钢中渗碳体表面特性及其合金化行为的密度泛函理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在碳钢和白口铸铁中,渗碳体相是最重要的碳化物之一,也是最常见的强化相之一。合金元素加入钢中会改变钢的内部组织和结构,对钢的组织稳定性、形变和断裂特性、物理化学性能等均会产生直接影响。合金元素与铁、碳以及其它合金元素原子之间的相互作用是合金内部的相结构和组织变化的基础,而这些元素之间在原子的电子结构、原子大小以及各元素晶体点阵之间的差异是产生这种变化的根源。
     本文利用密度泛函理论与方法研究了钢中正交结构渗碳体(θ-Fe3C)表面的结构特征、稳定性以及电子特性,构建了极性的纯净渗碳体(001)表面结构,分析了渗碳体沿某一方向生长时的原子排列顺序及(001)极性面的电子特性,通过合金元素吸附及其置换渗碳体表面原子方法,研究了合金元素进入渗碳体的过程。取得了如下主要研究成果:
     构建了钢中渗碳体与铁素体界面位向关系中最为常见的三个纯渗碳体表面(001)、(010)和(100)结构模型,并对其实施了充分弛豫,发现具有最高表面粗糙度及表面定域铁碳结合强度的(001)表面最为稳定,这三个表面能量稳定性的强弱顺序为(001)>(010)>(100)。
     重构了纯净渗碳体的(001)极性表面,建立了八种不具有宏观偶极距的不同终端的(001)表面并对其表面结构进行充分弛豫后发现,表面弛豫能与表面层碳原子的暴露程度有关,若表面层上没有碳原子则弛豫能较小;表面分割能与在体单胞的分割位置有关,分割线越靠近体单胞的内部,分割能越大即越难分割;从能量角度预测了CFe3-终端面以及CC-Fe3Fe3的极性面较为稳定,即表面层具有C原子的终端面具有更高的表面稳定性。
     合金元素Cr和Mn分配到渗碳体相的过程中,对于吸附在渗碳体表面积最大的表面(即(001)表面),Cr原子比Mn原子的吸附能力更强,而且最终Cr原子处于表面层C原子与表面第一和第二原子层的Feg和Fes原子间的五重空位处;当Cr和Mn原子继续渗透进入渗碳体(001)表面层时,Cr原子比Mn原子具有更强的置换表面层Fe原子的能力。
     从能量最低的角度预测发现,合金渗碳体Fe2MC(M=Cr/Co/Ni)的表面稳定性强弱顺序均为:(001)>(010)>(100),但Fe2MnC的(010)表面稳定性比(100)表面的略低。不同掺杂类型的合金渗碳体表面稳定性强弱顺序依次为:Fe2NiC>Fe2CoC>Fe2MnC>Fe2CrC;Cr/Mn/Co/Ni掺杂的Fe2MC型合金渗碳体的体结构及(001)、(010)和(100)表面均与纯渗碳体的类似,都具有一定程度的磁性,而且在表面晶胞中金属键、共价键和离子键共存,成键方式以共价键为主。
     从能量最低的角度预测结果表明,合金渗碳体FeM2C(M=Cr/Mn/Co/Ni)的表面稳定性顺序均为:(001)>(100)>(010)。不同掺杂类型的合金渗碳体表面稳定性强弱顺序依次为:FeNi2C>FeMn2C>FeCo2C>FeCr2C;Cr/Mn/Co/Ni掺杂的FeM2C型合金渗碳体的体结构及(001)、(010)和(100)表面也都与纯净渗碳体的类似,均具有一定程度的磁性,而且在表面晶胞中金属键、共价键和离子键共存,成键方式也以共价键为主。
Cementite is one of the most important carbides, and is the most commonstrengthening phase in carbon steels and white cast irons. The addition of alloyingelements will change the internal structures of steels, and then will have a direct impact onthe phase stability, deformation and fracture characteristics, physical and chemicalproperties. The changes of internal structures are originated from the interaction betweenalloying elements and iron, carbon as well as other alloying atoms. Furthermore, thesechanges take root in the differences of electronic structure, size, and crystal lattice ofalloying atoms.
     In this thesis, density-functional theory was adopted to research the surface structuralcharacteristics, stability and electronic properties of cementite with orthorhombic structure(θ-Fe3C). By constructing polar (001) surfaces of pure cementite, the atomic arrangementduring cementite growth along some direction was explored, and the electronic propertiesof polar (001) surfaces were calculated. The progress of alloying elements integrating incementite was simulated with the method of cementite surface adsorbing and substitutingalloying elements for cementite surface atoms. The main results obtained are as follows.
     Three most common cementite surfaces among the orientation relationships betweencementite and ferrite were cleaved from relaxed pure cementite:(001),(010) and (100)surface. And then the three surface structures were optimized precisely. The calculationresults reveal that the (001) surface with the highest surface roughness and the strongestsurface Fe-C bonding is the most stable, and the surface stability of pure cementitegradually decreases from (001) and (010) to (100).
