HC/ACBM联合负压吸引修复恒河猴骨缺损的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     临床上,面对因各种原因所致骨缺损、尤其是大块骨缺损,一直以来没有很理想的修复材料可供选择,而当前因车祸、肿瘤所导致的骨缺损发生率却呈上升趋势。骨缺损修复目前常用的支架材料主要有自体骨、同种异体骨、骨水泥、陶瓷及一些相关的衍生材料等,这些支架材料均存在不同程度的缺点。组织工程骨的兴起为骨缺损修复支架材料指明了新的发展方向,组织工程自1987年正式提出和确定后,在种子细胞、支架材料和组织构建技术等方面取得了明显进展,但是仍有一些问题尚待解决和完善,组织工程骨的血管化就是其中之一。
     骨缺损植入修复材料后血管新生需要一个较长的过程,早期的氧和营养仅能靠受体的组织液渗透供应,并且植入的材料由于机体的凝血反应会被凝血块包裹,从而使渗透更加困难,因此其大小严重受到局限,这显然远远不能满足临床应用的要求。促进组织工程骨血管化的方法常见的有:用胶原、促血管生成的生长因子等修饰支架材料;或将成骨种子细胞与血管内皮细胞、成血管前体细胞共培养等,但是效果欠佳。考虑到移植的组织工程骨主要靠外周血管芽生的方式血管化,一些研究小组利用外周血管芽生的策略,提出了组织工程骨支架材料的预血管化技术:将材料和细胞复合物包埋于皮下、大网膜、筋膜或肌袋中待组织血管化,然后将血管化的组织移植到受区,或者将构建的组织工程骨内植入动静脉也能明显促进材料细胞复合物的血管化及成骨能力,但过程比较复杂,并且即便采用了这些方法,组织工程骨植入受区后,尤其是早期的血液供应仍然靠渗透进行,没有完全解决血管化的难题。
     本课题组前期所研发的异种脱细胞骨基质(Acellular bone matrix,ACBM)支架材料较好地保留了细胞外骨基质的主要成分和完整结构,并且采用层层自组装技术,将肝素、壳聚糖复合在其表面,实验证明缓释、抗凝效果可靠;然后在此基础上联合封闭负压吸引技术(Vacuum Assisted closure,VAC),使血液在早期即可在支架材料内部实现持续“灌注”,为构建的组织工程骨即时、持续提供氧和营养物质。以兔和猪骨缺损为模型的修复研究结果证实,HC/ACBM (Heparin-Chotison coated ACBM)材料结合封闭负压技术使骨缺损修复支架材料植入后即刻可以获得血液灌注,与非负压侧比较,血容量、血流量及新生血管数等均显著增多,并且能促进新骨形成。
     但是,兔和猪和人差别较大,对于这种异种来源的支架材料应用于人还有待进一步研究。而恒河猴的解剖结构、生理学等方面与人高度相似,是一种较为理想的实验动物,为进一步验证其安全性和有效性,本实验首先按照ISO10993的标准检测了这种新材料的安全性和组织相容性的系列指标,并且在体外研究了模拟负压吸引灌注条件下培养对种子细胞与支架材料复合的影响,建立了恒河猴胫骨缺损的动物模型,初步探讨了HC/ACBM支架材料联合负压吸引对骨缺损修复过程中血流灌注和成骨的影响,为下一步的临床研究提供理论和实验依据。
     材料与方法
     1. HC/ACBM的生物安全性试验
     将本课题组研制的HC/ACBM材料按照ISO10993的标准,制作了20%的HC/ACBM的浸提液进行了急性、亚急性毒理试验、细胞毒性试验、皮肤刺激性试验,以及HC/ACBM的肌肉埋植试验。
     对骨髓来源间充质干细胞(mensenchymal stem cell,MSC)进行分离、培养,然后将HC/ACBM与细胞进行共培养,对表面改良后的材料与MSC的粘附性进行了研究。
     2.负压吸引灌注培养方式对细胞与材料复合的影响
     制作了体外模拟负压吸引进行细胞与材料共培养的灌注装置,以自制的这种装置将MSC和HC/ACBM共培养,对比研究了负压吸引灌注培养与静态培养对MSC的粘附、分布、生存、增殖等方面的影响。
     3. HC/ACBM结合负压吸引修复恒河猴胫骨缺损
     建立恒河猴胫骨缺损的模型,以双侧自体作为对照,分别观察了ACBM支架材料抗凝与不抗凝的比较,以及HC/ACBM联合负压吸引与不联合负压吸引的比较。利用CT及CT灌注观察了支架材料在修复后不同时间点的血流灌注和成骨情况。
     主要结果和结论:
     1.扫描电镜显示的超微结构表明,表面改良后的HC/ACBM仍保留了天然骨的多孔三维结构,并且HC/ACBM与MSC仍能紧密的粘附,证实HC/ACBM具有很好的粘附性。
     2.各项安全性检测均证实HC/ACBM无明显的毒性,具有良好的安全性和组织相容性。
     3.负压吸引灌注培养组与静态培养组的比较研究表明,负压吸引灌注培养条件下,细胞在材料表面和中心分布的更加均匀,TUNEL法检测没有发现粘附在材料上的细胞有明显的凋亡发生,Brdu法检测结果表明细胞与材料共培养时细胞可以正常进行增殖。
     4. CT灌注成像显示,HC/ACBM时间密度曲线呈血液灌注的表现,而ACBM材料呈血液渗透曲线。血容量、血流量图象显示体内植入HC/ACBM这种抗凝材料修复骨缺损,不仅材料周边部分有血液灌注,材料中心出现血液的时间也明显早于非抗凝材料;
     5.利用填充床式生物反应器的机理,在HC/ACBM抗凝支架材料植入后采用周期性低负压吸引,实验结果证实,构建的动物模型在HC/ACBM植入后早期就可以获得血液灌注,尤其是在材料的中心部分,与非负压侧比较,血容量、血流量等均显著增多,其新骨形成的质和量也显著改善。
Background
     Clinically, the treatment of bone defects for various reasons, especially large bonedefect, is always the orthopedic surgeon’s problems. And the number of people required toundergo bone graft repair is rising because of car accidents, cancer and so on. The repairmaterials of basically has autologous bone, allograft bone, non-degradable bone cement,ceramics, related derivative materials and so on, and these materials are unsatisfied. Bonetissue engineering is the new technology for regeneration and repair, which is the new trendof development of bone defect repair. Since the1987officially proposed and determined,bone tissue engineering have achieved many progress in seed cells, scaffolds and thetechnology of structure. But, some problems need to be resolved. Revascularization is oneof the most important problems of them. As everybody knows, the angiogenesis requiresseveral days after bone defects implanted. The early nutrition supply of the cells can onlyrely on the body tissue fluid penetration. So, the size of scaffold material is severely limited.Only as skin and cartilage that can rely on diffusion to maintain a low metabolic untilcompletion of revascularization, which is obviously far from being able to meet therequirements of clinical applications. Meanwhile, the implant material will start thecoagulation reaction, thus make the blood penetration more difficult.
