半钢轧辊激光熔覆Ti(C_yN_(1-y))增强Fe基复合层的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
半钢轧辊广泛应用于冶金行业的轧机中,由于其工作条件非常恶劣,轧辊的表面上经常会出现磨损和剥落等情况,严重地影响热轧产品的品质和质量,若轧辊只能报废或替换,这将会给企业带来巨大的经济损失。为了修复己报废的铸造合金ZUB160CrNiMo半钢轧辊,针对这种轧辊的主要失效行为,本文利用激光熔覆技术在轧辊基材表面制备原位自生金属陶瓷复合层,这种熔覆层可以实现金属材料与陶瓷材料两优异性能的结合,该领域研究应用前景广阔。鉴于此,本文在以下方面开展了研究工作:
     本文选择横流二氧化碳激光束作为热源,利用激光熔覆技术在ZUB160CrNiMo半钢轧辊表面进行耐磨熔覆层的工艺研究,通过激光功率、扫描速度、光斑直径等三个主要激光熔覆工艺参数对熔覆层几何形状与稀释率的影响,分析了激光熔覆工艺参数对熔覆层质量的作用效果,研究指出:随着激光功率的增加,熔覆层宽度加大,厚度减小,熔深增加,形状系数增大,稀释率增加,晶粒粗化。随着扫描速度的增大,熔覆层宽度、厚度、熔深减小,形状系数和稀释率也减小,熔覆层晶粒细化,硬度增加,表面粗糙,气孔产生的倾向变大。对本研究采用的自制的合金粉末,当单层单道焊时,预涂层厚度为1mm时,激光功率选3000瓦,扫描速度为300mm/min,光斑直径3.0mm为宜。
     根据ZUB160CrNiMo半钢轧辊表层对熔覆层性能的要求,自行研制了FeCrBSiMo自熔性铁基合金粉末。选择TiN陶瓷粉与石墨C(摩尔比为1:1)混合粉作为陶瓷粉末,以其质量百分数30%与Fe基合金粉末机械混合均匀,构成激光熔覆预涂粉,通过丙酮稀释的有机粘结剂粘涂在半钢轧辊表面,采用适当的激光工艺可获得质量良好的熔覆层。然后利用现代分析测试手段(OM、SEM、TEM、EPMA、EDAX、XRD等)对熔覆层组织结构进行了分析,结果表明:激光熔覆铁基金属陶瓷复合层的组织由α—Fe及大量形状不规则的稳定相Ti(C_yN_(1-y))(0≤y≤1)共同组成。Ti(C_yN_(1-y))是预涂粉中加入的TiN和石墨在激光熔覆过程中通过原位反应合成的新强化相,其尺寸在0.1~40μm,弥散分布在马氏体基体中。经TEM观察,Ti(C_yN_(1-y))(0≤y≤1)与熔覆层基体结合紧密,具有洁净的相结构,界面无孔洞和其它析出相。
     依据热力学理论,对TiN与C原位合成Ti(C_yN_(1-y))的反应进行了热力学分析,得出在激光熔覆过程中TiN发生分解TiN=[Ti]+[N],分解出来的[Ti]原子将和石墨C优先结合,发生[Ti]+[C]=TiC,同时[Ti]也会同高温分解出的N原子反应[Ti]+[N]=TiN。TiC和TiN两种陶瓷颗粒不仅结构均为体心立方晶格,而且它们的晶格常数非常接近,因而它们具有很好的互溶性,冷却凝固时发生yTiC+(1-y)TiN=Ti(C_yN_(1-y))固溶反应,形成复合颗粒硬质相。当激光熔覆进行时,TiN和石墨C在高温下还会直接发生置换反应,C会置换TiN中的部分N,生成Ti(C_yN_(1-y))颗粒相且原位析出。
     对Ti(C_yN_(1-y))颗粒增强的铁基熔覆层的耐磨性及其磨损机制进行了研究,结果表明,原位合成的Ti(C_yN_(1-y))显著地提高熔覆层的显微硬度和耐磨性,其强化机制除了第二相弥散强化和细晶强化外,还包括C、Mo、Cr等元素的固溶强化和马氏体组织强化。
     在半钢轧辊表面形成含Ti(C_yN_(1-y))颗粒强化的激光熔覆层,在熔覆层的内部易产生平行于熔合线的横向裂纹和沿树枝晶方向的纵向裂纹,特别是当进行多层多道熔覆时,熔覆层的裂纹敏感性增大。熔覆层内部裂纹多起源于熔覆层和半钢基体结合处,然后向铁基熔覆层的表层扩展,裂纹呈现穿晶断裂和沿晶断裂两种形态。熔覆接头的热影响区未发现有裂纹产生。优化工艺参数可减少熔覆层裂纹的发生倾向,也可在半钢基底母材上熔覆—Ni基梯度过渡层,来减小铁基熔覆层产生裂纹的敏感性。
Adamite steel is being widely used to make rollers in the field of metallurgy because of its better hardness, such as, continuous hot casting and steel rolling. At operating temperature, the working surfaces usually suffer from normal abrasion, corrosion and crack and so on in the procedure of service, which leads to the decrease of production quality and reduction of productivity. At the same time, the user may encounter heavy economic burden if they change new rollers frequently. It is certain that the cost will be improved if you always abandon old mechanical components that are not in good conditions. It becomes necessary for us to study how to maintain and prolong their service life by applying thin hard coating at their surfaces. You know that laser surface cladding process is a promising surface treatment technology for industry applications, due to both an excellent metallurgical bonding and less defects between the layers and substrates. Hence, the technologies of laser cladding composite coating reinforced by ceramic particles have been investigated in the paper. In order to solve above problems and decrease the production cost. The main results involved in the research are as follows.
