Back,T.Evolutionary Algorithms in Theory and Practice[M].NewYork Oxford:Oxford University Press,1996.
    [45]Schwefel, H. Evolution and Optimum Seeking[M]. John Wiley.& Sons Inc., New York,1994.
    [46]Back, T. Schwefel, H. Evolutionary computation:an overview[C]. Proceedings of IEEE International Conference, Nagoya, Japan,1996, (129):20-29.
    [47]Michalewicz, Z. Evolutionary computation:practical issues[C]. Proceedings of IEEE International Conference, Nagoya, Japan,1996, (129):30-39.
    [48]谢金星.进化计算简要综述[J].控制与决策.1997,12(1):1-7.
    [49]Holland J H. A daptation in natural and artificial systems[M]. MI:University of Michigan Press.1975.
    [50]吉根林.遗传算法研究综述[J].计算机应用与软件,2004,21(2):69-73.
    [51]郑立平,郝忠孝.遗传算法理论综述[J].计算机工程与应用,2003,(21):50-55.
    [52]玄光男,程润传.遗传算法与工程设计[M].北京:科学出版社.2000.
    [53]Goldberg D, Lingle R. Alleles, Loci and. the Traveling Salesman Problem[C]. Proceedings of First International Conference on Genetic Algorithms. Lawrence ErlbaumAssociates, NewJersey,1985,154-159.
    [54]Bosworth J, Foo N, ZeiglerB P. Comparison of genetic algorithms with conjugate gradient methods[M]. Michigan:The University of Michigan,1972.
    [55]Davis L, Orvosh D. The mating pool:A testbed for experiments in the evolution of symbol systems[C]. Proc of the 6th Int Conf on Genetic Algorithms. CA:Morgan Kaufmann,1995,405-412
    [56]Liepins G E, VoseM D. Representational issues in genetic optimization[J]. J of Experimental and Theoretical Artificial Intelligence,1990, (22):101-115
    [57]Antonisse J. A new interpretation of schema notation that overturns the binary encoding constaint[C]. Proc of the 3rd Int Conf on Genetic Algorithms. CA:Morgan Kaufmann,1989.86-91
    [58]Antonisse H J, Keller K S. Genetic operators for high-level knowledge representations[C]. Proc of the 2nd Int Conf on Genetic Algorithms. NJ:Lawrence Erlbaum Associates,1987.69-76
    [59]Potts C J,Terr I D.The development and evaluation of an improved genetic algorithm based on migration and artificial selection[J]. IEEE Trans on Systems, Man, and Cybernetics,1994,24(1):73-86.
    [60]Davis L. Adaptive operator probability in genetic algorithms[C]. Proc of the 3rd International Conference on Genetic Algorithms. San Francisco:Morgan Kaufmann Publishers,1989:61-69.
    [61]Whitley D, Starkweather D. Genetic Ⅱ:a distributed genetic algorithms[J]. Journal of Experimental & Theoretical Artificial Intelligence,1990, (77):189-214.
    [62]张良杰,毛志宏,李衍达.遗传算法中突变算子的数学分析及改进策略[J].电子科学学刊,1996,18(6):590-595.
    [63]Liu Li, Chen Xue-yun. Reconfiguration of distribution networks based on fuzzy genetic algorithms[C]. Proceedings of the Chinese Society of Electrical Engineering,2000, 20(2):66-69.
    [64]李敏强,寇纪松,林丹,李书全.遗传算法的基本理论与应用[M].北京:科学出版社,2002.
    [65]刘峰,刘贵忠,张茁生.遗传算法的Markov链分析与收敛速度估计[J].系统工程学报,1998,13(4):79-85.
    [66]李茂军,邱丽芳,童调生.单亲遗传算法的计算效率分析[J].长沙电力学院学报(自然科学版),1999,14(1):48-50.
    [67]崔逊学.一种求解高维优化问题的多目标遗传算法及其收敛性分析[J].计算机研究与发展,2003,40(7):901-906.
    [68]周育人,岳喜顺,周继香.演化算法的收敛速率与效率分析[J].计算机学报,2004,27(11):1485-1496.
    [69]明亮,王宇平.关于一类遗传算法收敛速度的研究[J].计算数学,2007,29(1):15-26.
