降酸酵母菌株的构建及其在枇杷酒酿造中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
枇杷酒的发酵多采用酿酒酵母,其利用苹果酸的能力较低,发酵结束后大部分留在成品中。因苹果酸口感酸涩,酒体柔和指数较低,影响枇杷酒的品质。本研究通过克隆粟酒裂殖酵母苹果酸通透酶(mae1)基因,构建整合型质粒,并在产朊假丝酵母中表达,使重组酵母菌株具有降解苹果酸的能力。将降酸酵母菌株投放于发酵后的枇杷原酒进行降酸发酵,消耗酒中部分苹果酸,同时增加枇杷酒部分香气成分,改善枇杷酒的感官品质。
     研究结论如下:
     1、采用Trizol法提取粟酒裂殖酵母的总RNA,以报道的粟酒裂殖酵母的苹果酸通透酶(mae1)的序列为依据设计引物,分别以基因组和cDNA为模板,克隆得到苹果酸通透酶(mae1)基因。通过双酶切、回收、连接,构建重组表达质粒pSH47-mae1。将pSH47表达质粒上的gal启动子换成PGK1启动子,成功的构建了重组表达质粒pSH47-PG-mae1。将线性化的重组质粒以同源重组的方式整合到产朊假丝酵母的基因组中表达。通过菌液PCR检验和摇瓶筛选,获得重组菌株CU-6。经连续传代实验表明,重组酵母菌株CU-6有良好的传代稳定性。
     2、研究了SO_2浓度、糖度、酒精度、接种量、温度5个单因素对重组酵母CU-6降酸的影响,筛选出3个主因素(SO_2浓度、糖度、酒精度)。利用中心组合设计试验的原理设计交互试验,采用响应面分析法优化枇杷酒的降酸工艺条件。通过响应面分析法得到枇杷酒降酸优化工艺:初始SO_2浓度50mg·L~(-1),酒精度7.8%,残糖量4.3g·L~(-1)。在苹果酸浓度4.5g·L~(-1),接种量1.5%,发酵温度为24℃的条件下发酵5d,产朊假丝酵母CU-6的在枇杷酒中的理论降酸量可达到1.82g·L~(-1)。实验实际值为1.80±0.02g·L~(-1),与理论值十分接近。
     3、研究6种固定化材料对重组酵母菌株CU-6在枇杷酒的降酸影响。其中2%海藻酸钠+1.4%SiO_2+0.6%PVA组合固定化酵母CU-6,降酸效果最好。研究发现固定化后酵母CU-6耐受SO_2和酒精度能力适度提高,在SO_2浓度80mg·L~(-1)和酒精度为11%时,降酸量仍可达到1.6g·L~(-1)。该材料制作的固定化微球连续使用5次以上,酵母的降酸能力仍保持较好。
     4、采用固定化酵母CU-6降酸处理后的枇杷酒,感官品质发生一定的变化。早钟和解放钟为原料酿造的枇杷酒经处理后,双乙酰影响较小,色度的影响较大,分别下降了37%和55%,总酸分别下降1.43和1.35g·L~(-1),柔和指数分别提高1.44和1.37。降酸处理使枇杷酒中的香气成分比例发生了改变,部分醇类物质比例提高,如苯乙醇、柏木醇等,部分酯类物质的比例提高,如丁二酸二乙酯等,部分酮类物质增加较多,如5-羟基-4-辛酮。
     5、固定化重组酵母菌株CU-6降酸处理后的枇杷酒,其营养组成未发生明显变化。降酸前后的矿物质含量保留较好。降酸处理后游离氨基酸有不同程度的增加,其中必需氨基酸苏氨酸、缬氨酸、蛋氨酸、异亮氨酸、亮氨酸、苯丙氨酸等明显增加。早钟和解放钟枇杷酒中的抗氧化活性物质含总酚、总黄酮和维生素C。研究发现,两种枇杷酒降酸前后总抗氧化能力均比对照的国产解百纳干红低,但高于国产雷司令干白;羟自由基清除能力均高于国产解百纳干红,但低于国产雷司令干白;对DPPH自由基表现出较好的清除作用,且随着稀释倍数的增加能力逐渐减弱,当将其稀释20倍时DPPH自由基的清除能力均仍能维持在60%以上。
Malic acid cannot be degraded during loquat wine fermentation by Saccharomycescerevisiae and ultimately result in high total acid level in liquor. Malic acid taste sour andastringent, which impact flavor balance index and sensory quality of loquat wine. Malatepermease (mae1) gene of Schizosaccharomyces pombe was cloned, integration plasmid wasconstructed and expressed in Candida utilis in the study. Recombinant yeast strains wasemployed in loquat wine after primary fermentation to deacid, which can degrad malicacid,increase the aroma substrances and improve sensory quality of loquat wine.