     Laser cladding process was studied on the surface of Adamite steel through CO_2 laser modified technology. It was found that laser cladding parameters affected the microstructure and properties of the layers obviously, especially for laser scanning speed (v), laser power (p) and laser beam diameter (d). Under the condition of proper parameters, Fe-based alloy composite coating reinforced by Ti (C_yN_(1-y)) particles was fabricated on the surface of Adamite steel. It was shown that macroscopic and microscopic qualities are related to the cladding materials and processing parameters of laser cladding. The results showed that width, depth, shape coefficient, dilution and crystal grain of the laser cladding coatings increase with laser power, but thickness of the layer decrease at same parameters. It is also shown that width, thickness, depth, shape coefficient, dilution and crystal grain of the laser cladding coatings decrease with laser scanning speed, but hardness and sensitivity of pores of the layers increase under the same condition. By selecting proper process parameters, such as laser power with 3000w, laser beam diameter with 3.0mm, the prefabricating thickness with 1.0mm, laser scanning speed with 300mm/min. FeCrBSiMo and [TiN+C] powders (the ratio of TiN:C is 1:1) are used to form single laser cladding layer, which possess better appearance and high strength between layer and substrate.
     Pre-fabricate alloy powder was mixed before laser cladding according to surface properties requirement of Adamite steel. The self-made organic adhesive was used to paste the powders. With optimum parameters, Fe-based alloy composite coating reinforced by Ti (C_yN_(1-y)) particles was fabricated on the surface of Adamite steel through CO_2 laser cladding technology. The microstructure of laser cladding coating was observed by optical microscopy (OM), x-ray diffractionmetry (XRD), scanning electron microscopy (SEM), electron probe microscopy analyzer (EPMA), and transmission scanning electron microscopy (TEM). The distribution of elements and phases in the coatings were identified using EDS and x-ray diffractionmetry (XRD). Relationship between the microstructure and properties was analyzed in the paper in detail. The results show that Titanium carbonitride Ti(C, N) particles are introduced by an in-situ metallurgical reaction between TiN particles and graphite powders during laser cladding process. Titanium carbonitride particles existed in the layer are fairly fine, ranging from 0.1μm to 40μm, and evenly dispersed in the metal matrix. Most of them take on nearly round shape, and some of them are irregular in shape. The bonding zone is a distinct zone between the layer and substrate, which illustrates that the perfect metallurgical bonding is achieved through this zone The interface between Ti(C, N) particles and the matrix remains clean and is free from deleterious phases by TEM, which insures that the carbide-matrix has a strong interface bond. The in-situ hard carbonitride grains have high bonding strength with the matrix, and form a good carrier capacity system together.
     According to the basic thermodynamic analysis of△G_T, it is feasible for the formation of Ti(C, N) that metallurgical reaction may happen between titanium nitride (TiN) and graphite (C) during laser cladding process. First of all, a great deal of energy is absorbed by the raw cladding material during laser cladding process, which causes the complete dissolution of the original titanium nitride (TiN) particles coming into being nitrogen and titanium atoms: TiN→Ti + N. Then, these nitrogen, carbon, and titanium atoms begin to diffuse in the cladding matrix. It is known that diffusing speed of carbon atoms is faster than that of other atoms in the melt pool. There are strong chemical reactions and metallurgy processes between the titanium atoms and graphite powders in the molten metal. At the same time, chemical combination reaction between Ti and N atoms can also reoccur in the cladding coating because of active chemical property of Ti and N atoms. Thus, lots of hard anti-wear phases of carbides TiC and nitrides TiN are respectively formed after the melt pool is rapidly solidified. The formation process can be characterized as follows: [Ti]+[C]→TiC, [Ti]+[N]→TiN. It is known that titanium carbon (TiC) and titanium nitride (TiN) characterize by the same NaCl-type crystal structure and approximately equal lattice constants. They may unlimitedly mix each other and form a solid solution named titanium carbonitride. Finally, Ti(C_yN_(1-y)) particles are synthesized by a solid-solution metallurgical reaction between TiN and TiC particles in the process of laser cladding: yTiC+(1-y) TiN→Ti(C_yN_(1-y)). Meanwhile, it is possible to form Ti(C_yN_(1-y)) that the exchange reaction between TiN and C may happen directly in the cladding coating.