    [70]余文,李人厚.遗传算法对约束优化问题的研究综述[J].计算机科学,2002,29(6):98-101.
    [71]刘海林,王宇平,刘永清.解约束最优化问题的一个新的多目标进化算法[J].计算机工程与应用,2002,(10):27-29.
    [72]胡一波,王宇平.求解约束优化的带偏好双目标优化方法[J].计算机工程与应用,2006,(8):28-30.
    [73]邹秀芬,刘敏忠,吴志健,康立山.解约束多目标优化问题的一种鲁棒的进化算法[J].计算机研究与发展,2004,41(6):985-990.
    [74]胡一波,王宇平.求解约束优化的一种新的进化算法[J].电子科技,2006,(5):1-4.
    [75]苏勇彦,王攀,范衡.一种基于新约束处理方法的遗传算法[J].计算机工程与应用,2007,43(14):71-72.
    [76]刘淳安,王宇平.约束多目标优化问题的进化算法及其收敛性[J].系统工程与电子技术,2007,29(2):277-280.
    [77]王勇,蔡自兴,周育人,等.约束优化进化算法[J].软件学报,2009,20(1):11-29.
    [78]崔逊学,方廷健.多目标进化算法的研究[J].中国科学基金,2002,(1):17-19.
    [79]Schaffer J D. Multiple Objective Optimization with Vector Evaluated Genetic Algorithms[C]. Proceedings of the 1st International Conference on Genetic Algorithms, Lawrence Erlbaum Associates, Hillsdale,1985:93-100.
    [80]公茂果,焦李成,杨咚咚,等.进化多目标优化算法研究[J].软件学报,2009,20(2):271-289.
    [81]Fonseca C M, Fleming P J.Genetic algorithm for Multi-objective optimization: formulation, discussion and generalization[C]. Proc of the fifth international conference on Genetic Algorithms.1993:416-423.
    [82]Horn J, Nafpliotis N,Goldberg DE.A niched Pareto genetic algorithm for multiobjective optimization[C]. Froc of the 1st IEEE Conf. on Evolutionary Computation. Piscataway: IEEE Service Center,1994:82-87.
    [83]Zitzler E, Thiele L. Multiobjective Evolutionary Algorithms:A Comparative Case Study and the Strength Pareto Approach[J]. IEEE Transactions on Evloutionary Computational, 1999,3(4):257-271.
    [84]闫震宇,康立山,陈毓屏,付朋辉.一种新的多目标演化算法——稳态淘汰演化算法[J].武汉大学学报(理学版),2003,49(11):33-38.
    [85]刘淳安,王宇平.基于一种新模型的多目标遗传算法及性能分析[J].控制理论与应用,2006,23(13):425-428.
    [86]戴晓晖,李敏强,寇纪淞.遗传算法理论研究综述[J].控制与决策,2000,15(3):263-268.
    [87]戴朝华,朱云芳,陈维荣,林建辉.云遗传算法及其应用[J].电子学报,2007,35(7):1419-424.
    [88]Han K H, Kim J H. Quantum-inspired evolutionary algorithms with a new termination criterion, H εgate, and two-phase scheme[J]. IEEE Trans on Evolutionary Computation, 2004,8(2):56-169.
    [89]高辉,徐光辉,张锐,王哲人.实数编码量子进化算法[J],控制与决策,2008,23(1):87-90.
    [90]高贵,周蝶飞,张军,黄纪军,李德仁.基于遗传算法的SAR图像目标鉴别特征选择[J].电子学报,2008,36(6):1041-1046.
    [91]孟红云,张小华,刘三阳.用于约束多目标优化问题的双群体差分进化算法[J].计算机学报,2008,31(2):228-234.
    [92]苏海军,杨煜普,王宇嘉.微分进化算法的研究综述[J].系统工程与电子技术,2008,30(9):1793-1797.
    [93]Fieldsend J E et al. Using unconstrained elite archives for multiobjective optimization[J]. IEEE Transactions on Evolutionary Computation,2003,7(3):305-323.
    [94]刘鎏,李敏强,林丹.鉴于ε-支配的多目标进化算法及自适应ε调整策略[J].计算机学报.2008,31(7):1063-1071.