     Results of the study are as follows,
     ⑴Total RNA of Schizosaccharomyces pombe was extracted of by Trizol method,primers of mae1was designed based on reported sequence of Schizosaccharomyces pombe.Genome and cDNA as template was employed and Malate permease (mae1) wascloned.Recombinant expression plasmid pSH47-mae1was construct by double enzymedigestion, recovery, connection.Gal promoter pSH47in expression plasmid was replaced byPGK1promoter and recombinant expression plasmid pSH47-PG-mae1was construction.Recombinant plasmid pSH47-PG-mae1was linearized and homologous recombinated intogenome of Candida utilis to express. Recombinant yeast strains CU-6was screened bybacterium liquid PCR inspection and shake flask fermentation.It shows preferable passagestability through continuous subculture experiments.
     ⑵Effect on degradation of malic acid of recombinant yeast strains CU-6byconcentration of sulfur dioxide, brix, alcoholicity, inoculation, fermentation temperaturewere study.Concentration of sulfur dioxide, brix, alcoholicity were selected as main effectfactors. Response surface methodology (RSM) was applied to optimize deacidification inloquat wine by recombinant yeast strain. The degradation of malic acid was selected asresponse value and the mathematical model was established by Box-Benhnken centralcomposite design. The optimal fermentation conditions were: sulfur dioxide50mg·L~(-1),alcoholicity7.8%, brix4.3g·L~(-1). Under conditions of concentration of malic acid4.5g·L~(-1),inoculation1.5%, fermentation temperature24℃,1.82g·L~(-1)malic acid in loquat wine wasdegraded by Candida utilis CU-6within5days theoretically. With the optimal approch, the deacidification of loquat wine reaehed1.80±0.02g·L~(-1).
     ⑶Six kinds of immobilized materials were compared and deacidification ability ofrecombinant yeast strains CU-6applied in loquat wine was study. Group2%SOA+1.4%SO_2+0.6%PVA as immobilized material showed optimal deacidificationability.Tolerance capacity on sulfur dioxide and alcohol of recombinant yeast strains CU-6were increased reasonably by immobilization. The deacidification of loquat wine by CU-6immobilization reaehed1.60g·L~(-1)with concentration of sulfur dioxide80mg·L~(-1)andalcoholicity11%. Deacidification ability of recombinant yeast strains CU-6remains wellafter continuous employ for more than five times.
     ⑷Sensory quality of loquat wine were changed by immobilized recombinant yeaststrains CU-6after deacidification. After deacidification treatment, diacetyl and tanninchanged faintly, chroma were decreased37%and55%, total acid were decreased1.43g·L~(-1)and1.35g·L~(-1), flavor balance index were increased1.44and1.37in zaozhong andJiefangzhong loquat wine. Component of Aroma components in zaozhong andjiefangzhong loquat wine were varied. The proportion of partial ethanol such asphenethanol,cedrol were increased,partial esters such as diethyl succinate and partialketones such as5-hydroxy-4-octanone was increased via deacidification treatment.
