异质材料等离子弧堆焊层性能及界面结合机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
阀门在国民经济建设中占有十分重要的地位,而阀门密封面在使用过程中,极易受到介质的腐蚀和冲刷,使阀门密封面受到损伤,因此开展相关技术将耐磨合金粉末堆焊到铁基阀门密封面上,起到延长阀门的使用寿命、提高经济效益的目的,十分有意义。
     本文采用反极性弱等离子弧将铝青铜堆焊到20g和HT200表面,并在堆焊过程中施加横向磁场,3对不同堆焊电流和磁场电流下堆焊层的硬度、耐磨性、耐蚀性和显微组织进行对比分析,并对堆焊界面的结合机理进行研究,明确堆焊电流和磁场电流对堆焊层组织性能的影响规律和作用机理。得到主要结论如下:
     (1)在送粉量Q=17g/min,堆焊速度V=120mm/min,焊接电流I=110A时,铝青铜与低碳钢/铸铁堆焊层的成型性及堆焊层的组织性能得到最佳。对于铝青铜与低碳钢堆焊层而言,硬度为259HV,磨损量为0.008g,摩擦系数为0.3;对于铝青铜与铸铁堆焊层而言,硬度为233.7HV,磨损量为0.128g,摩擦系数为0.35;此时铝青铜堆焊层中的显微组织以α-Cu为主,并伴有少量弥散分布的γ2、β′和κ相,起到第二相强化;但是由于γ2相的极化电位较低,耐蚀性较差,在腐蚀介质中将优先腐蚀而致堆焊层的耐蚀性下降,因此在堆焊电流为110A时堆焊层的耐蚀较差。
     (2)在堆焊电流合适情况下,堆焊层界面结合良好,熔合线清晰可见,无杂质存在,而且在堆焊层界面有一定的元素扩散现象存在,当堆焊电流较大时,扩散加剧,使得部分铜溶入堆焊层中,产生成分偏析。铝青铜堆焊层界面的结合方式主要为层状结合,堆焊层通过物理接触、表面激活和内部扩散三个过程实现堆焊层金属与基材之间的原子结合。
     (3)在堆焊电流I=110A,磁场电流I_m=1A,铝青铜与碳钢/铸铁堆焊层组织性能得到最佳匹配。铝青铜/铸铁堆焊层的磨损量达到0.0063g,硬度为284HV,摩擦系数变化幅度较小为0.3左右;铝青铜/铸铁堆焊层的硬度达到252.9HV,磨损量达到0.0088g,摩擦系数变化幅度较小为0.35左右。堆焊层中的显微组织以α-Cu为基体,在晶界弥散分析着K相及β相的,起到第二相强化作用,此时堆焊层的力学性能达到最佳值,耐蚀性最好(腐蚀极化电位最高,腐蚀电流最小),界面结合最为理想(形成具有一定宽度成分较为均匀的过渡层,而且界面无明显的金属化合物出现)。
     (4)外加磁场产生的电磁搅拌对堆焊层形成“M搅拌”、“S搅拌”和“F搅拌”,其中以“F搅拌”作用效果最为明显,可以细化堆焊层中的显微组织,改善组织分布形态,球化杂质,提高堆焊层的综合力学性能;但是磁场电流不易过大,此时电磁阻尼作用增强,会使堆焊层组织粗化、性能恶化。
Valves are very important in national economic construction,but sealing faces of valves are easy to be corroded and abraded,which were vulnerable to be damaged. So,it is significance to research the way how the wearable alloy powders were surfacing on sealing face, which would prolong the lifetime of valves and increase the economic performace.