     Wear behavior and wear-resistant property of laser cladding composite coating reinforced by Ti(C,N) particulates were tested on a tester named M-2000 without lubrication at room temperature. It is shown that dispersive strengthening effect and refining effect of the Ti(C,N) particles evenly distributed in the matrix greatly contribute to increasing the microhardness and wear-resistance of the Fe-based composite coating. On the other hand, solid solution strengthening effect of C, Mo and Cr elements and martensite strengthening effect play an important role in theα-Fe metal matrix.
     Horizontal and longitudinal cracks occur in the layer on the surface of Adamite steel while laser cladding, especially, it is easy for them to appear in the Fe-based alloy multilayer reinforced by Ti(C_yN_(1-y)) particles. Inner cracks propagate nearby fusion transition zone in theα-Fe metal matrix. These cracks usually end in the bond zone between layer and substrate. Some of them are inter-granular and others are trans-granular. The cracks which lie in the laser layer are brittle fracture. The susceptibility of occurring crack can be decreased by selecting and optimizing processing parameters. In order to keep from cracks in the Fe-based alloy multilayer reinforced by Ti(C_yN_(1-y)) particles, the second transition Ni-based layer was built up between the working layer and substrate. The method of transition layers may solve the problem of cracking.
引文
[1]张树堂.21世纪轧钢技术的发展[J].轧钢,2001,18(1):3-6.
    [2]李殿魁.我国钢铁工业的现状与发展趋势[J].上海钢研,2000,2:42-27.
    [3]文铁铮等.冶金轧辊技术特性概论[M].石家庄:河北科学技术出版社,1993.
    [4]Lei Ali,Tang Wenhao.Feng Lajun.Research on fabricating Fe base amorphous alloy by bar plasma spraying[J].China Welding,2007,16(3):14-19.
    [5]任喜来.冷轧辊的失效分析及其修复[J].轧钢,2002,19(3):45-47.
    [6]王宝森.冷轧辊埋弧堆焊药芯焊丝的研究[D].天津:天津大学博士学位论文,2004.
    [7]王更国,邹全林.激光表面强化技术在韶钢650轧辊上的应用[J].南方金属,2003,4:36-38.
    [8]禹斌,李从华,申飞平.轧辊的堆焊及价值初探[J].四川冶金,2001,1:25-28.
    [9]李美艳,王勇,韩彬等.高铬钢轧辊激光熔凝层组织及性能[J].中国激光,2009,36(2):498-502.
    [10]殷光虹.现代轧辊材料金相图谱[M],北京:机械工业出版社,1993.
    [11]王长贵.轧辊激光表面强化研究及数值模拟[D],武汉:华中科技大学硕士学位论文,2004.
    [12]Folkes J A,Developments in laser surface modification and coating[J].Surface and Coatings Technology,1994,63(2):65-71.
    [13]Ju Y,Guo S Y,Li Z Q.Status and development of laser surface alloying and laser cladding in China[J].Materials Science and Technology,2002,20(1):143-145.
    [14]左铁钏.21世纪的先进制造—激光技术与工程[M].北京:科学出版社,2006.
    [15]Zhang W P,Liu W Y.Processing of laser cladding about ceramic coatings[J].Surface Technology,2002,30(4):30-32.
    [16]张大伟,雷廷全,李强.激光熔覆金属表面改性研究进展(下)[J].中国表面工程,1999,3:1-7.
    [17]陈浩等.激光熔覆耐磨熔覆层的研究进展[J].金属热处理,2002,27(9):5-10.
    [18]Zhang D W,Lei T Q,Li Q.Recent development of research on surface modification of metals with laser cladding[J].China Surface Engineering,1999,44(3):1-6.
    [19]Ying X D,Li W S,Feng L Z.Technology of laser surface modification and development situation domestically and abroad[J].Welding,2003,1:5-8.