     ⑸Nutrients in Zaozhong and Jiefangzhong loquat wine were changes faintly afterdeacidification treatmen by recombinant yeast strains CU-6. Content of minerals wereremained preferably and free amino acids were increased in different degrees afterdeacidification. Essential amino acid including methionine, threonine, valine, isoleucine,leucine, phenylalanine were increased significantly. Antioxidants in Zaozhong andJiefangzhong loquat wine contain total phenolics, total flavonoids and vitamin C. Totalantioxidant capacity of loquat wine before and after deacidification was lower thanindigenous Cabernet dry red, but higher than indigenous Riesling white; Hydroxyl radicalscavenging ability of loquat wine before and after deacidification was higher thanindigenous Cabernet dry red, but lower than indigenous Riesling white; loquat wine beforeand after deacidification showed commendable DPPH scavenging capacity,which wasweakened gradually with dilution increasing. It still maintained more than60%when itdiluted20times.
引文
[1]张军,韩英素,高年发,等. HPLC法测定葡萄酒中有机酸的色谱条件研究[J].酿酒科技.2004,122(2):91-93.
    [2]李华(2007).葡萄酒工艺学.(北京,科学出版社), pp.
    [3]康孟利,凌建刚,林旭东.果酒降酸方法的应用研究进展[J].现代农业科技.2008,(24):25-26,30.
    [4] Coote N, Kirsop B. The content of some organic acids in beer and otherfermented media[J]. Journal of the Institute of Brewing.1974,80.
    [5] Whiting G. Organic acid metabolism of yeasts during fermentation ofalcoholic beverages-a review[J]. Journal of the Institute of Brewing.1976,82(2):84-92.
    [6]张学英,张上隆,叶正文,等.李果实中苹果酸含量与花色素苷合成的关系初探[J].上海农业学报.2009,25(003):65-68.
    [7]梁国伟,徐亮,张宝荣,等.山楂酒酿造工艺研究及山楂酒中有机酸的HPLC测定[J].酿酒科技.2009,(7):106-108.
    [8]罗阳,贺晓光,杨军,等. HPLC法测定贺兰山东麓酿酒葡萄中苹果酸含量[J].安徽农业科学.2012,39(33):20541-20542.
    [9]张诗玲,徐瑞敏.葡萄酒中挥发酸的形成及预防措施[J].中外葡萄与葡萄酒.2007,(005):56-56.
    [10] Volschenk H, Van Vuuren H, Viljoen–Bloom M. Malo-ethanolic fermentationin Saccharomyces and Schizosaccharomyces[J]. Current genetics.2003,43(6):379-391.
    [11] Vailiant H, Formisyn P, Gerbaux V. Malolactic fermentation of wine: study ofthe influence of some physico‐chemical factors by experimental designassays[J]. Journal of Applied Microbiology.1995,79(6):640-650.
    [12] Redzepovic S, Orlic S, Majdak A, et al. Differential malic acid degradation byselected strains of Saccharomyces during alcoholic fermentation[J].International journal of food microbiology.2003,83(1):49-61.
    [13]郑文炉(2010).枇杷文化与产业发展.(福建农林大学).
    [14]翟小芬,蔡健.枇杷的营养保健和开发利用[J].广州食品工业科技.2004,20(3):104-106.
    [15]张玉,王建清.枇杷的营养及功能成分研究进展[J].食品科学.2005,26(9):602-604.
    [16]闫永芳,孙钧,孟天真,等.枇杷花研究及开发进展[J].食品工业科技.2011,32(12):544-546,551.
    [17]李婷,林文津,徐榕青,等.枇杷叶的化学成分和药理作用研究进展[J].中国野生植物资源.2010,29(5):11-14,20.
    [18]林国荣,沈高扬.枇杷核仁的营养成分分析[J].食品科技.2007,(8):276-277.
    [19]章恢志.枇杷史话[J].世界农业.1987,(6):54-56.