     Albronze alloy powers were surfaced on 20g and HT200 with weak plasma arc under different welding parameters and DC transverse direction magnetic field. The hardness, wearing resistance, erosion resistance, microstructure and interfacing bonding mechanism of surfaing layer were tested and studied. The influence rule and acting mechanism of magnetic field currents and welding currents on properties and microstructure of surfacing layer were researched. The main results are as following:
     (1)The optimal value of forming, properties and microstructure of albronze with low carbon steel & cast iron surfacing layer are obtained when Q=17g/min, V=120mm/min, I=110A. For albronze and low carbon steel, the hardness is 259HV,wear extent is0..0088g,fraction factor is 0.3;For albronze and cast iron, the hardness is 233.7HV, wear extent is 0.128g, fraction factor is 0.35. The microstructure of albronze surfacing layer consists ofα-Cu and second phaseγ2,β′&κ,which has second phase invigoration effect. The polarization potential ofγ2 phase is low, so erosion resistance ofγ2 phase is not good and will erode at first. The erosion resistance of surfacing layer is not good when I=110A.
     (2)The interface bonding of surfacing layer is good when surfacing current is proper, fusion line is clear and clean, the phenomenon of element diffusion appears along surfacing layer interface. The component segregation will appear when surfacing current is too big, when the diffusion of element iaggravate. The bonded mode of albronze surfacing layer is lamellar bond. Through physical contact, face activation and inter diffusion, the surfacing layer bonds with based metal for atom size.
     (3)The optimal microstructure and properties of surfacing layer are obtained when I=110A and I_m=1A. For albronze and low carbon steel surfacing layer, hardness is 284HV, the wear extent is 0.0063g, fraction factor is 0.3;For albronze and cast iron surfacing layer, hardness is 252.9HV, wear extent is 0.0088g, fraction factor is 0.35. The microstructure of surfacing layer consists ofα-Cu and second phase K andβ,which has second phase invigoration effect. The erosion resistance of surfacing layer is best at this time, the corrosion potential is highest and corrosion current is lowest. The best state of interface bond also appears at this time, the breadth of transition layer is proper and metallic compound hasnot been found.
     (4)The“M stirring”,“S stirring”and“F stirring”will affect the solidifaction and crystallization of surfacing layer metal, which are induced by extra magnetic field. The effect of“F stirring”is best, which can refine the microstructure, nodulare impurity and improve the distribution of phae and the properties of surfacing layer. But the magnetic field current is too big to properties of surfacing layer because of the electromagnetic damping.
引文
[1]高清宝,王德权.阀门堆焊技术[M].北京:机械工业出版社,1994:50-58.
    [2]姚寿山,陆皓.阀门密封面堆焊材料高温耐磨性的研究[J].上海交通大学学报,1996,30(8):120-121.
    [3]屈晓斌,陈建敏,周惠娣等.材料磨损失效及其预防研究现状与发展趋势[J].摩擦学学报,1999,19(2):187-192.
    [4]薛群基,党鸿辛.摩擦学研究的发展概况[J].摩擦学学报,1993,13(l):73-80.
    [5]孙家枢.金属的磨损[M].北京:冶金工业出版社,1992:357-360.
    [6]邵荷生,张清.金属的磨料磨损与耐磨材料[M].北京:机械工业出版社,1988:1-2.
    [7]马丽心,刘义翔,李文新.粘着磨损及影响因素的研究[J].哈尔滨商业大学学报,2001,17(1):75-78.
    [8]刘家浚.材料磨损原理及其耐磨性[M].北京:清华大学出版社,1993:2-3
    [9] R. Chattopadhyay. Surface wear analysis treatment and prevention[J]. U.S.A. ASM International,2001,35(10):68-120.
    [10]蒋金勋,张佩芳.金属腐蚀学[M].北京:国防工业出版社,1986:5-6.
    [11]刘秀晨,安成强,崔作兴等.金属腐蚀学[M].北京:国防工业出版社,2002:32-40.
    [12]陆入领,范家峰,王晓伟.阀门腐蚀失效分析与处理[J].阀门,2002,24(2):30-35.
    [13]谭昌瑶,王钧石.实用表面工程技术[M].北京:新时代出版社,1998:18-21.
    [14]陈德才,崔德容.机械密封设计制造与使用[M].北京:机械工业出版社,1993:43-65.