     The common approachs to promote vascularization of bone tissue engineering,including collagen or vascular growth factors-modified scaffold, or oseogenesis seed cellsculture with the vascular endothelial cells or vessel precursor cells etc, but ineffective.Taking into account the way of vascularization of bone tissue engineering mainly rely onperipheral vascular buds born after transplantation, studies have used peripheral vascularshoot raw strategy, and puted forward the bone tissue engineering the pre-vascularizedtechnology of scaffolds: scaffolds and cells composite embeded in subcutaneous, omental,fascia or muscle bags, and then the pre-vascularization of tissue will transplant to therecipient or tissue engineered bone implant arteriovenous also can obviously promote the vascularization and osteogenic of the compound bone scaffolds. But the process is morecomplex, and even with these methods, tissue engineering bone after implantation torecipient, the blood supply, especially early blood supply remain dependent on thepenetration, not completely solve the problem of the early revascularization.
     The xenogeneic acellular hone matrix (ACBM) scaffold which developed by ourresearch group retains the major components and complete structure of the extracellularmatrix of bone. With layer-by-layer of self-packaging technology, heparin (HEP) andchitosan (HC) compound were coated on ACBM’s surface. The experiment showed thatslow-release and reliable anticoagulation effects were satisfied. And then combined vacuumassisted closure (VAC), allowed blood to continuous infusion at an early stage, provided thescaffolds of tissue engineered bone real-time, continuous oxygen and nutrients. Repairdefects in rabbit and pig results confirmed that the HC/ACBM (Heparin-Chotison coatedACBM) scaffold with the vacuum assisted closure make repair materials can be obtainedimmediately blood infusion after implantation. And compared with the non-negativepressure side, the blood volume, blood flow and neovascularization number weresignificantly increased and the quality and quantity of new bone formation alsosignificantly improved.
     In order to further promote application of HC/ACBM scaffold materials, this study inaccordance with ISO10993standard to detect related safety series indicators of the newmaterial. In vitro, we studied the influence of simulation of the negative pressure drainageto seed cells compound scaffold materials. And we selected the rhesus monkeys which wasvery close to human as experimental animals, established the animal models of rhesus tibialdefect. Then we study how the HC/ACBM scaffold materials with VAC impact the bloodperfusion and bone formation during the process of bone defect repair, provided to thetheory and experiment basis for the next step of the clinical research.
     Materials and methods
     1. The HC/ACBM biological safety test
     According to the standard of ISO10993, we study on the biological safety ofHC/ACBM materials. We prepared20%liquid extracts of HC/ACBM for acute or subacutesystemic toxicological tests, in vitro cytotoxicity tests, skin irritation tests and local effects after implantation tests.
     The research has isolated and cultured bone marrow derived mesenchymal stem cells.And then we studied the adhesion to MSC to the material modified surface by HC/ACBMand the stem cells co-cultured.
     2. The influence of the negative pressure drainage infusion to the cells compositematerials
     The research has developed a cell culture device with perfusion simulation of suctiondrainage in vitro. With this homemade device, the MSCs and HC/ACBM scaffold materialco-cultured. Compared to the static culture, we investigate the impact of the negativepressure drainage infusion how to impact the adhesion to HC/ACBM, distribution, survival,the proliferation of MSCs.
     3. HC/ACBM combined with vacuum assisted closure repair rhesus monkeys tibialdefect
     Established rhesus tibial defect model, bilateral self control, we compared the ACBMwith or without anticoagulation, and HC/ACBM combination of vacuum assisted closure ordo not use. Using CT and CT perfusion studied the blood perfusion and osteogenesis atdifferent time points after repair rhesus monkey tibia defect with the HC/ACBM.
     The main results and conclusions:
     1. The scanning electron microscopy (SEM) shows that the ultrastructure ofHC/ACBM retained the natural bone nets holes and porosity. Results of MSC andHC/ACBM co-culture suggested that MSC can close adhesion to the ACBM with surfacemodified, and scaffold materials have the characteristic of well adhesion.
     2. In accordance with the methods and procedures developed by the ISO10993standard, acute or subacute systemic toxicological tests, in vitro cytotoxicity tests, skinirritation tests and local effects after implantation tests both confirmed the HC/ACBM nosignificant toxicity, has the good biological safety and compatibility.
     3. The cells culture in device with perfusion simulation of suction drainage shows thatthe cells adhere to surface and center of the material, and with a more uniform distribution.TUNEL assay found the cells adhesion to the HC/ACBM’s were no obvious apoptosis.Brdu assay results also showed that cell proliferation of cells adhesion to the HC/ACBM’s could normal proliferate. In contrast, the static cultured cells were mainly distributed in theouter surface of the HC/ACBM, while the central parts were very few.
     4. CT perfusion imaging shows that time density curve of HC/ACBM group is bloodperfusion performance, and ACBM group is blood penetration curve. Blood volume, bloodflow in the images show the implant HC/ACBM with anticoagulation to repair bone defect,scaffold materials have a blood perfusion not only surrounding peripheral parts, materialscenter appearance of blood in the early time also obvious in this anticoagulant scaffoldmaterials;
     5. In this study, using the mechanism of the packed bed bioreactor, and imposedperiodic low negative pressure in HC/ACBM with anticoagulation scaffold afterimplantation. The experimental results demonstrate that, animals after implantation inHC/ACBM with negative pressure can get blood perfusion earlier, especially in the centralparts of scaffold materials. Compared with the non-negative pressure side, the negativepressure side had more blood volume, blood flow significantly increased, and the qualityand quantity of new bone formation also significantly improved.
引文
1. Nikolaos GL, Nikolaos KK, Peter VG. Current management of long bone largesegmental defects. Orthopaedics and trauma,2009,24(2):149-163.
    2. LG Griffith, G Naughton. Tissue engineering-current challenges and expandingopportunities. Science,2002,295:1009-1014.
    3. Y Ikada. Challenges in tissue engineering. J R Soc,2006,3:589-601.
    4. Esther C. Novosel, Claudia Kleinhans, Pera J. Kluger. Vascularization is the keychallenge in tissue engineering. Advanced Drug Delivery Reviews,2011,67(4-5):300-311.
    5. Rouwkema, J, Rivron, NC, and van Blitterswijk, CA. Vascularization in tissueengineering. Trends Biotechnol,2008,26:434-441.