    [20]胡又厘,林顺权.世界枇杷研究与生产[J].世界农业.2002,273:18-20.
    [21]吴锦程.枇杷的生产与科研[J].莆田学院学报.2004,(3):31-37.
    [22]何志刚,李维新,林晓姿,等.枇杷果蔬什锦罐头的研制[J].食品科学.2007,(8):632-636.
    [23]刘洪,姚茂君,麻成金.低糖枇杷果脯的加工[J].食品科技.2004,(4):38-39.
    [24]胡镧铟,马春跃.天然枇杷汁饮料的开发研制[J].食品科学.1996,(12):48-50.
    [25]任香芸,李维新,何志刚,等.枇杷果醋酿造中优良菌株的筛选[J].福建农业学报.2008,23(2):201-204.
    [26]苟兴华,夏兵兵,张学锋,等.枇杷果酒加工工艺的研究进展[J].食品研究与开发.2009,(11):145-147.
    [27]陈继峰, Kremer B.降酸方法对葡萄酒降酸效果的影响[J].中外葡萄与葡萄酒.2001,(3):17-20.
    [28]林巧.樱桃酒化学降酸效应研究[J].中国酿造.2010,(12).
    [29]王春霞,杜连祥,王敏,等.山楂干酒的降酸研究[J].天津科技大学学报.2004,19(17-19,24).
    [30]徐怀德,寇莉萍,姜莉.树莓干酒澄清和降酸技术研究[J].西北林学院学报.2004,19(3):113-115.
    [31]诸葛庆,帅桂兰,赵光鳌,等.猕猴桃酒两种不同降酸方法的研究[J].酿酒科技.2005,(3):61-64.
    [32]严斌,陈晓杰,李伟.电渗析法在葡萄酒冷稳定处理中的应用研究[J].2007,(3):25-27.
    [33]张春晖,夏双梅,莫海珍.微生物降酸技术在葡萄酒酿造中的应用[J].酿酒科技.2000,(2):66-68,70.
    [34]李瑞国,韩烨,周志江.葡萄酒苹果酸乳酸发酵研究进展[J].食品研究与开发.2010,31(8):228-233.
    [35] Lonvaud-Funel A. Lactic acid bacteria in the quality improvement anddepreciation of wine[J]. Antonie Van Leeuwenhoek.1999,76(1):317-331.
    [36]潘海燕,徐岩,赵光鳌,等.苹果酒苹果酸乳酸发酵乳酸菌的筛选[J].食品与发酵工业.2004,30(10):11-16.
    [37]游新勇,李琼,王国泽,等.木瓜干酒苹果酸乳酸发酵降酸工艺技术研究[J].食品工业科技.2012,(15):202-205.
    [38]邢玮,韩建春.沙棘果酒苹果酸-乳酸发酵影响因素研究[J].2012,43(2):20-27.
    [39]李记明,司合云,段辉,等.乳酸菌在苹果酒酿造中的应用[J].微生物学通报.2004,31(5):81-84.
    [40]段雪荣,朱虹.优质葡萄酒酿造环节之——苹果酸-乳酸发酵[J].中外葡萄与葡萄酒.2009,(9):46-50.
    [41]刘延琳,李华,蒋思欣,等.苹果酸-乳酸发酵的相关酶和基因的研究进展[J].微生物学通报.2003,30(4):103-107.
    [42] Taillandier P, Strehaiano P. The role of malic acid in the metabolism ofSchizosaccharomyces pombe: substrate consumption and cell growth[J].Applied microbiology and biotechnology.1991,35(4):541-543.
    [43] Ogbonna JC, Amano Y, Nakamura K, et al. A multistage bioreactor withreplaceable bioplates for continuous wine fermentation[J]. American journalof enology and viticulture.1989,40(4):292-298.