    [20]Pashby I R,Barnes S,Bryden B G.Surface hardening of steel using a high power diode laser[J].Journal of Materials Processing Technology,2003,139(1-3):585-588
    [21]徐恒均.国外激光表面处理的进展[J].北京工业大学学报,1998,24(3):130-136.
    [22]徐滨士,马世宁.论表面工程[M],北京:北京机械工业出版社,1984.
    [23]阎毓禾,钟敏霖.高功率激光加工及其应用[J].天津:天津科技出版社,1994.
    [24]Gnanamuthu D S,Laser surface treatment[J].Optical Engineering,1980,19(5):783-792.
    [25]王新洪,邹增大,曲仕尧.表面熔融凝固强化技术-热喷涂与堆焊技术[M],北京:化学工业出版社,2005.
    [26]关振中.激光加工工艺手册[M],北京:中国计量出版社发行部,2007.
    [27]Hu C,Xin H,Baker T N.Laser processing of an aluminum AA6061 alloy involving injection of SiC particulate[J].Journal of Material and Science,1995,30:5985-5990.
    [28]Morvan D,Bournot Ph.Oscillatory flow convection in a melted pool[J].International Journal of Numerical Methods for Heat & Fliud Flow,1996,6(1):13-20.
    [29]裴宇韬,孟庆昌,欧阳家虎,雷延廷.激光熔覆耐磨复合熔覆层[J].中国激光,1995,A22(12):935-938.
    [30]Dhindaw B K,Stefanescu D M,Singh A K,et al.Directional solidification of Cu-Pb and Bi-Ga monotectic alloys under normal gravity and during parabolic flight[J].Metallurgical and Materials Transactions A.1988,19(11):2839-2846.
    [31]朱祖昌.表面工程[M],上海:上海交通大学出版社,1990.
    [32]Bokota A,Iskierka S.Numerical prediction of the hardened zone in laser treatment of carbon steel[J].Acta Materialia,1996,44(2):445-450.
    [33]许巧玉,于青,李铸钢等.70Mn2Mo铸钢热轧辊的激光表面强化[J].金属热处理,2002,8:35-37.
    [34]刘怀喜,毕晓勤.灰口铁激光表面淬火行为的研究[J].机械工程材料,2000,24(6):16-22.
    [35]Ganeev R A.Lower-power laser hardding of steels[J].Journal of Materials Processing Technology,2002(12):414-419.
    [36]刘怀喜,张三川.综合工艺参数对常用钢铁材料的激光淬火特性的影响[J],激光杂志,2001,22(1):46-52.
    [37]曾晓雁,吴懿平.表面工程学[M],北京:机械工业出版社,2001.
    [38]Shangguan D,Ahuja S,Stefanescu D M.An analytical model for the interaction between an insoluble particle and an advancing solid/liquid interface[J].Metallurgical Transaction A,1992,23(2):669-680.
    [39]张维平,刘硕.高能激光束对材料表层快速凝固组织及性能影响的研究进展[J].铸造,2005,54(1):28-31.
    [40]Steen P H,Ehrhard P,Sch(u|¨)ssler A.Depth of melt-pool and heat-affected zone in laser surface treatments[J].Metallurgical and Materials Transactions A,1994,25(2):427-435.
    [41]郑克权,张思玉.金属表面非金属元素激光合金化进展[J].激光杂志,1992,13(2):225-236.
    [42]刘江龙,谭继福,张磊.激光快速熔凝组织特征及其强化研究[J].机械工程材料,1989,5:39-44.
    [43]尹钟大,李晓东.4Cr5MoVSi钢表面激光快速熔凝的研究[J].中国激光,1991,18(9):86-88.
    [44]Boaz M,Bamberger M,Revesz G.Laser alloying of plasma sprayed WC/Co layer to enhance wear properties[J],Surface and Coatings Technology.1990,42:175-186.
    [45]Sang Y L,Philip N,Bradley S.Microstructural Characterization of rapidly solidified Nickel-base superalloys[J].Journal of Material Science,1990,25(2):1219-1230.
    [46]Laroudie F T,Pons M.Harding of 316L stainless steel by Laser surface alloying[J].Journal of Material and Science,1995,30:3652-3657.
    [47]赵文轸.铝合金激光表面合金化的组织及性能[J].红外与激光工程,199625:24-29.
    [48]Gaffet E,Pelletier J M,Bonnet S Jobez.Laser surface alloying of Ni film on Al-based alloy[J].Acta Metallurgica,1989,37(12):3205-3215.
    [49]Das D K.Surface roughness created by laser alloying of aluminum with nickel [J].Surface & Coating Technology,1994,64:11-15.