     The polar (001) surface was reconstructed, and then eight kinds of terminatedsurfaces without macroscopic dipole moment were built. The optimization results showthat the relaxation energy of one surface is associated with the exposure level of surfacecarbon atoms, in other words, the surface possesses a low relaxation energy if there is notthe carbon atom exposed in the surface layer. The cleavage energy of one surface is linkedwith the split position in the bulk cell, that is to say, the deeper the position of the segmentation line located at the bulk unit cell is, the higher the cleavage energy of thesurface cleaved from that bulk cell is. Based on the lowest energy principle, the presentstudy predicted that when cementite grows along its [001] crystal orientation: if the initialatom is carbon, cementite will grow in accordance with CFe3-terminal surface structure; ifthe initial atom is iron, cementite will grow in accordance with CC-Fe3Fe3polar surfacestructure.
     When the alloying elements Cr and Mn are partitioned to the cementite phase, foradsorbing on the surface of minimal area (the (001) surface), the ability of Cr atom isstronger than that of Mn atom, and Cr atom locates at the5-fold site (one surface C atomand four Fe atoms) after the structure was optimized. When Cr and Mn atoms continue topenetrate the (001) surface layer of cementite, the ability of Cr atom is still stronger thanthat of Mn atom substituting for the surface Fe atom.
     Based on the lowest energy principle, the surface stability of alloyed cementiteFe2MC (M=Cr/Mn/Co/Ni) was predicted. The surface stability of Fe2MC (M=Cr/Co/Ni)gradually decreases from (001) and (010) to (100), while the (100) surface of Fe2MnC ismore stable than the (010) surface. The stability (from the strongest to the weakest) ofalloyed cementite surfaces doped with different atoms (Cr/Mn/Co/Ni) follows the order:Fe2NiC>Fe2CoC>Fe2MnC>Fe2CrC. All the bulk phase and surfaces of Fe2MC(M=Cr/Mn/Co/Ni) have magnetic characteristic as those of pure cementite do. Theelectronic structure shows that the bonds of Fe2MC surfaces are mixtures of metallic,covalent and ionic bond, and the covalent bonds are dominant.
     The surface stability of FeM2C (M=Cr/Mn/Co/Ni) gradually decreases from (001)and (100) to (010). The stability (from the strongest to the weakest) of alloyed cementitesurfaces doped with different atoms (Cr/Mn/Co/Ni) follows the order:FeNi2C>FeMn2C>FeCo2C>FeCr2C. All the bulk phase and surfaces of FeM2C(M=Cr/Mn/Co/Ni) have magnetic characteristic. The bonds of Fe2MC surfaces are alsomixtures of metallic, covalent and ionic bond, and the covalent bonds are also dominant.
引文
[1]黄惠忠.表面化学分析[M].上海:华东理工大学出版社,2007:1-6.
    [2] Pippel E, Woltersdorf J, Schneider R. Micromechanisms of Metal Dusting on Fe-Base and Ni-BaseAlloys[J]. Materials and Corrosion,1998,49:309-316.
    [3] Grabke H J. Thermodynamics, Mechanisms and Kinetics of Metal Dusting[J]. Materials andCorrosion,1998,49:303-308.
    [4] Chiou Wun C, Carter Emily A. Structure and Stability of Fe3C-Cementite Surfaces from FirstPrinciples[J]. Surface Science,2003,530(1-2):88-100.
    [5]赵品,谢辅洲,孙振国.材料科学基础教程[M].哈尔滨:哈尔滨工业大学出版社,2005:63-86.
    [6] Sun S H, Xiong Y, et al. Microstructure Characteristics in High Carbon Steel Rod after WarmCross-Wedge Rolling[J]. Scripta Materialia,2005,53(1):137-140.
    [7] Lv Z Q, Wang B, Wang Z H, et al. Effect of Cyclic Heat Treatments on Spheroidizing Behavior ofCementite in High Carbon Steel[J]. Materials Science and Engineering: A,2013,574:143-148.
    [8]孙淑华,熊毅,傅万堂,等.共析珠光体钢在冷轧过程中的组织变化[J].金属学报,2005,41(3):267-270.
    [9]王晓敏.工程材料学[M].北京:机械工业出版社,1999:15-42.
    [10] Ohmori Y, Jung Y C, Nakai K, Shioiri H. Bainite Transformation and the Diffusional Migration ofBainite Austenite Broad Interfaces in Fe-9%Ni-C Alloys[J]. Acta Materialia,2001,49:3149-3162.
    [11] Nakada N, Koga N, Tsuchiyama T, Takaki S. Crystallographic Orientation Rotation and InternalStress in Pearlite Colony[J]. Scripta Materialia,2009,61(2):133-136.