    [44] Snow PG, Gallander JF. Deacidification of white table wines through partialfermentation with Schizosaccharomyces pombe[J]. American journal ofenology and viticulture.1979,30(1):45-48.
    [45]高年发,李小刚,杨枫.葡萄及葡萄酒中的有机酸及降酸研究[J].中外葡萄与葡萄酒.1999,(4):7-11.
    [46] Volschenk H, Viljoen‐Bloom M, Subden R, et al. Malo‐ethanolicfermentation in grape must by recombinant strains of Saccharomycescerevisiae[J]. Yeast.2001,18(10):963-970.
    [47]凌代文,东秀珠.乳酸细菌分类鉴定及实验方法[M].中国轻工业出版社,1999.
    [48] Henick-Kling T, Sandine W, Heatherbell D. Evaluation of malolactic bacteriaisolated from Oregon wines[J]. Applied and environmental microbiology.1989,55(8):2010-2016.
    [49]李翠霞,李华,金刚,等.新疆葡萄酒产区优良酒类酒球菌的分离,鉴定[J].食品科学.2012,33(01).
    [50]何志刚,任香芸,李维新,等.枇杷酒中苹果酸乳酸发酵优良乳酸菌的分离与鉴定[J][J].中国食品学报.2011,11(1):165-171.
    [51]文连奎,王立芳,王贵珍.陆生伊萨酵母降解L-苹果酸和柠檬酸的研究[J].食品科学.2011,32(7):220-223.
    [52]高卫卫,杜金华,韩伟,等.产朊假丝酵母利用有机酸的研究[J].食品与发酵工业.2008,(12):117-121.
    [53] Saayman M, Van Zyl W, Viljoen-Bloom M. Cloning, characterisation, andheterologous expression of the Candida utilis malic enzyme gene[J]. Currentgenetics.2006,49(4):248-258.
    [54]李华,何忠宝.原生质体融合构建葡萄酒降酸酵母的研究[J].微生物学杂志.2006,(2):5-8.
    [55] Churdchai C, Haritchanan S (2000). the Study of protoplast fusion betweenLeuconostoc oenos and Saccharomyces cerevisiae for industrial wineproduction. In Proceedings of4th International Conference on Food Scienceand Technology,121-136.
    [56]高玉荣,李大鹏,高年发.利用单灭活原生质体融合技术选育降酸能力强的葡萄酒酵母[J].中国食品学报.2006,6(3):106-110.
    [57]张占军,王富花.基因工程技术在食品工业中的研究进展[J].生物技术通报.2011,(02):75-79.
    [58]张春晖,刘树文,夏双梅.苹果酸降解相关基因在酿酒酵母中的表达[J].中国生物工程杂志.2003,(2):42-45.
    [59] Williams SA, Hodges RA, Strike TL, et al. Cloning the gene for the malolacticfermentation of wine from Lactobacillus delbrueckii in Escherichia coli andyeasts[J]. Applied and environmental microbiology.1984,47(2):288-293.
    [60] Ansanay V, Dequin S, Camarasa C, et al. Malolactic fermentation byengineered Saccharomyces cerevisiae as compared with engineeredSchizosaccharomyces pombe[J]. Yeast.1998,12(3):215-225.
    [61] Miller BJ, Franz CMAP, Cho GS, et al. Expression of the malolactic enzymegene (mle) from Lactobacillus plantarum under winemaking conditions[J].Current microbiology.2011,62(6):1682-1688.
    [62]刘延琳,李华. mleA基因在酿酒酵母中的整合型表达[J].中国农业科学.2009,42(4):1372-1377.
    [63]李慧荣.微生物的固定化在食品加工中的应用[J].食品研究与开发.2012,33(6):227-229.
    [64]郭子杰,卢冬梅.固定化技术在医药上的研究应用[J].现代食品与药品杂志.2007,17(2):20-23.
    [65]贾鹏翔,刘雪莹,刘京龙,等.固定化酶及其在化工等领域中的应用[J].皮革科学与工程.2004,14(5):31-37.