    6. Jain, RK, Au P, Tam J, Duda, DG and Fukumura D. Engineering vascularized tissue.Nat Biotechnol,2005,23:821-829.
    7. C Clar, E Cummins, L McIntyre, S Thomas, J Lamb, L Bain, P Jobanputra, N Waugh.Clinical and cost-effectiveness of autologous chondrocyte implantation for cartilagedefects in knee joints: systematic review and economic evaluation. Health technologyassessment,2005,9:1-82.
    8. S MacNeil. Progress and opportunities for tissue-engineered skin. Nature,2007,445:874-880.
    9. McFadden EP, Stabile E, Regar E, Cheneau E, Ong ATL, Kinnaird T, et al. Latethrombosis indrug-eluting coronary stents after discontinuation of antiplatelet therapy.Lancet,2004,364:1519-21.
    10. Vogler EA, Siedlecki CA. Contact activation of blood–plasma coagulation.Biomaterials,2009,30:1857-1869.
    11. Gupta GK, Jain V, Mishra PR. Templated ultrathin polyelectrolyte microreservoir fordelivery of bovine serum albumin: fabrication and performance evaluation. AAPSPharmSciTech,2011,12(1):344-53.
    12. O Karal-Yilmaz, M Serhatli, K Baysal, BM Baysal. Preparation and in vitrocharacterization of vascular endothelial growth factor (VEGF)-loaded poly(D, Llactic-co-glycolic acid) microspheres using a double emulsion/solvent evaporationtechnique. J Microencapsul,2011,28:46-54.
    13. Egana JT, Fierro FA, Kruger S, Bornhauser M, Huss R, Lavandero S, and Machens HG.Use of human mesenchymal cells to improve vascularization in a mouse model forscaffold-based dermal regeneration. Tissue Eng Part A,2008,15:1191-1198.
    14. Yang J, Zhou W, Zheng W, Ma Y, Lin L, Tang T, Liu J, Yu J, Zhou X, and Hu J. Effectsof myocardial transplantation of marrow mesenchymal stem cells transfected withvascular endothelial growth factor for the improvement of heart function andangiogenesis after myocardial infarction. Cardiology,2007,107:17-26.
    15. T Matsumoto, Y Mifune, A Kawamoto, et al. Fracture induced mobilization andincorporation of bone marrow-derived endothelial progenitor cells for bone healing. JCell Physiol,2008,215:234-242.
    16. Pardue EL, Ibrahim S, Ramamurthi A. Role of hyaluronan in angiogenesis and itsutility to angiogenic tissue engineering. Organogenesis,2008,4(4):203-14.
    17. Tanaka Y, Sung KC, Tsutsumi A, Ohba S, Ueda K, Morrison WA.Tissue engineeringskin flaps: which vascular carrier, arteriovenous shunt loop or arteriovenous bundle,has more potential for angiogenesis and tissue generation? Plast Reconstr Surg,2003,112(6):1636-44.
    18. C Seebach, D Henrich, C Kahling, K Wilhelm, et al. Endothelial progenitor cells andmesenchymal stem cells seeded onto beta-TCP granules enhance early vascularizationand bone healing in a critical sized bone defect in rats. Tissue Eng Part A,2010,16:1961-1970.
    19. Papavasiliou G, Cheng MH, Brey EM.Strategies for vascularization of polymerscaffolds. J Investig Med,2010,58(7):838-44.
    20. Z Lokmic, F Stillaert, WA Morrison, EW Thompson, GM Mitchell. An arteriovenousloop in a protected space generates a permanent, highly vascular, tissue-engineeredconstruct. FASEB J,2007,21:511-522.
    21.孙新君,王正国,张波,朱佩芳,刘勇,刘光军.脱细胞骨基对骨髓间充质干细胞成骨及示踪的观察.成都医学院学报,2010,5(3):200-203.
    22.孙新君,王正国,朱佩芳,等.脱细胞骨基质材料的特性及生物安全性观察.中华创伤杂志,2005,21(11):833-837.
    23. Xin-jun Sun, Wei Peng, Zai-liang Yang, Ming-liang Ren, Shi-chang Zhang, et al.Heparin-chotisan coated acellar bone matrix enhances perfusion of blood andvascularization in bone tissue engineering scaffolds. Tissue engineering Part A,2011,17(19-20):2369-2378.
    24. Armstrong DG, Lavery LA. Negative pressure wound therapy after partial diabetic footamputation: a multicentre, randomised controlled trial. Lancet,2005,366(9498):1704-1710.
    25. Stannard JP, Robinson JT, Anderson ER, McGwin G, Jr., Volgas DA, Alonso JE.Negative pressure wound therapy to treat hematomas and surgical incisions followinghigh-energy trauma. J Trauma,2006,60(6):1301-1306.
    26. Stawicki SP, Schwarz NS, Schrag SP, Lukaszczyk JJ, Schadt ME, Dippolito A.Application of vacuum-assisted therapy in postoperative ascitic fluid leaks: an integralpart of multimodality wound management in cirrhotic patients. J Burns Wounds,2007,6: e7-e19.
    27. Reichert JC, Saifzadeh S, Wullschleger ME, Epari DR, et al. The challenge ofestablishing preclinical models for segmental bone defect research. Biomaterials,2009,30:2149-2163.
    1. Bettinger CJ. Biodegradable elastomers for tissue engineering and cell-biomaterialinteractions. Macromol Biosci,2011,11(4):467-82.
    2.郑磊,王前,裴国献.骨组织工程中细胞外基质材料的选择.中华外科杂志,2000,38(10):745-748.
    3. Martins A, Pinho ED, Correlo VM, Faria S, Marques AP, Reis RL, NevesNM.Biodegradable nanofibers-reinforced microfibrous composite scaffolds for bonetissue engineering.Tissue Eng Part A,2010,16(12):3599-3609.
    4. Ceonzo K, Gaynor A, Shaffer L, Kojima K, Vacanti CA, Stahl GL.Polyglycolicacid-induced inflammation: role of hydrolysis and resulting complement activation.Tissue Eng,2006,12(2):301-8.
    5. Warnke PH, Bolte H, Schünemann K, Nitsche T, Sivananthan S, Sherry E, Douglas T,Wiltfang J, Becker ST. Endocultivation: does delayed application of BMP improveintramuscular heterotopic bone formation? J Craniomaxillofac Surg,2010,38(1):54-59.
    6. Huang X, Miao X. Novel porous hydroxyapatite prepared by combining H2O2foamingwith PU sponge and modified with PLGA and bioactive glass. J Biomater Appl.2007Apr,21(4):351-74.