    [50]Almedia A,Anjos M,Vilar R,et al.Laser alloying of aluminum alloys with chromium[J].Surface & Coating Technology,1995,70:221-229.
    [51]孙桂琴,喻晓军.非晶及纳米晶合金研究进展[J],金属功能材料,1999,6(4):156-160.
    [52]李刚,王彦芳,王存山等.Zr-Al-Ni-Cu激光熔覆非晶复合涂层组织结构[J].应用激光,2002,22(3):287-289.
    [53]Fellows F C J,Steen W M,Saunders S R.Deposition of silica coating and incoming substrates using a high laser[J],Surface and Coating Technology,1991,(45):425-428.
    [54]王家金.激光加工技术[M],北京:中国计量出版社,1992.
    [55]Ouyang J H,Chen Y B,Li Q,Lei T C.Microstructure of bonding zones in laser clad TiC-reinforced coating[J].Chinese Journal of laser,1998,7(5):451-458.
    [56]Mridha S,Baker T N.Crack-free hard surface produced by laser nitriding of commercial purity titanium[J].Materials Science and Engineering.1994,188A:229-239.
    [57]Chen Y,Wang H M.Microstructure and wear resistance of a laser clad TiC reinforced nickel aluminides matrix composite coating,Materials Science and Engineering A,2004,368(1-2):80-87.
    [58]武晓雷,陈光南.激光形成原位TiC颗粒增强熔覆层的组织及性能[J].金属学报,1998,34(12):1284-1286.
    [59]Jan Flinkfeldt,H.F.Pedersen.Laser cladding in pre-made grooves guide-lines for groove design[J].Material Science Forum,1994,(163-165):423-428.
    [60]Wang A A,Sircar S,Mazumder J.Laser cladding of Mg-Al alloys[J].Journal of Materials and Science,1993,28:5113-5122.
    [61]Wang X H,Zhang M,Zou Z D,et al.Microstructure and wear properties of Fe-based hardfacing layers reinforced by TiC-VC particles[J].Materials Science and Technology,2006,22(2):193-198.
    [62]Nagarthnam K,Komvopoulos K,Microstructure characterization and in-situ transmission electron microscopy analysis of laser-processed and thermally treated Fe-Cr-W-C clad coatings[J].Metallurgical Transactions A,1993,24(7):1621-1629.
    [63]Pei Y T,Quyang J H,Lei T C.Microstructure of bonding zones in laser clad Ni-alloy based composite coatings reinforced with various ceramic powders[J].Metall.Trans.A,1996,27A:391-400.
    [64]李强,雷廷权,王富耻等.激光熔覆TiC颗粒增强Ni_2Cr_2BSiC合金复合熔覆层的微观组织[J].中国有色金属学报,1998,8(3):420-426.
    [65]Ouyang J H,Pei Y T,Lei T C,et al.Tribological behaviour of laser-clad TiCp composite coating[J].Wear,1995,185:167-172.
    [66]Komvopoulos K.Effect of process parameters on the microstructure geometry and microhardness of laser clad coating materials[J].Material Science Forum.1994,163:417-421.
    [67]谢长生,夏辉,曾大文.Ni基合金激光熔覆层组织特征及凝固过程的研究[J].稀有金属材料与工程,2000,2:41-45.
    [68]杨森,刘文今,钟敏霖.送粉法激光熔覆制备TiC颗粒强化Ni基合金复合熔覆层的研究[J].应用激光,2003,23(5):265-267.
    [69]斯松华,袁晓敏,徐锟.何宜柱.B_4C对激光熔覆钴基合金熔覆层组织与耐磨性的影响[J].焊接学报,2004,25(3):61-64.
    [70]斯松华,袁晓敏,何宜柱等.激光熔覆镍基金属陶瓷熔覆层的组织性能研究[J].中国激光,2002,29(8):759-762.
    [71]孙荣禄,王云山,唐英.45#钢表面NiCrBSi合金激光熔敷层的组织和硬度[J].天津工业大学学报,2003,22(5):79-81.
    [72]Lim L C,Qian M,Chen Z.D.Microstructures of Laser Cladding Nickel-based Hardfacing Alloys[J].Surface and Coatings Technology,1998,106:183-192.
    [73]欧阳家虎,裴宇涛.TiNp/镍基合金复合耐磨熔覆层的激光熔覆[J].中国激光,1995,A22(2):44-150.
    [74]刘荣祥,郭立新.激光重熔NiCrBSi+TiN复合熔覆层及界面组织[J].中国激光,2005,32(2):292-296.
    [75]S.Yang,W.Liu,M.Zhong,et al.TiC reinforced composite coating produced by powder feeding laser cladding[J].Materials Letters,2004,58(24):2958-2962.