    [66]毛书端,张小平,兰永辉,等.废水营养比对固定化藻菌去除污染物的影响及动力学研究[J].环境工程学报.2012,6(5):1525-1530.
    [67]侯红萍,王家东.固定化酵母菌在白酒生产中的应用研究[J].中国食品学报.2005,5(2):60-63.
    [68] Maicas S, Pardo I, Ferrer S. The potential of positively-charged cellulosesponge for malolactic fermentation of wine, using Oenococcus oeni [J].Enzyme and microbial technology.2001,28(4):415-419.
    [69] Kosseva M, Kennedy J. Encapsulated lactic acid bacteria for control ofmalolactic fermentation in wine[J]. Artificial Cells, Blood Substitutes andBiotechnology.2004,32(1):55-65.
    [70]刘树文,李华.固定化31DH进行苹果酸一乳酸发酵的研究[J].中国农学通报.2005,21(4):86-88.
    [71] Ciani M. Continuous deacidification of wine by immobilizedSchizosaccharomyces pombe cells: evaluation of malic acid degradation rateand analytical profiles[J]. Journal of Applied Microbiology.1995,79(6):631-634.
    [72] Hong S, Lee H, Park H, et al. Degradation of malic acid in wine byimmobilized Issatchenkia orientalis cells with oriental oak charcoal andalginate[J]. Letters in applied microbiology.2010,50(5):522-529.
    [73]麻成金,李加兴,付伟昌,等.枇杷果酒酿造工艺研究[J].食品与机械.2006,(5):54-56,64.
    [74]叶顺君,蒲彪.枇杷果酒酿造工艺研究[J].酿酒科技.2007,(1):76-78.
    [75]马波.枇杷果酒的工艺研究[J].北方园艺.2009,(7):236-238.
    [76] Saayman M, Van Vuuren H, Van Zyl W, et al. Differential uptake of fumarateby Candida utilis and Schizosaccharomyces pombe[J]. Applied microbiologyand biotechnology.2000,54(6):792-798.
    [77] Cássio F, Leao C. Low-and high-affinity transport systems for citric acid in theyeast Candida utilis[J]. Applied and environmental microbiology.1991,57(12):3623-3628.
    [78] Toro M, Vazquez F. Fermentation behaviour of controlled mixed andsequential cultures of Candida cantarellii and Saccharomyces cerevisiae wineyeasts[J]. World Journal of Microbiology and Biotechnology.2002,18(4):351-358.
    [79]崔艳,刘金福.非酿酒酵母在葡萄酒酿造中应用的研究现状[J].中国酿造.2010,(11):13-16.
    [80] Kapsopoulou K, Mourtzini A, Anthoulas M, et al. Biological acidificationduring grape must fermentation using mixed cultures of Kluyveromycesthermotolerans and Saccharomyces cerevisiae[J]. World Journal ofMicrobiology and Biotechnology.2007,23(5):735-739.
    [81] Xu Y, Zhao G, Wang L. Controlled formation of volatile components in cidermaking using a combination of Saccharomyces cerevisiae and Hanseniasporavalbyensis yeast species[J]. Journal of industrial microbiology&biotechnology.2006,33(3):192-196.
    [82]魏彦锋,蒋锡龙,孙玉霞,等.果酒酵母分离选育的研究进展[J].中外葡萄与葡萄酒.2008,(6):66-69.
    [83]赵颖怡,梁世中.一种新的食品酵母表达系统:产朊假丝酵母[J].生物技术通讯.2002,13(006):457-458.
    [84]马磊,李红,杜金华,等.固定化酵母啤酒连续后发酵工艺[J].食品与发酵工业.2012,38(004):127-130.
    [85]王方,陈维敏,张岱,等.固相微萃取在发酵酒香气检测上的应用[J].中外葡萄与葡萄酒.2005,(3):56-59.