    7. Ogihara N, Usui Y, Aoki K, Shimizu M, Narita N, Hara K, Nakamura K, Ishigaki N,Takanashi S, Okamoto M, Kato H, Haniu H, Ogiwara N, Nakayama N, Taruta S, SaitoN. Biocompatibility and bone tissue compatibility of alumina ceramics reinforced withcarbon nanotubes.Nanomedicine (Lond),2012,[Epub ahead of print]
    8.孙新君,王正国,张波,朱佩芳,刘勇,刘光军.脱细胞骨基质对骨髓间充质干细胞成骨及示踪的观察.成都医学院学报,2010,5(3):200-203.
    9.孙新君,刘菲,余绍芬,张波,王正国.肝素壳聚糖涂层促进脱细胞骨基质材料修复兔阶段性骨缺损血液灌注及血管化的实验研究.中国矫形外科杂志,2012,7.
    10. Xin-jun Sun, Wei Peng, Zai-liang Yang, Ming-liang Ren, Shi-chang Zhang, Wei-guoZhang, Lian-yang Zhang, Kai Xiao, Zheng-guo Wang, Bo Zhang, Jin Wang.Heparin-chotisan coated acellar bone matrix enhances perfusion of blood andvascularization in bone tissue engineering scaffolds. Tissue engineering Part A,2011,17(19-20):2369-2378.
    11.孙新君,王正国,朱佩芳,等.脱细胞骨基质材料的特性及生物安全性观察.中华创伤杂志,2005,21(11):833-837.
    12.张真,卢晓风,等.生物材料有效性和安全性评价的现状和趋势.生物医学工程学杂志,2002,19(1):117-121.
    13. Giannoudis PV, Pountos I. Tissue regeneration. The past, the present and the future.Injury,2005,36:S2-5.
    14. Y Ikada. Challenges in tissue engineering. J R Soc,2006,3:589-601.
    15. Gorbet MB, Sefton MV. Biomaterial associated thrombosis: roles of coagulation factors,complement, platelets and leukocytes. Biomaterials,2004,25(26):5681-5703.
    16. Werner C, Maitz MF, Sperling C. Current strategies towards hemocompatible coatings.J Mater Chem,2007,17(32):3376-3384.
    17. Gümü derelio lu M, Aday S. Heparin-functionalized chitosan scaffolds for bone tissueengineering.Carbohydr Res,2011,346(5):606-613.
    18. Kujawa P, Schmauch G, Viitala T, Badia A, Winnik FM. Construction of viscoelasticbio-compatible films via the layer-by-layer assembly of hyaluronan andphosphorylcholine-modified chitosan. Biomacromolecules,2007,8:3169-176.
    19. Lee JY, Nam SH, Im SY, Park YJ, Lee YM, Seol YJ, et al. Enhanced bone formation bycontrolled growth factor delivery from chitosan-based biomaterials. J Control Release,2002,78:187-97.
    20. Huanjun Zhou, Jiangchao Qian, Jing Wang, Wantong Yao. Enhanced bioactivity ofbone morphogenetic protein-2with low dose of2-N,6-O-sulfated chitosan in vitro andin vivo. Biomaterials,2009,30:1715-1724.
    21.刘苏南,郑启新.异种骨移植的免疫反应及处理方法的研究进展.中华实验外科杂志,2002,19(1):93-94.
    22. Yu Z, Zhu T, Li C, Shi X, Liu X, Yang X, Sun H. Improvement of intertrochantericbone quality in osteoporotic female rats after injection of polylactic acid-polyglycolicacid copolymer/collagen type I microspheres combined with bone mesenchymal stemcells.Int Orthop,2012,[Epub ahead of print]
    23.医疗器械生物学标准汇编(第1部分-第12部分),中国标准出版社第一编辑室.北京.中国标准出版社,2003.
    24.王昊,柏树令.脱细胞骨基质的立体构筑及TritonX-100残留量测定.中国医科大学学报,2011,40(6):487-490.
    25. Green KJ, Getsios S, Troyanovsky S, Godsel LM. Intercellular junction assembly,dynamics, and homeostasis. Cold Spring Harb Perspect Biol,2010,2(2):a000125.
    26. Petit A, Demers CN, Girard-Lauriault PL, Stachura D, Wertheimer MR, Antoniou J,Mwale F. Effect of nitrogen-rich cell culture surfaces on type X collagen expression bybovine growth plate chondrocytes. Biomed Eng Online,2011,18,10:4.
    27. Baker BM, Handorf AM, Ionescu LC, Li WJ, Mauck RL. New directions innanofibrous scaffolds for soft tissue engineering and regeneration.Expert Rev MedDevices,2009,6(5):515-32.
    28. Ayala R, Zhang C, Yang D, Hwang Y, Aung A, Shroff SS, Arce FT, Lal R, Arya G,Varghese S. Engineering the cell-material interface for controlling stem cell adhesion,migration, and differentiation. Biomaterials,2011,32(15):3700-11.
    1. Gupta GK, Jain V, Mishra PR. Templated ultrathin polyelectrolyte microreservoir fordelivery of bovine serum albumin: fabrication and performance evaluation.AAPSPharmSciTech,2011,12(1):344-53.
    2. O Karal-Yilmaz, M Serhatli, K Baysal, BM Baysal. Preparation and in vitrocharacterization of vascular endothelial growth factor (VEGF)-loaded poly(D, Llactic-co-glycolic acid) microspheres using a double emulsion/solvent evaporationtechnique. J Microencapsul,2011,28:46-54.
    3. Egana JT, Fierro FA, Kruger S, Bornhauser M, Huss R, Lavandero S, and Machens HG.Use of human mesenchymal cells to improve vascularization in a mouse model forscaffold-based dermal regeneration. Tissue Eng Part A,2008,15:1191-1198.
    4. Esther C. Novosel, Claudia Kleinhans, Pera J. Kluger. Vascularization is the keychallenge in tissue engineering. Advanced Drug Delivery Reviews,2011,67(4-5):300-311.
    5. Xin-jun Sun, Wei Peng, Zai-liang Yang, Ming-liang Ren, Shi-chang Zhang, Wei-guoZhang, Lian-yang Zhang, Kai Xiao, Zheng-guo Wang, Bo Zhang, Jin Wang.Heparin-chotisan coated acellar bone matrix enhances perfusion of blood andvascularization in bone tissue engineering scaffolds. Tissue engineering Part A,2011,17(19-20):2369-2378.
    6. Melchels FP, Tonnarelli B, Olivares AL, Martin I, Lacroix D, Feijen J, Wendt DJ,Grijpma DW. The influence of the scaffold design on the distribution of adhering cellsafter perfusion cell seeding. Biomaterials,2011,32(11):2878-84.
    7. Bjerre L, Bünger C, Baatrup A, Kassem M, Mygind T. Flow perfusion culture of humanmesenchymal stem cells on coralline hydroxyapatite scaffolds with various pore sizes.JBiomed Mater Res A.2011,97(3):251-63.