    [15]董祖珏,黄庆云.国内外堆焊发展现状[C].第八次全国焊接会议论文集,北京:机械工业出版社,1997:53-56.
    [16] I. M. Hutehings. Tribological Friction and Wear of Engineering Materials[M]. Great Britain:Edward Arnold,1992:40-140.
    [17] Sadayappan M,FasoyinuF A,Zavadil R,et al. Effect of some impurity elements on meehanical properties of aluminum bronze alloys C95800 and C95400[J]. AFS Transaetions,1998,10(6):743-748.
    [18]牛济泰,王式正.焊接基础[M].哈尔滨:黑龙江科学技术出版社,1986:50-53.
    [19]敖自立.我国有色金属粉末生产现状与展望[J].粉末冶金工业,1997,30(7):52-57.
    [20]李元元,夏伟,温利平.铝青铜合金的基本特性与摩擦学性能的关系[J].摩擦学学报,1996,13(4):130-136.
    [21]胡大禄,曹建春,周兆.新型高强耐磨青铜的组织与性能研究[J].有色金属,1998,12(8):99-103.
    [22]李亚江,王娟,刘鹏.异种难焊材料的焊接及应用[M].北京:化学工业出版社,2004,176.
    [23] Ahmet D, Behcet G, Fehim F. Examination of copper/stainless steel joints formed by explosive welding[J]. Materials and design,2005,2(6):497-507.
    [24]徐越兰,余进,王建平.铜钢熔敷焊工艺方法分析研究[J].南京理工大学学报,2002,26(4):401-405. 120
    [25]钟定名,刘建国.堆焊金属裂纹形成机理[J].株洲工学院学报,2002,16(6):88-90.
    [26]周振丰.金属熔焊原理及工艺[M].北京:机械工业出版社,1987:183-184.
    [27]林砺宗,刘义崇,刘晓磊.灰口铸铁阀体密封面镍基堆焊技术[J].焊接,2006,14(6):45-48.
    [28]黄明亚.我国阀门行业的现状及发展趋势[J].阀门,2002,12(1):1-5.
    [29]柳青.等离子弧焊接工艺[J].铁道机车车辆工人,2005,24(2):23-25.
    [30]陈徳善,王超林,李爱国等.反极性弱等离子弧基本特性及其粉末堆焊的研究[J].试验研究,1983,12(2):44-49. Scarborough Fair Scarborough Fair
    [31] E. vande,Heide. Cold metal transfer has a future joining steel to aluminium[J]. Welding Journal, 2005(6):38-40.
    [32]李元元,夏伟,张文等.高强耐磨铝青铜合金及其摩擦学特性[J].中国有色金属学报,1996,6(3):77-80.
    [33]李文生,王智平.高铝青铜的研制及腐蚀磨损机理的研究[J].兰州:兰州理工大学,2006:23-50.
    [34] Schussler. Formation processes of CuCl and regenerated Cu crystals on bronze surface in neutral and acidic media[J]. Applied Surface Science, 2002, 16(5):12-16.
    [35]于辉,董飒英,黄国胜.铝青铜在3. 5%NaCl溶液中的脱成分腐蚀行为[J].中国腐蚀与防护学报,2003,(6):345-349.
    [36]韩忠,江伟明,林海潮.海水管路系统中铝青铜腐蚀行为的研究[J].中国腐蚀与防护学报,2000,20(3):155.
    [37]苏志东.核级阀门密封面堆焊[J].阀门,2007,12(2):12.
    [38]黄海,张相彬,曹宏涛等.核电阀门的技术现状及发展方向[J].阀门,2005,7(3):25-28.
    [39]高荣发.等离子弧喷焊[M].北京:机械工业出版社,1979:120-150.
    [40]王希琳,王贞炳,陈志华等.铜与45钢扩散接合的研究[J].热加工工艺,1993,6(4):34-36.
    [41] V. E.莱萨特,A.德贝利斯.硬度试验手册[M].北京:机械工业出版社,1985:85-87.
    [42]王智平,金玉花,路阳.高铝青铜Cul4%AlX摩擦磨损特性的研究[J].铸造,2003,54(3):185-189.