    [86]司波,陈野.固相微萃取技术及其在食品分析上的作用[J].中国酿造.2012,31(011):4-7.
    [87] Shaw P,林国阳.枇杷果实的化学成分及加工利用[J].福建果树.1991,(1):67-69,22.
    [88] Camarasa C, Bidard F, Bony M, et al. Characterization ofSchizosaccharomyces pombe malate permease by expression inSaccharomyces cerevisiae[J]. Applied and environmental microbiology.2001,67(9):4144-4151.
    [89] J.萨姆布鲁克.分子克隆实验指南[M].科学出版社,2008.
    [90] Hoskins RA, Carlson JW, Kennedy C, et al. Sequence finishing and mappingof Drosophila melanogaster heterochromatin[J]. Science.2007,316(5831):1625-1628.
    [91] Grobler J, Bauer F, Subden RE, et al. The mae1gene of Schizosaccharomycespombe encodes a permease for malate and other C4dicarboxylic acids[J].Yeast.2004,11(15):1485-1491.
    [92] Osothsilp C, Subden R. Malate transport in Schizosaccharomyces pombe[J].Journal of bacteriology.1986,168(3):1439-1443.
    [93]王艳尊,雷娟娟,江贤章,等.酿酒酵母adh2和ald6双基因缺失突变株的构建[J].微生物学通报.2009,36(2):211-216.
    [94]彭炳银,陈晓,沈煜,等.不同启动子控制下木酮糖激酶的差异表达及其对酿酒酵母木糖代谢的影响[J].微生物学报.2011,51(7):914-922.
    [95]陈永金,林晓华,王艳尊,等.酿酒酵母HOR2基因缺失突变株的构建[J].生物技术.2010,20(002):6-8.
    [96]宋浩雷,郭晓贤,王艳尊,等.敲除sfa1基因提高酿酒酵母乙醇合成能力的研究[J].微生物学通报.2007,34(3):421-425.
    [97]张余洋,欧阳波,叶志彪.无抗性标记基因转基因植物研究进展[J].农业生物技术学报.2004,12(5):589-596.
    [98]赵姝娴,林俊芳,王杰,等.安全选择标记的转基因食用菌研究进展[J].食用菌学报.2007,14(1):55-61.
    [99]吴竹青,陈景,黄群,等.响应面法优化雪莲果酒发酵工艺[J].食品科学.2010,31(23):183-187.
    [100]张泽志,韩春亮,李成未.响应面法在试验设计与优化中的应用[J].河南教育学院学报(自然科学版).2011,20(4):34-37.
    [101]袁辉,白云凤.中心组合和响应面分析优化枇杷果酒发酵工艺[J].中国酿造.2010,(2):103-106.
    [102]王思新,焦中高,孙治军.固定化细胞技术在果酒生产中的应用[J].中国食物与营养.2003,(1).
    [103]满都日娃,张巧云,孙迪,等.蓝莓酒酵母固定化载体的研究[J].2009,40(12):90-96.
    [104]崔艳,吕文,刘金福.以甘蔗固定化酵母发酵低醇葡萄酒的研究[J].中国酿造.2012,31(006):46-49.
    [105]薄艳秋,张秀玲.酵母的固定化及在蓝莓酒发酵中的应用[J].食品工业科技.2012,33(2):207-209,231.
    [106]陈智理,杨昌鹏,郭静婕.固定化酵母发酵生产果酒研究进展[J].安徽农业科学.2009,37(29):14357-14359.
    [107]詹耀才,钟细娥,靳桂敏.岗稔果酒发酵工艺的研究[J].现代食品科技.2008,24(1):39-41.
    [108] Norton S, D'AMORE T. Physiological effects of yeast cell immobilization:applications for brewing[J]. Enzyme and Microbial Technology.1994,16(5):365-375.
    [109]王杏文,邱兴天,季更生,等.发酵抑制物和环境因子对游离及固定化酵母发酵的影响[J][J].江西农业大学学报.2007,29(5):833-836.