    8. McCoy RJ, Jungreuthmayer C, O'Brien FJ. Influence of flow rate and scaffold pore sizeon cell behavior during mechanical stimulation in a flow perfusion bioreactor.Biotechnol Bioeng,2012,109(6):1583-94.
    9. Surana, K.A.; Allu, S.; Tenpas, P.W.; Reddy, J.N. K-version of finite element method ingas dynamics: higher-order global differentiability numerical solutions. InternationalJournal for Numerical Methods in Engineering,2007,69(6):1109–1157.
    10. Wendt D, Riboldi SA, Cioffi M, Martin I. Bioreactors in tissue engineering: scientificchallenges and clinical perspectives. Adv Biochem Eng Biotechnol.2009,112:1-27.
    11. Sakai K, Mohtai M, Shida J, Harimaya K, Benvenuti S, Brandi ML, Kukita T, IwamotoY. J Bone Miner Res. Fluid shear stress increases interleukin-11expression in humanosteoblast-like cells: its role in osteoclast induction.1999,14(12):2089-98.
    12. Jorgensen C, No l D. Mesenchymal stem cells in osteoarticular diseases. Regen Med.2011,(6Suppl):44-51.
    13. Cao L, Liu G, Gan Y, Fan Q, Yang F, Zhang X, Tang T, Dai K. The use of autologousenriched bone marrow MSCs to enhance osteoporotic bone defect repair in long-termestrogen deficient goats. Biomaterials,2012,[Epub ahead of print]
    14. Kasemkijwattana C, Hongeng S, Kesprayura S, Rungsinaporn V, Chaipinyo K, ChansiriK. Autologous bone marrow mesenchymal stem cells implantation for cartilage defects:two cases report. J Med Assoc Thai,2011,94(3):395-400.
    15. Nikolaos G L, Nikolaos K K, Peter V G. Current management of long bone largesegmental defects. Orthopaedics and trauma2010,24(2):149-163.
    16. Rauh J, Milan F, Günther KP, Stiehler M. Bioreactor systems for bone tissueengineering. Tissue Eng Part B Rev,2011,(4):263-80.
    17. Krawetz R, Rancourt DE. Suspension bioreactor expansion of undifferentiated humanembryonic stem cells. Methods Mol Biol,2012,873:227-35.
    18. Lei XH, Ning LN, Cao YJ, Liu S, Zhang SB, Qiu ZF, Hu HM, Zhang HS, Liu S, DuanEK. NASA-approved rotary bioreactor enhances proliferation of human epidermal stemcells and supports formation of3D epidermis-like structure. PLoS One,2011,6(11):e26603.
    19. Fridley KM, Fernandez I, Li MT, Kettlewell RB, Roy K. Unique differentiation profileof mouse embryonic stem cells in rotary and stirred tank bioreactors. Tissue Eng Part A,2010,16(11):3285-98.
    20. Marsano A, Wendt D, Quinn TM, Sims TJ, Farhadi J, Jakob M, Heberer M, Martin I.Bi-zonal cartilaginous tissues engineered in a rotary cell culture system. Biorheology,2006,43(3-4):553-60.
    21. Holtorf HL, Sheffield TL, Ambrose CG, Jansen JA, Mikos AG. Flow perfusion cultureof marrow stromal cells seeded on porous biphasic calcium phosphate ceramics. AnnBiomed Eng,2005,33(9):1238-1248.
    22. McCoy RJ, Jungreuthmayer C, O'Brien FJ. Influence of flow rate and scaffold pore sizeon cell behavior during mechanical stimulation in a flow perfusion bioreactor.Biotechnol Bioeng,2012,109(6):1583-94.
    23. Elsayed EA, Wagner R. Application of hydrocyclones for continuous cultivation ofSP-2/0cells in perfusion bioreactors: Effect of hydrocyclone operating pressure. BMCProc,2011,5Suppl8:P65.
    24. Dahlin RL, Meretoja VV, Ni M, Kasper FK, Mikos AG. Design of a High ThroughputFlow Perfusion Bioreactor System for Tissue Engineering. Tissue Eng Part C Methods,2012,[Epub ahead of print]
    25. Goldstein AS, Juarez TM, Helmke CD, Gustin MC, Mikos AG. Eeffet of convection onosteoblastic cell growth and function in biodegradable Polymer foam scaffolds.Biomaterials,2001,22(11):1279-1288.
    26. Liu C, Abedian R, Meister R, Haasper C, Hurschler C, Krettek C, von Lewinski G,Jagodzinski M. Influence of perfusion and compression on the proliferation anddifferentiation of bone mesenchymal stromal cells seeded on polyurethane scaffolds.Biomaterials,2012,33(4):1052-1064.
    27. Thibault RA, Mikos AG, Kasper FK. Protein and mineral composition of osteogenicextracellular matrix constructs generated with a flow perfusion bioreactor.Biomacromolecules,2011,12(12):4204-4212.
    28. Li Z, Kreiner M, Edrada-Ebel R, Cui Z, van der Walle CF, Mardon HJ. Perfusionculture enhanced human endometrial stromal cell growth in alginate-multivalentintegrin α5β1ligand scaffolds. J Biomed Mater Res A,2011,99(2):211-220.
    29. Yang TH, Miyoshi H, Ohshima N. Novel cell immobilization method utilizingcentrifugal force to achieve high-density hepatocyte culture in porous scaffold. JBiomed Mater Res,2001,55(3):379-86.
    30. Meuwly F, Ruffieux PA, Kadouri A, von Stockar U. Packed-bed bioreactors formammalian cell culture: bioprocess and biomedical applications. Biotechnol Adv,2007,25(1):45-56.
    31. Miyoshi H, Ehashi T, Kawai H, Ohshima N, Suzuki S. Three-dimensional perfusioncultures of mouse and pig fetal liver cells in a packed-bed reactor: effect of mediumflow rate on cell numbers and hepatic functions. J Biotechnol,2010,148(4):226-32.
    32. Kubo T, Yano K, Hosokawa K. Management of flaps with compromised venousoutflow in head and neck microsurgical reconstruction. Microsurgery,2002,22:391-395.
    1. Salter E, Goh B, Hung B, Hutton D, Ghone N, Grayson WL. Bone tissue engineeringbioreactors: a role in the clinic? Tissue Eng Part B Rev,2012,18(1):62-75.
    2. Brindley D, Moorthy K, Lee JH, Mason C, Kim HW, Wall I. Bioprocess forces andtheir impact on cell behavior: implications for bone regeneration therapy. J Tissue Eng,2011,2011:620247.