    [76]Xu Q H,Guo W,Tian X T,et al.The properties of laser cladding Ni-alloy coating on 45 steel plate[J].Development and Application of Materials.1997,12(6):6-8.
    [77]张思玉,王必本,郑克全.20#钢表面熔敷WC-SiC-Co的激光处理性能研究[J].激光杂志,1993,5:42-45.
    [78]Conde A,Zubiri F,Damborenea J.Cladding of Ni-Cr-B-Si coatings with a high power diode laser[J].Materials Science and Technology,2002,33(4):233-238.
    [79]Lei T C,Ouyang J H,Pei Y T,et al.Microstructure and wear resistance of laser clad TiC particle reinforced coating[J].Material and Science Technology.1995,11:520-525.
    [80]Zhong M L,Liu W J,et al.Research on ND:YAG pulsed laser power feeding cladding on ultra thin sheet[J].Transactions of Metal Heat Treatment,2000,21(3):36-41.
    [81]汪洪海,郑启光.大功率CO_2激光原位直接反应合成TiN/Ti复合材料的研究[J].复合材料学报,1999,16(1):111-116.
    [82]董奇志,张晓宇,胡建东.激光熔覆Ni基TiC强化复合熔覆层中内生TiC颗粒的生长机理[J].应用激光,2001,21(4):237-239.
    [83]姚建华.铝合金激光表面处理技术及其发展[J].新技术新工艺,1994,(1):39-40.
    [84]姚建华,苏宝嬉,周家瑾,黄积荣.铸造铝合金(ZL109)激光表面处理[J].中国激光,1992,19(2):144-147.
    [85]陈赤囡,苏梅.TC9激光熔覆TiN熔覆层的组织与耐磨性的研究[J].北京航空航天大学学报,1998,24(3):253-255.
    [86]孙荣禄,杨贤金.TC4合金表面激光熔覆NiCrBSiC+TiN粉末熔覆层的微观组织研究[J].金属热处理,2006,3:27-29.
    [87]Fasasi A Y,Pons M,Tassin C,Galerie A.Laser surface melting of mild steel with submicronic titanium carbide powders[J].Journal of Material Science,1994,29(6):5121-5126.
    [88]Yuxin Li,Peikang Bai,Yaomin Wang,Jiandong Hu,et al.Effect of TiC content on Ni/TiC composites by direct laser fabrication[J].Materials & Design,2009,30(4):1409-1412.
    [89]Pantelis D,Michaud H,Defreitas M.Wear behaviour of laser surface hardfaced steels with tungsten carbide powder injection[J].Surface and Coatings Technology,1993,57(2-3):123-131.
    [90]Hee H J,De Hosson.Microstructure of laser treated Al alloys[J],Acta Metallurgical Materials,1990,38(12):2471-2477.
    [91]Jeng M C,Yan L Y,Doong J L.Wear behavior of cobalt-based alloys in laser surface cladding[J],Surface and Coatings Technology,1991,48(3):225-231.
    [92]Vanhille P,Tosto S,Pelletic J M,et al.Electron beam and laser surface alloying of Al-Si based alloys[J].Surfaced Coatings Technology,1992,50(3):295-303.
    [93]Abbas G,West D R F.Laser surface cladding of stellite and stellite-SiC composite[J],Wear,1991,143(2):353-363.
    [94]Tomlinson W J,Cash M,Bransden A S.Dry sliding wear of grey iron laser surface alloyed with 14%-40%chromium[J].Wear,1991,142(2):383-386.
    [95]Tomlinson W J,Bransden A S,Cavitation erosion of laser surface alloyed coating on Al-12%Si[J],Wear,1995,185(1-2):59-65.
    [96]Ayers J D.Abrasive wear studies of laser surface-meted aluminum and titanium alloys with carbide additions.Wear of Materials[M],American Society of Mechanical Engineers,New York,1983.
    [97]Pu Y,Guo B,Zhou J.Microstructure and tribological properties of in situ synthesized TiC,TiN,and SiC reinforced Ti_3Al intermetallic matrix composite coatings on pure Ti by laser cladding[J].Applied Surface Science,2008,255(5):2697-2703.
    [98]潘复生,唐爱涛,李奎.碳氮化钛及其复合材料的反应合成[M],重庆:重庆大学出版社,2005.
    [99]Wiiala U K,Penttinen I M,Korhonen A S,et al.Improved corrosion resistance of physical vapour deposition coated TiN and ZrN[J].Surface Coating Technology,1990,41:191-204.
    [100]Guo B G,Zhou J S,Zhang S T,et al.Microstructure and tribological properties of in-situ synthesized TiN/Ti_3Al intermetallic matrix composite coatings on titanium by laser cladding and laser nitriding[J].Materials Science and Engineering A,2008,480(1-2):404-410.