    [43]胡大禄,曹建春,周兆等.新型高强耐磨青铜的组织与性能研究[J].有色金属,1998,50(3):100-103.
    [44]路阳,李文生,王智平.新型模具铝青铜合金材料的研制[J].热加工工艺,2002,4(3):45-47.
    [45]侯园园,葛世荣.铜销对钢盘摩擦副磨损率测试的尺寸效应[J].润滑与密封,2009,34(2):26-30.
    [46]蔡泽高,刘以宽.金属磨损与断裂[M].上海:上海交通大学出版社,1985:35-50.
    [47]王莲芳,金希龙.堆焊金属的耐磨性与硬度的研究[J].焊接,1991,12(6):6-9.
    [48]黄召,张虎,张彦雷.闸阀密封座喷涂铝青铜合金的试验研究[J].阀门,2005 (1):15.
    [49] Heilman P. Wear of Materials[M]. NewYork:ASME,1983:414-415.
    [50] F.L. La,H.R. Copson. Corrosion Resistance of Metals and Alloys[M]. NewYork:Reinhold Publishing Corporation, 1963:80-82.
    [51]朱小龙,雷廷权,徐杰.形变对7Cu-Cr合金腐蚀行为的影响[J].中国有色金属学报,1997,7(2):79-81.
    [52] Paul De Garmo E,Blaek J T,Ronald A Kohser. Materials and Proeesses in Manufacturing[J]. Prenticle Hall College Div,1997,23(1):153-154.
    [53]季德林.铸铁的腐蚀与破坏[J].安徽科技,1997,12(4):45-47.
    [54]关卫国.如何防止使用E5016焊条时出现气孔[J].焊接技术,2002,10(1):61-62.
    [55]《铸造有色合金及其熔炼》联合编写组编.铸造有色合金及其熔炼[M].北京:国防工作工业出版社,1980.
    [56]胡志强.无机材料科学基础教程[M].北京:化学工业出版社,2004:123-124.
    [57] E. W. Hartsell. Joining copper and copper alloys[J]. Welding journal,1973,16(3):236-237.
    [58] D. G. Howden. Hydrogen absorption in arc melting[J]. British welding journal,1963,28 (9):49-64.
    [59] Brown D C. The effect of electromagnetic stirring and mechanical vibration on arc welding[J]. Welding journal,1962,41(2):41~50
    [60] Tseng C F, Savage W F. The effect of arc oscillation in either the transverse or longitudinal direction has a beneficial effect on the fusion zone microstructure and tends to reduce sensitivity to hot cracking[J]. Welding journal,1971,50(12):777~785.
    [61]王晓东,赵恂,李廷举等.磁力搅拌法的研究与开发[J].材料科学与工艺,2000,8(4):1~5.
    [62]李海刚,殷咸青,罗键等.用电磁搅拌提高LD10CS铝合金焊接接头的质量[J].焊接学报,1998,19(12):100~104.
    [63]殷咸青,李海刚,罗键.用电磁搅拌抑制LD10CS铝合金焊缝热裂纹的研究[J].西安交通大学学报,1998,32(5):91~95.
    [64]唐非,鹿安理,方慧珍等.一种降低残余应力的新方法—脉冲磁处理法[J].焊接学报,2000,21(2):29~31.
    [65]国旭明,钱百年,薛小怀等.电磁搅拌对管线钢埋弧焊熔敷金属低温韧性的影响[J].金属学报,2000,36(2):177~180.
    [66]常云龙,陈德善.磁控等离子弧堆焊热源的研究[J].沈阳工业大学报,1997,19(5):49~52.
    [67] Stein D. Quantitative nondestructive tensile testing of A356/A357 T61 aluminum alloy casting[J]. AFS Trans,1980,23(10) :631-644.
    [68] Molenaar J M,Kool W H. Sulute redistribution in stir-cast Al-6Cu [J]. J. Mater. Sci,1989,(24):1782-1794.