    3. Correia C, Grayson WL, Park M, Hutton D, Zhou B, Guo XE, Niklason L, Sousa RA,Reis RL, Vunjak-Novakovic G. In vitro model of vascularized bone: synergizingvascular development and osteogenesis. PLoS One,2011,6(12):e28352.
    4. Nukavarapu SP, Amini AR. Optimal scaffold design and effective progenitor cellidentification for the regeneration of vascularized bone. Conf Proc IEEE Eng Med BiolSoc,2011,2011:2464-2467.
    5. Rath SN, Arkudas A, Lam CX, Olkowski R, Polykandroitis E, Chróscicka A, Beier JP,Horch RE, Hutmacher DW, Kneser U. Development of a pre-vascularized3Dscaffold-hydrogel composite graft using an arterio-venous loop for tissue engineeringapplications. J Biomater Appl.2011, jun16.
    6. Meuwly F, Ruffieux PA, Kadouri A, von Stockar U. Packed-bed bioreactors formammalian cell culture: bioprocess and biomedical applications. Biotechnol Adv,2007,25(1):45-56.
    7. Miyoshi H, Ehashi T, Kawai H, Ohshima N, Suzuki S. Three-dimensional perfusioncultures of mouse and pig fetal liver cells in a packed-bed reactor: effect of mediumflow rate on cell numbers and hepatic functions. J Biotechnol,2010,148(4):226-32.
    8. Xin-jun Sun, Wei Peng, Zai-liang Yang, Ming-liang Ren, Shi-chang Zhang, Wei-guoZhang, Lian-yang Zhang, Kai Xiao, Zheng-guo Wang, Bo Zhang, Jin Wang.Heparin-chotisan coated acellar bone matrix enhances perfusion of blood andvascularization in bone tissue engineering scaffolds. Tissue engineering Part A,2011,17(19-20):2369-2378.
    9.孙新君,王正国,朱佩芳,等.脱细胞骨基质材料的特性及生物安全性观察.中华创伤杂志,2005,21(11):833-837.
    10. Fleischmann W, Strecker W, Bombelli M, Kinzl L.[Vacuum sealing as treatment of softtissue damage in open fractures].Unfallchirurg1993,96(9):488-492.
    11. Armstrong DG, Lavery LA. Negative pressure wound therapy after partial diabetic footamputation: a multicentre, randomised controlled trial. Lancet,2005,366(9498):1704-1710.
    12. Stannard JP, Robinson JT, Anderson ER, McGwin G, Jr., Volgas DA, Alonso JE.Negative pressure wound therapy to treat hematomas and surgical incisions followinghigh-energy trauma. J Trauma,2006,60(6):1301-1306.
    13. Stawicki SP, Schwarz NS, Schrag SP, Lukaszczyk JJ, Schadt ME, Dippolito A.Application of vacuum-assisted therapy in postoperative ascitic fluid leaks: an integralpart of multimodality wound management in cirrhotic patients. J Burns Wounds,2007,6: e7-e19.
    14. Moon JJ, West JL. Vascularization of engineered tissues: approaches to promoteangio-genesis in biomaterials. Curr Top Med Chem,2008,8(4):300-310.
    15. Santos MI, Reis RL.Vascularization in bone tissue engineering: physiology, currentstrategies, major hurdles and future challenges. Macromol Biosci,2010,10(1):12-27.
    16. McCoy RJ, Jungreuthmayer C, O'Brien FJ. Influence of flow rate and scaffold pore sizeon cell behavior during mechanical stimulation in a flow perfusion bioreactor.Biotechnol Bioeng,2012,109(6):1583-1594.
    17. Sun H, Liu W, Zhou G, Zhang W, Cui L, Cao Y. Tissue engineering of cartilage, tendonand bone. Front Med,2011,5(1):61-69.
    18. Theler JM. Bone tissue substitutes and replacements. Curr Opin Otolaryngol HeadNeck Surg.2011,19(4):317-322.
    19. Susarla SM, Swanson E, Gordon CR. Craniomaxillofacial reconstruction usingallotransplantation and tissue engineering: challenges, opportunities, and potentialsynergy. Ann Plast Surg,2011,67(6):655-661.
    20. Schroeder JE, Mosheiff R.Tissue engineering approaches for bone repair: concepts andevidence. Injury,2011,42(6):609-613.
    21. Timmers MS, Le Cessie S, Banwell P, Jukema GN. The effects of varying degrees ofpressure delivered by negative-pressure wound therapy on skin perfusion. Ann PlastSurg,2005,55(6):665-671.
    22. Lovett M, Lee K, Edwards A, Kaplan DL. Vascularization strategies for tissueengineering. Tissue Eng Part B Rev,2009,15(3):353-370.
    23. Moon JJ, West JL. Vascularization of engineered tissues: approaches to promoteangio-genesis in biomaterials. Curr Top Med Chem,2008,8(4):300-310.
    24. Esther C. Novosel, Claudia Kleinhans, Pera J. Kluger. Vascularization is the keychallenge in tissue engineering. Advanced Drug Delivery Reviews,2011,67(4-5):300-311.
    25. Lovett M, Lee K, Edwards A, Kaplan DL. Vascularization strategies for tissueengineering. Tissue Eng Part B Rev,2009,15(3):353-370.
    26. Shen YH, Shoichet MS, Radisic M. Vascular endothelial growth factor immobilized incollagen scaffold promotes penetration and proliferation of endothelial cells. ActaBiomater,2008,4(3):477-489.
    27. Levengood SK, Poellmann MJ, Clark SG, Ingram DA, Yoder MC, Johnson AJ.Humanendothelial colony forming cells undergo vasculogenesis within biphasic calciumphosphate bone tissue engineering constructs. Acta Biomater,2011,7(12):4222-4228.
    28. Papavasiliou G, Cheng MH, Brey EM. Strategies for vascularization of polymerscaffolds. J Investig Med,2010,58(7):838-844.
    29. Perets A, Baruch Y, Weisbuch F, Shoshany G, Neufeld G, Cohen S. Enhancing thevascularization of three-dimensional porous alginate scaffolds by incorporatingcontrolled release basic fibroblast growth factor microspheres. J Biomed Mater Res A,2003,65(4):489-497.
    30. Tian L, George SC. Biomaterials to prevascularize engineered tissues. J CardiovascTransl Res,2011,4(5):685-898.
    31. Horner EA, Kirkham J, Wood D, Curran S, Smith M, Thomson B, Yang XB. Long bonedefect models for tissue engineering applications: criteria for choice. Tissue Eng Part BRev,2010,16(2):263-71.
    32. Jamell GA, Hollsten DA, Hawes MJ, Griffin DJ, Klingensmith WC, White WL,Spirnak J. Magnetic resonance imaging versus bone scan for assessment ofvascularization of the hydroxyapatite orbital implant. Ophthal Plast Reconstr Surg,1996,12(2):127-30.