    [95]潘晓英,焦李成.项目优化调度的多智能体社会进化算法[J].计算机研究与发展.2008,45(6):998-1003.
    [96]Y Jin, J Branke. Evolutionary optimization in uncertain environments -A survey [J]. IEEE Trans on Evolutionary Computation,2005,9(3):303-217.
    [97]T Blackwel.J Brankel. Multi-swarms, exclusion, and anti-convergence in dynamic environment[J]. IEEE Trans on Evolutionary Computation,2006,10(4):459-472.
    [98]刘淳安,王宇平.基于新模型的动态多目标优化进化算法[J].计算机研究与发展,2008,45(4):603-611.
    [99]应伟勤,李元香,SHEU Phillip C-Y.热力学遗传算法计算效率的改进[J].软件学报,2008,19(7):1613-1622.
    [100]李和成,王宇平.一个基于插值的解非线性双层规划的遗传算法[J].计算机学报,2008,31(6):910-918.
    [101]曾三友,蔡振华,张青,康立山.一种评估近似Pareto前沿多样性的方法[J].软件学报,2008,19(6):1301-1308.
    [102]黄翰,郝志峰,秦勇.进化规划算法的时间复杂度分析[J].计算机研究与发展,2008,45(11):1850-1857.
    [103]何东晓,周栩,王佐,等.复杂网络社区挖掘-基于聚类融合的遗传算法[J].自动化学报,2010,36(8):1160-1170.
    [104]陈明华,周本达,任哲.随机化均匀设计遗传算法[J].高校应用数学学报,2010,25(3):279-284.
    [105]巩敦卫,郝国生,严玉若.交互式遗传算法基于用户认知不确定性的定向变异[J].控制与决策,2010,25(1):74-78.
    [106]祝希路,王柏.一种基于社团划分的小生境遗传算法[J].控制与决策,2010,25(7):1113-1116.
    [107]鲁宇明,黎明,李凌.一种具有演化规则的元胞遗传算法[J].电子学报,2010,38(7):1603-1607.
    [108]刘姝廷,金太东,王连生.一种改进的自适应遗传算法[J].江西理工大学学报,2010,31(1):59-61.
    [109]陈皓,崔杜武,崔颖安,等.族群进化算法[J].软件学报,2010,21(5):978-990.
    [110]Lu Hai-ming, Yen G G.Rank-density-based multi-objective genetic algorithm and benchmark test function study[J].IEEE Transactions on Evolutionary Computation, 2003,7 (4):325-342.
    [111]马永杰,马义德,蒋兆远,等.一种快速遗传算法及其收敛性[J].系统工程与电子技术,2009,31(1):714-718.
    [112]Rudolph G, Agapie A.Convergence properties of some multi-objective evolutionary algorithm[C]. Proceeding of the Congress on Evolutionary Computation, Ali Zalzala Eds.
    [113]Yao Xin, Liu Yong, Lin Guang-Ming. Evolutionary programming made faster[J]. IEEE Transactions on Evolutionary Computation,1999,3(2):82-102.
    [114]王宇平,刘大莲.基于平滑技术和一维搜索的全局优化进化算法及其收敛性[J].计算机学报,2006,29(4):670-676.
    [115]Lucidi S., Piccialli V.,New classes of globally convexized filled functions for global optimization[J]. Journal of Global Optimization,2002,24(1):219-236.
    [116]马永杰,蒋兆远.一种快速遗传算法的性能分析[J].云南大学学报,2009,31(5):449-454.
    [117]李茂军.单亲遗传算法及其全局收敛性分析[J].自动化学报,1999,25(1):68-72.
    [118]明亮,王宇平.n进制编码遗传算法的收敛速度[J].系统工程理论与实践,2006,(3):88-93.
    [119]岳嵌,冯珊.遗传算法的计算性能的统计分析[J].计算机学报,2009,32(12):2389-2392.
    [120]Deb K, Pratap A, Meyarivan T. Constrained test problems for Multi-objective evolutionary optimization[J]. Proc of the 1st Int'1 Conf on Evolutionary Multi-Criterion Optimization. Berlin:Springer- Verlag,2001:284-298.