    [110]高培培,胡纯铿,洪美,等.酵母固定化技术在燃料乙醇生产中的应用[J].食品与发酵工业.2010,(003):125-128.
    [111]周天行,林晓珊,董江清.固定化酵母发酵产酒精载体选择的研究[J].食品工业.2012,(3):74-76.
    [112]王福荣(2012).酿酒分析与检测.(北京,化学工业出版社), pp.
    [113]李华(2006).葡萄酒品尝学.(北京,科学出版社).
    [114] Ayestaran B, Garrido J, Ancín C. Sedimentation clarification of viura mustsutilization of amino acids during fermentation[J]. Food chemistry.1998,63(2):191-197.
    [115]范志刚,曾一文,苏鹏飞.批把酒发酵过程中的呈香成分变化[J].酿酒科技.2006,(4):79-80.
    [116]蒲彪,张瑶,刘云.枇杷酒陈酿期间香气成分的变化[J].食品科学.2011,32(14):293-297.
    [117]张丽萍,黄鹭强,杨民和.3种解放钟干型枇杷酒香气成分分析[J].福建师范大学学报(自然科学版).2012,28(2):120-124.
    [118]杨莹,徐艳文,薛军侠,等.葡萄酒相关酵母的香气形成及香气特征[J].微生物学通报.2007,34(4):757-760.
    [119] Banno N, Akihisa T, Tokuda H, et al. Anti-inflammatory andantitumor-promoting effects of the triterpene acids from the leaves ofEriobotrya japonica[J]. Biological and Pharmaceutical Bulletin.2005,28(10):1995-1999.
    [120]李记明,姜忠军,段辉,等.葡萄酒中主要矿质元素的研究[J].中外葡萄与葡萄酒.2004,(5):7-10.
    [121]孟惠平,于业伟.微量元素锌铜与血脂代谢关系的研究进展[J].微量元素与健康研究.2012,29(004):62-63.
    [122]相有章,杨晓霞,边建朝,等.高锌摄人对机体代谢的影响[J].卫生研究.2004,33(6):727-731.
    [123]祝晨蔯,赵爱萍.猕猴桃果实中营养成分的分析(Ⅱ)[J].广东药学.1996,4:000.
    [124]郭金英,宋立霞,刘开永,等.红葡萄酒,啤酒和白酒抗氧化作用研究[J].酿酒科技.2009,(009):41-43.
    [125]孙守丽,魏晓东,王冰,等.抗衰老的生物化学机制研究现状[J].中国老年学杂志.2009,29(13):1725-1727.
    [126] Pietta P-G. Flavonoids as antioxidants[J]. Journal of natural products.2000,63(7):1035-1042.
    [127]陈宇,黄晓丹,林素英,等.枇杷酒中总黄酮的测定[J].莆田学院学报.2010,17(005):28-31.
    [128]王毓宁,李鹏霞,胡花丽,等. Folin-酚法测定水蜜桃果酒中总多酚[J].酿酒.2012,39(5):60-62.
    [129]王琳,张建文,王永泉,等.保健酒中总黄酮的含量测定[J].中国当代医药.2012,19(9):54-56.
    [130]赵保路.自由基生物学与健康[J].科学(上海).2007,59(5).
    [131]刘微微,任虹,曹学丽,等.天然产物抗氧化活性体外评价方法研究进展[J].食品科学.2010,31(17):415-419.
    [132]先宏,吴可,孙存普.中药抗氧化活性的主要成分及其自由基清除作用[J].国外医学:中医中药分册.2003,25(3):150-153.
    [133]左丽丽,王振宇,樊梓鸾,等.植物多酚类物质及其功能研究进展[J].中国林副特产.2012,(5):39-43.
    [134]张文博.植物样品成分的体外抗氧化活性方法研究进展[J].广州化工.2011,39(24):14-16.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700