    33. Zhou J, Lin H, Fang T, Li X, Dai W, Uemura T, Dong J.The repair of large segmentalbone defects in the rabbit with vascularized tissue engineered bone. Biomaterials,2010,31(6):1171-9.
    34. Lawrence W. Dobrucki, Yoshiaki Tsutsumi, Leszek Kalinowski, Jarrod Dean, MaryGavin. Analysis of angiogenesis induced by local IGF-1expression after myocardialinfarction using microSPECT-CT imaging. Journal of Molecular and Cellular.Cardiology,2010,48:1071-1079.
    35. Boutelier T, Kudo K, Pautot F, Sasaki M. Bayesian Hemodynamic ParameterEstimation by Bolus Tracking Perfusion Weighted Imaging. Part I: Theory andPreliminary Results. IEEE Trans Med Imaging,2012,[Epub ahead of print]
    36. Williams MC, Newby DE. CT myocardial perfusion: a step towards quantification.Heart,2012,98(7):521-2.
    37. Schintler MV. Negative pressure therapy: theory and practice.Diabetes Metab Res Rev,2012,28Suppl1:72-7.
    38. Schols RM, Lauwers TM, Geskes GG, van der Hulst RR. Deep sternal wound infectionafter open heart surgery: current treatment insights. A retrospective study of36cases.Eur J Plast Surg,2011,34(6):487-492.
    39. Assmann A, Boeken U, Feindt P, Schurr P, Akhyari P, Lichtenberg A. Vacuum-assistedwound closure is superior to primary rewiring in patients with deep sternal woundinfection. Thorac Cardiovasc Surg,2011,59(1):25-29.
    40. Eric G Meyer, Conor T Buckley, Stephen D Thorpe, Daniel J Kelly. Low oxygentension is a more potent promoter of chondrogenic differentiation than dynamiccompression. Journal of Biomechanics,2010,43:2516-2523.
    1. Meyer U, Wiesmann HP, Berr K, et al. Cell-based bone reconstructiontherapies-principles of clinical approaches. Int J Oral Maxillofac Implants,2006,21(6):899-906
    2. Liu W, Cui L, Cao YL. Recent advances in tissue engineering of cartilage, bone, andtendon. Curr Opin Orthop,2004,15(5):364.
    3.刘杰,吴雪晖,罗飞,等.自体间充质干细胞构建组织工程骨修复人长骨缺损的临床观察.第三军医大学学报,2008,30(9):851-854
    4. Cancedda R, Giannoni P, Mastrogiacomo M.A tissue engineering approach to bonerepair in large animal models and in clinical practice.Biomaterials,2007,28(29):4240-50.
    5. Bratt-Leal A M, Carpenedo RL, McDevitt TC. Engineering the embryoid bodymicroenvironment to direct embryonic stem cell differentiation. Biotechnol Prog,2009,25(1):43-51.
    6. Hyslop L A, Armstrong L, Stojkovic M, et al. Human embryonic stem cells: biologyand clinical implications. Expert Rev Mol Med,2005,7(19):11-21.
    7. Hou T, Xu J, Wu X, et al. Umbilical cord Wharton’s Jelly: a new potential cell sourceof mesenchymal stromal cells for bone tissue engineering. Tissue Eng Part A,2009,15(9):2325-2334.
    8. Kern S, Eichler H, Stoeve J, et al. Comparative analysis of mesenchymal stem cellsfrom bone marrow, umbilical cord blood, or adipose tissue. Stem Cells,2006,24(5):1294-1301.
    9. Wehner R, Wehrum D, Bornh user M, et al. Mesenchymal stem cells efficiently inhibitthe proinfl ammatory properties of6-sulfo LacNAc dendritic cells. Haematologica,2009,94(8):1151-1156.
    10. Zhang X, Jiao C, Zhao S. Role of mesenchymal stem cells in immunological rejectionof organ transplantation. Stem Cell Rev,2009,5(4):402-409.
    11. Ralf D, Kaomei G, Jessica N, et al. Multipotent adult germ-line stem cells, like otherpluripotent stem cells, can be killed by cytotoxic T lymphocytes despite low expressionof major histocompatibility complex class I molecules. Biology Direct2009,4:31.
    12. Dai F, Shi D, He W, et al. hCTLA4-gene modified human bone marrow-derivedmesenchymal stem cells as allogeneic seed cells in bone tissue engineering. Tissue Eng,2006,12(9):2583-2590.
    13. Puissant B, Barreau C. Immunomodulatory effect of human adipose tissue-derivedadult stem cells: comparison with bone marrow mesenchymal stem cells. Br JHaematol,2005,129(1):118-129.
    14. Kevin M, et al. The immunogenicity of human adipose-derived cells: temporal changesin vitro. Stem Cells,2006,24:1246-1253.
    15. Karageorgiou V, Kaplan D. Porosity of3D biomaterial scaffolds and osteogenesis.Biomaterials,2005,26(27):5474-5491.
    16. Olson JL, Atala A, Yoo JJ. Tissue engineering: current strategies and future directions.Chonnam Med J,2011,47(1):1-13.
    17.郑磊,王前,裴国献.骨组织工程中细胞外基质材料的选择.中华外科杂志,2000;38(10):745-748
    18.陈富林,毛天球,丁桂聪,等.天然珊瑚做为成骨细胞接种支架的可行性观察.现代康复,2001,5(9):33-34
    19.戴毅敏,毛天球,陈新梅,等.可吸收珊瑚/聚乳酸植骨材料的实验研究.实用口腔科杂志,2000,16(6):453-455
    20.祝联,曹谊林,崔磊.骨衍生材料——珊瑚的研究进展.临床骨科杂志,2001,4(3):233-235
    21. Geibler U, Hempel U, Wolf C, et al. Collagen type I coating of Ti6Al4V promotesadhesion of osteoblasts. J Biomed Mater Res,2000,51:752–760
    22. Deng M, Nair LS, Nukavarapu SP, et al. Dipeptide-based polyphosphazene andpolyester blends for bone tissue engineering. Biomaterials,2010,1(18):4898-4908.
    23. Lee JB, Jeong SI, Bae MS, et al. Poly(L-lactic acid) nanocylinders as nanofibrousstructures for macroporous gelatin scaffolds. J Nanosci Nanotechnol,2011,11(7):6371-6376.
    24. Nicodemus GD, Bryant SJ. Cell encapsulation in biodegradable hydrogels for tissueengineering applications. Tissue Eng Part B Rev,2008,14(2):149-65.
    25. Goldberg M, Langer R, Jia X. Nanostructured materials for applications in drugdelivery and tissue engineering. Bio Sci Poly Edit,2007,18(3):241-268.