    [121]Carlos A C C, Pulido G T, Lechuga M S. Handling multiple objectives with particle swarm optimization[J]. IEEE Transactions on Evolutionary Computation,2004,8(3):256-279.
    [122]黄永青,梁昌勇,杨善林,等.基于一种加速收敛变异策略的交互式遗传算法[J].系统仿真学报,2007,19(9):1913-1916.
    [123]张维存,郑不谔.基于主从结构的遗传算法研究[J].系统仿真学报,2007,19(6):158-161.
    [124]马永杰,摆玉龙,蒋兆远.快速多目标约束遗传算法及其收敛性[J].系统工程理论与实践,2009,29(5):149-157.
    [125]Srinivas N, Deb K. Multi-Objective Optimization Using Nondominated Sorting In Genetic Algorithms[J]. Evolutionary Computation,1995,2(3):221-248.
    [126]Guo Tao, Kang Li-shan. A new Evolutionary Algorithm for Function Optimization[J]. Wuhan University Journal of Natural Sciences,1999,4(4):409-414.
    [127]Deb k., Genetic algorithms in multimodel function optimization[M]. M, S. dissertation, University of Alabama,1989.
    [128]刘淳安,王宇平.动态多目标优化的进化算法及其收敛性分析[J].电子学报,2007,35(6):1118-1121.
    [129]M Iosifescu. Finite Markov Processes and Their Applications[M]. Chichester, UK:Wiley,1980.
    [130]Rudolph G,Agapie A. Convergence properties of some multi-objective evolutionary algorithm[C]. Proc of the Congress on Evolutionary Computation. Piscataway, NJ:IEEE Press,2000.
    [131]Kalyanmoy Deb. Multi-objective Optimization Using Evolutionary Algorithms[M]. Chichester, UK John Wiley & Sons,Ltd,2001.
    [132]祁庆民,侯凌燕,王欣旭,等.中国制造企业物流现状和发展方向研究[J].起重运输机械,2003,(11):6-101.
    [133]Caron F, Marchet G, Perego A. Optimal layout in low-level picker-to-part systems[J]. Int J Prod Res.2000,38(1):101-117.
    [134]Brynzer H,Johansson M I. Storage location assignement:using the product structure to reduce order picking times[J].Int J Prod Econ.1996,40(46-47):595-603.
    [135]李梅娟,陈雪波.Pareto遗传算法在货位配置中的应用研究[J].控制工程,2006,13(2):138-144.
    [136]Manzini R,Gamberi M, Regattieri A. Design and control of a flexible order-picking systems (FOPS) [J]. J Manuf Tech Manage.2005,16(1):18-35.
    [137]Caron F, Marchet G,Perego A. Routing policies and COI-based storage policies in picker-to-part systems[J]. Int J Prod Res.1998,36(3):713-732.
    [138]党伟超,曾建潮,白尚旺.自动化立体仓库货位分配概念数据模型的研究[J].太原重型机械学院学报,2003,24(4):308-311.
    [139]马永杰,蒋兆远,杨志民.基于遗传算法的自动化仓库的动态货位分配[J].西南交通大学学报,2008,43(3):415-421.
    [140]Ya-hong Hu, Shell Ying Huang, Chuangyu Chen, Wen-Jing Hsu, Ah Cheong Toh, Chee Kit Loh,Tiancheng Song. Travel time analysis of a new automated storage and retrieval system[J].COMPUT OPER RES,2005,32:1515-1544.
    [141]戈德曼著,吴宗敏等译.金字塔算法:曲线曲面几何模型的动态编程处理[M].北京:电子工业出版社,2004:2-28.
    [142]马永杰,蒋兆远.自动化仓库的出入库能力分析[J].兰州交通大学学报(自然科学版),2009,28(3):65-68
    [143]秦叙斌.有轨巷道堆垛起重机入出库能力的计算[J].起重运输机械,2001,(1):9-11.
    [144]张晨阳.小型多功能自动化立体仓库设计[J].湖北汽车工业学院学报,2003,17(3):12-15.
    [145]褚方鸿.从东京物流展看物流技术的发展趋势[J].物流技术与应用,2005,(11):34-37.
    [146]徐香玲,傅卫平,李德信,等.丛于专家系统的自动化立体仓库出入库调度研究[J].物流技术,2005,(2):38-40.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700