    [101]廖奈镘,张先菊,李伟,激光熔覆原位合成TiC/Ti复合材料试验研究,热加工工艺,2005,2:24-26.
    [102]Liu Y,Koch J,Mazumder J,et al.Microstructure study of the interface in laser-clad Ni-Al bronze on al alloy AA333 and its relation to cracking[J].Metallurgical and materials transactions A,1995,26(6):1519-1533.
    [103]Mridha S.Titanium nitride layer formation by TIG surface melting in a reactive environment[J].Journal of Materials Processing Technology,2005,168(3):471-477.
    [104]Akira Kobayashi.Formation of TiN coatings by gas tunnel type plasma reactive spraying[J].Surfacing and Coating Technology,2000,132(2-3):152-157.
    [105]Monson P J,Steen W M.Comparison of laser hardfacing with conventional processes[J].Surface Engineering,1990,6(3):185-193.
    [106]Heung P,Kazuhiro N,Shogo T.In-situ formation of TiC particulate composite layer on cast iron by laser alloying of thermal sprayed titanium coating[J].Journal of Materials Science,2000,35(3):747-755
    [107]李胜,胡乾午,曾晓雁.激光熔覆专用铁基合金粉末的研究进展[J].激光技术,2004,28(6):591-594.
    [108]Lei T C,Ouyang J H,Pei Y T,et al.Microstructure and sliding wear properties of laser clad TiN reinforced composite coating[J].Surface Engineering,1996,12(1):55-60.
    [109]于仁红,蒋学明.TiN的性质、用途及粉末制备技术[J],耐火材料,2005,39(5):386-389.
    [110]任萍萍,刘宁,许育东,陈名海.TiC/TiN/AL_2O_3复合陶瓷的研究进展[J],合肥工业大学学报,2004,27(1):75-79.
    [111]Wang X H,Zhang M,Zou Z D,et al.In-situ production of Fe-TiC surface composite coatings by tungsten-inert gas heat source[J].Surface and Coatings Technology,2006,200(20-21):6117-6122.
    [112]Abboud J H,West D R F.Microstructure of titanium injected with SiC particles by laser processing[J].Journal of material and science,1991,10(19):1149-1152.
    [113]阮景飞,严密.TiC-Fe_3C对铸铁激光熔敷层耐磨性的影响[J].摩擦学学报,2002,22(5):339-342.
    [114]Amouzouvi K F,Styles R C.Microstructural changes in laser hardened Zr 2.5Nb alloy[J].Scripta Metallurgica et Materialia,1995,32(2):289-294.
    [115]郝斌,王洪斌.颗粒增强金属基复合材料制备工艺评述[J].热加工工艺,2005,4:62-66.
    [116]何玉定,胡社军,谢光荣.TiN熔覆层应用及研究进展[J].广东工业大学学报,2005,22(2):31-34.
    [117]王全兆,刘越,关德慧.TiN含量对Ti(C,N)/NiCr金属陶瓷微观结构和力学性能的影响[J].金属学报,2005,41(11):1121-1126.
    [118]Andrew J,Pinkerton,Lin Li.The effect laser pulse width on multiple-layer 316L steel cladding microstructure and surface finish[J].Applied Surface Science,2003,(208-209):411-416.
    [119]Cheng F T,Lo K H,Man H C.NiTi cladding on stainless steel by TIG surfacing process[J].Surfacing and Coating Technology,2003,172(2-3):316-321
    [120]杨永强,张翠红.激光熔敷-激光氮化复合法制取TiNi-TiN梯度材料[J].2006,16(2):213-218.
    [121]Kloosterman A B,Hosson J T.Microstructural characterization of laser nitrided titanium[J].Scriota metallurgica et Materialia,1995,33(4):567-573.
    [122]郑勇,范钟明等,TiN对Ti(C,N)基金属陶瓷组织和性能的影响[J].硬质合金,1997,14(3):139-143.
    [123]Xue Qi,Jin Yong,Hu dong-ping,et al,Study of TiC+TiN multiple films on type of 316L stainless steel[J].Transactions of Materials and Heat Treatment,2004,25(5):916-910.
    [124]Yang Y L,Zhang D,Kou H S.Laser cladded TiCN coatings on the surface of titanium[J],Acta Metallurgical Sinica,2007,20:210-216.
    [125]Huang C C,Tsai W T,Lee J T.Electrochemical and surface studies on the passivity of nitrogen and molybdenum containing laser cladded alloys in 3.5wt.%NaCI solution[J].Corrosion Science,1995,37(5):769-780.