    26. Fassina L, Saino E, Sbarra MS, Visai L, De Angelis MG, Magenes G, Benazzo F. Invitro electromagnetically stimulated SAOS-2osteoblasts inside porous hydroxyapatite.J Biomed Mater Res A,2010,93(4):1272-1279.
    27. Boccaccini AR, Roether JA, Hench LL, et al. A composites approach to tissueengineering. Ceram Eng Sci Proc,2002,23:805–816.
    28. Ciocca L, De Crescenzio F, Fantini M, et al. CAD/CAM and rapid prototyped scaffoldconstruction for bone regenerative medicine and surgical transfer of virtual planning: apilot study. Comput Med Imaging Graph,2009,33(1):58-62.
    29. Hirota K, Nishihara K, Tanaka H. Pressure sintering of apatite-collagen composite.Biomed Mater Eng,1993,3(3):147-151.
    30. Takaoka K, Nakahara H, Yoshikawa H, et al. Ectopic bone induction on and in poroushydroxyapatite combined with collagen and bone morphogenetic protein. Clin Orthop,1988,234:250-254.
    31.李彦林,杨志明,解慧琪,等.生物衍生骨支架材料的体外细胞相容性实验研究.中国修复重建外科杂志,2001,15(4):227-231.
    32.孙新君,王正国,朱佩芳,等.脱细胞骨基质材料的特性及生物安全性安全性观察.中华创伤杂志,2005,21(11):833-837.
    33. Xin-jun Sun, Wei Peng, Zai-liang Yang, et a1. Heparin-Chitosan-Coated Acellular BoneMatrix Enhances Perfusion of Blood and Vascularization in Bone Tissue EngineeringScaffolds. Tissue Eng: Part A,2011,17(19-30):2369-2378.
    34. Qiang Chen, Zailiang Yang, Shijin Sun, et a1. Adipose-derived stem cells modifiedgenetically in vivo promote reconstruction of bone defects. Cytotherapy,2010,12:831–840.
    35. Holy CE, Shoichet MS, Davies JE. Engineering three-dimensional bone tissue in vitrousing biodegradable scaffolds: investigating initial cell seeding density and cultureperiod. J Biomed Mater Res,2000,51(3):376-382.
    36. Holtorf HL, Jansen JA, Mikos AG. Modulation of cell differentiation in bone tissueengineering constructs cultured in a bioreactor. Adv Exp Med Biol,2006,585:225-241.
    37. Sailon AM, Allori AC, Davidson EH, et al. A novel flow-perfusion bioreactor supports3D dynamic cell culture. J Biomed Biotechnol,2009,2009:873816.
    38. Kaigler D, Wang Z, Horger K, et al. VEGF scaffolds enhance angiogenesis and boneregeneration in irradiated osseous defects. J Bone Miner Res,2006,21:735-744.
    39. Pliefke J, Rademacher G, Zach A, et al. Postoperative monitoring of freevascularizedbone grafts in reconstruction of bone defects. Microsurgery,2009,29:401-407.
    40. Kiki B H, Peter C, Timothy A. et al. Challenges in Tissue Engineering andRegenerative Medicine Product Commercialization: Building an Industry. TissueEngineering: Part A,2011,17:1-3.
    41. X. Chen, A.S. Aledia, S.A. Popson, et al. Rapid anastomosis of endothelial progenitorcell-derived vessels with host vasculature is promoted by a high density ofco-transplanted fibroblasts. Tissue Eng Part A,2010,16:585-594.
    42. T. Matsumoto, Y. Mifune, A. Kawamoto, et al, Fracture induced mobilization andincorporation of bone marrow-derived endothelial progenitor cells for bone healing. JCell Physiol.2008,215:234-242.
    43. C. Seebach, D. Henrich, C. Kahling, K. et al. Endothelial progenitor cells andmesenchymal stem cells seeded onto beta-TCP granules enhance early vascularizationand bone healing in a critical sized bone defect in rats. Tissue Eng Part A,2010,16:1961-1970.
    44. D.Y. Lee, T.J. Cho, J.A. Kim, et al. Mobilization of endothelial progenitor cells infracture healing and distraction osteogenesis. Bone,2008,42:932-941.
    45. Yoshimoto H, Shin YM, Terai H,Vacanti JP. A biodegradable nanofiber scafold byelectrospinning and its potential for bone tissue engineering. Biomaterials,2003,12:2077-2082.
    46. Zisch, AH, Lutolf, MP, and Hubbell, JA. Biopolymeric delivery matrices forangiogenic growth factors. Cardiovasc Pathol,2003,12:295-304.
    47. Kitajima, T, Terai, H, and Ito, Y. A fusion protein of hepatocyte growth factor forimmobilization to collagen. Biomaterials,2007,28:1989-1996.
    48. DW. Hutmacher, JT. Schantz, CX. Lam, et al. State of the art and future directions ofscaffold based bone engineering from a biomaterials perspective. J Tissue Eng RegenMed,2007,1:245-260.
    49. PJ. Kluger, R. Wyrwa, J. Weisser, et al. Electrospun poly(D/L-lactideco-L-lactide)hybrid matrix: a novel scaffold material for soft tissue engineering. J Mater Sci MaterMed,2010,21:2665-2671.
    50. S. Fuchs, S. Ghanaati, C. Orth, et al. Contribution of outgrowth endothelial cells fromhuman peripheral blood on in vivo vascularization of bone tissue engineered constructsbased on starch polycaprolactone scaffolds. Biomaterials,2009,30:526-534.
    51. MI. Santos, K.Tuzlakoglu, S Fuchs, et al. Endothelial cell colonization and angiogenicpotential of combined nano-and micro-fibrous scaffolds for bone tissue engineering.Biomaterials,2008,29:4306-4313.
    52. OC. Cassell, WA. Morrison, A Messina, et al. The influence of extracellular matrix onthe generation of vascularized, engineered, transplantable tissue, Ann. NY Acad. Sci,2001,944:429-442.
    53. Y. Tanaka, A. Tsutsumi, D.M. Crowe, et al. Generation of an autologous tissue (matrix)flap by combining an arteriovenous shunt loop with artificial skin in rats: preliminaryreport. Br. J. Plast. Surg,2000,53:51-57.
    54. U. Kneser, E. Polykandriotis, J. Ohnolz, et al. Engineering of vascularizedtransplantable bone tissues: induction of axial vascularization in an osteoconductivematrix using an arteriovenous loop. Tissue Eng,2006,12:1721-1731.
    55. Suh S, Kim J, Shin J. Use of omentum as an in vivo cell culture system in tissueengineering. ASAIO J,2004,50(5):464-7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700