    [69] Inatomi Y. Morphological change of semiconductor growth interface from soulution in a magnetic field[J]. J. Cryst. Growth,1999 (198-199):176-181.
    [70]毛卫民,赵爱民,崔成林等.电磁搅拌对半固态AISiMg合金初生-AI的影响规律[J].金属学报,1999,35(9):971-974.
    [71]张忠典.外加磁场对焊接过程的影响[J].焊接学报,2002(3):76 ~ 82
    [72] [苏]M. A.阿勃拉洛夫,P. Y.阿勃杜拉赫曼洛夫.电磁作用焊接技术[M].北京:机械工业出版社,1988:50-70.
    [73]贾昌申.纵向磁场中的焊接电弧行为[J].西安交通大学学报,1994,20(7):7~13.
    [74]贾昌申,肖克民.用电磁搅拌提高20g钢埋弧自动焊焊缝质量[J].电焊机,1987,17(4):14~17.
    [75] Kous. ley. Improve weld quality by low frequency arc oscillation[J]. Welding Journal,1985,64(3):51~55.
    [76]刘政军.磁场强度对重熔层耐磨性的影响[J].焊接技术,2001 (5):73~75
    [77]刘政军.超硬质相在高温磨损中的行为及抗磨性[J].焊接学报,2003,30(5):12-15.
    [78] Liz-Marzan L M. Surface plasmon absorption behavior for different hped silver nanoparticles[J]. Langmuir,2006 (22):63-65.
    [79]许超,魏齐龙,曹天玮.磁场控制技术在焊接中的应用[J].新技术新工艺(热加工工艺技术与装备),2007 (11):51-53.
    [80]刘政军,刘景铎,牟力军等.磁场强度对重熔层耐磨性的影响[J].焊接学报,2001,22(5):73-75.
    [81]贾昌申,肖克民,殷咸青.焊接电弧的等离子流力研究[J].西安交通大学学报,1994,28(1):7-13.
    [82]罗键,贾昌申,王雅生等.外加纵向磁场GTAW焊接机理[J].金属学报,2001,37(2):212-216.
    [83] Tse H C,Man H C,Yue T M. Effect of electric and magnetic fields on plasma control during CO2 laser welding[J]. Optics and Lasers in Engineering, 1999, 32(1): 55-63.
    [84] Kou S,Le Y. Improve weld quality by low frequency arc oscillation[J]. Welding Journal, 1985,64(3):51-55.
    [85] Ralph Mobner. Buoyant melt flows under the influence of steady and rotating magnetic fields[J]. Crystal Growth,1999 (197):341-354.
    [86] Yu M Gelfgat. Rotating magnetic fields as a means to control the hydrodynamics and heat transfer in the processes of bulk single crystal growth[J]. Crystal Growth,1999 (198/199):165-169.
    [87]王学东,张伟强,时海芳.电磁搅拌技术的国内外发展现状[J].辽宁工程技术大学学报,2001,20(1):82-84.
    [88]张忠典,李冬青,尹孝辉等.外加磁场对焊接过程的影响[J].焊接,2002 (3):10-13.
    [89]郭大勇,杨院生,童文辉等.电磁驱动熔体流动与枝晶变形断裂模拟[J].金属学报,2003,9:914-919.
    [90] Chernysh P V. Electromagnetic Stirring of Weld Pool in GTA Welding[J]. Weld and Metal Fabr,1982,49(4):93-96.
    [91] Briskman A N, Gladyshko V S, Salnikov A S. Effect of Electromagnetic Stirring on the Cracking and Corrosion Resistance of Weld Joints in CrNi Steels[J]. Welding Production,1983,30(11):18-21.
    [92]班春燕,巴启先,訾炳涛.脉冲电流作用下LY12铝合金的微观结构和合金元素分布[J].物理学报,2001,50(10):2028-2030.
    [93]沈黎.铝-铜、钢-铝层状金属复合材料的界面反应研究:(硕士学位论文) [D].昆明:昆明理工大学,2002,50-75.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700