    [126]张永康等.现代激光加工技术[M],北京:化学工业出版社,2004.
    [127]朱蓓蒂,曾晓燕,陶增毅等.激光工艺参数对熔覆层稀释率的影响[J].材料研究学报,1994,8(4):315-317.
    [128]Kurz W,Trivedj R.Solidification microstructures:Recent developments and future directions[J],Acta Metall.Mater.,1990,38(1):1-17.
    [129]Frenk A,Kurz K.High speed laser cladding:solidification conditions and microstructure of a cobalt-based alloy[J].Material Science & Engineeing,1993,173(1-2):339-342.
    [130]胡汉起.金属凝固原理[M],北京:机械工业出版社,1991.
    [131]Rui Vilar.Laser cladding[J].The international journal of powder metallurgy,2001,37(2):34-38.
    [132]候增寿,卢光熙.金属学原理[M],上海科学技术出版社,1990.
    [133]杜心康,王建江,叶明惠,姚占军.自蔓延高温合成反应喷涂TiN耐磨涂层研究[J].摩擦学报,2002,22(4):174-176.
    [134]傅杰,朱剑,迪林等.微合金钢中TiN的析出规律研究[J].金属学报,2000,36(8):801-804.
    [135]方宪民,彭金辉,陈厚生,陈德明.碳热还原制取碳氮化钛的热力学原理分析[J].昆明理工大学学报,2006,31(5):6-12.
    [136]孙维民,金寿日,董星龙.活性等离子体-金属反应法制备Ni-TiN复合超微粒子的生成机制和热力学计算[J].复合材料学报,1999,16(2):1-6.
    [137]黄国对,欧阳亚非.陶瓷材料氮化钛中氧的测定[J].硬质合金,1991,8(2):49-52.
    [138]于仁红,王宝玉,蒋学明,尚建丽.碳热还原氮化法制备碳氮化钛粉末[J].耐火材料,2006,40(1):9-11.
    [139]向军辉,肖汉宁.工艺参数对TiO_2碳热还原合成Ti(C,N)粉末的影响[J].陶瓷学报,1997,18(2):63-66.
    [140]Song W L,Echigoya J,Zhu B D et al.Effects of Co on the cracking susceptibility and the microstructure of Fe-Cr-Ni laser-clad layers[J].Surface and Coatings Technology,2001,138(2-3):291-295.
    [141]Singh J,Mazumder J.Microstructure and wear properties of laser clad Fe-Cr-Mn -C alloy[J].Metallurgical Transaction A,1987,18(2):313-322.
    [142]So H,Chen C T,Chen Y A.Wear behavior of laser clad stellite alloy6[J],Wear,1996,192(1-2):78-84.
    [143]温诗铸.摩擦学原理[M],北京:清华大学出版社,1990.
    [144]高彩桥.摩擦学原理[M],哈尔滨:哈尔滨工业大学出版社,1998.
    [145]Song Wulin,Zhu.Beidi,Xie Changsheng,et al.Cracking susceptibility of a laser-clad layer as related to the melting properties of the cladding alloy[J].Surface and Coating Technoogy,1999,115:270-272.
    [146]Song Wulin,Zhu Peidi,Cui Kun,Effect ofNi contenton cracking susceptibility and microstructure of laser clad Fe-Cr-Ni-B-Si alloy[J].Surface and Coating Technoogy,1996,80(3):279-282.
    [147]Wang A,Fan C,Xie C,et al.Laser cladding of iron-based alloy on Al-Si alloying and its relation to cracking at the interface[J].Journal of Materials Engineering and Performance,1996,5(6):775-783.
    [148]Wang Z K,Ye H Q,Xu D S,et al.Laser repairing surfae crack of Ni-based superalloy components[J].Transaction of Nonferrous Metals Society of China,2001,11(4):572-5751.
    [149]钟敏霖,刘文今.Stellite和NiCrSiB合金激光送粉熔覆裂纹倾向的比较研究[J].中国激光,2002,29(11):1031-1036
    [150]王东生,于志青等.V_2O_5和工艺参数对镍基合金激光熔覆层裂纹敏感性的影响[J].激光杂志,2005,26(6):81-82.
    [151]祝柏林等.激光熔覆层开裂问题的研究现状[J].金属热处理,2000,7:1-4.
    [152]陈静,林鑫等.316L不锈钢激光快速成形过程中熔覆层的热裂机理[J].稀有金属材料与工程,2003,32(3):183-186.
    [153]张春良,陈子辰.核阀阀瓣激光熔覆层显微组织和耐高温磨损性能研究[J].原子能科学技术,2002,36(1):10-14.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700