    [12] Huang X, Pryds N H. Crystallography and Morpholgy of Cementite Precipitates Formed DuringRapid Solidification of a Ferritic Stainless Steel[J]. Acta Materialia,2000,48:4073-4082.
    [13] Wei Fu Gao, Tsuzaki Kaneaki. Crystallography of [011]//54.7°Lath Boundary and Cementite inTempered0.2C Steel[J]. Acta Materialia,2005,53(8):2419-2429.
    [14] Zhang M X, Kelly P M. Crystallography of Spheroidite and Tempered Martensite[J]. ActaMaterialia,1998,46(11):4081-4091.
    [15] Zhou D S, Shiflet G J. Ferrite: Cementite Crystallography in Pearlite[J]. MetallurgicalTransactions A,1992,23A:1259-1269.
    [16] Zhong Ning, Wang Xiaodong, Guo Zhenghong, Rong Yonghua. Orientation Relationships betweenFerrite and Cementite by Edge-to-Edge Matching Principle[J]. Journal of Materials Science&Technology,2011,27(5):475-480.
    [17] Ohmori Y, Sugisawa S. The Precipitation of Carbides During Tempering of High CarbonMartensite[J]. Trans.JIM,1971,12:170-178.
    [18] Narasaiah N, Ray K K. Small Crack Formation in a Low Carbon Steel with BandedFerrite–Pearlite Structure[J]. Materials Science and Engineering: A,2005,392(1-2):269-277.
    [19] Ohmori Y, Davenport A T, Honeycombe R W K. Tempering of High Carbon Martensite[J].Transactions ISIJ,1972,12:112-117.
    [20] Pereloma E V, Timokhina I B, Swenser S P. Formation of Cementite in Tempered Fe–Co–CAlloys[J]. Micron,2001,32(8):825-829.
    [21] Schneider André, Inden Gerhard. Carbon Diffusion in Cementite (Fe3C) and H gg Carbide(Fe5C2)[J]. Calphad,2007,31(1):141-147.
    [22] Chae Jae Yong, Jang Jae Hoon, Zhang Guohong, et al. Dilatometric Analysis of CementiteDissolution in Hypereutectoid Steels Containing Cr[J]. Scripta Materialia,2011,65(3):245-248.
    [23] Kwon H, Kim C M, Lee K B, et al. Effects of Co and Ni on Secondary Hardening and FractureBehavior of Martensitic Steels Bearing W and Cr[J]. Metallurgical and Materials Transactions A,1998,29:397-401.
    [24] Ayer Raghavan, Machmeier P M. Microstructural Basis for the Effect of Chromium on theStrength and Toughness of AF1410-Based High Performance Steels[J]. Metallurgical and MaterialsTransactions A,1996,27:2510-2517.
    [25] Arzhnikov A K, Dobysheva L V. Structural Peculiarities of Plastically-Deformed Cementite andTheir Influence on Magnetic Characteristics and Mossbauer Parameters[J]. Solid StateCommunications,2008,146(1-2):102-104.
    [26] Herbstein F H, Smuts J. Comparison of X-Ray and Neutron-Diffraction Refinements of theStructure of Cementite Fe3C[J]. Acta Crystallographica,1964,17(10):1331-1332.
    [27] Nikolussi M, Shang S L, Gressmann T, et al. Extreme Elastic Anisotropy of Cementite, Fe3C:First-Principles Calculations and Experimental Evidence[J]. Scripta Materialia,2008,59(8):814-817.
    [28] Umemoto M, Todaka Y, Tsuchiya K. Mechanical Properties of Cementite and Fabrication ofArtificial Pearlite[J]. Materials Science Forum,2003,426-432:859-864.
    [29] Fasiska E J, Jeffrey G A. On the Cementite Structure[J]. Acta Crystallographica,1965,19(3):463-471.
    [30] Isaichev I V. Orientation of Cementite in Tempered Carbon Steel[J]. Zhur. Tekhn. Fiziki,1947,17:835.
    [31] Meschel S V, Kleppa O J. Standard Enthalpies of Formation of Some3d Transition Metal CarbidesByhigh Temperature[J]. Journal of Alloys and Compounds,1997,257:227-233.
    [32] Johansson Leif I. Electronic and Structural Properties of Transition-Metal Carbide and NitrideSurfaces[J]. Surface Science Reports,1995,21:177-250.
    [33] Zhang H L, Al-Zoubi N, Johansson B, Vitos L. Alloying Effects on the Elastic Parameters ofFerromagnetic and Paramagnetic Fe from First-Principles Theory[J]. Journal of Applied Physics,2011,110(7):073707.
    [34] Nikulin Ilya, Sawaguchi Takahiro, Tsuzaki Kaneaki. Effect of Alloying Composition onLow-Cycle Fatigue Properties and Microstructure of Fe–30Mn–(6X)Si–XAl Trip/Twip Alloys[J].Materials Science and Engineering: A,2013,587:192-200.
    [35] Kim Ki Hyun, Shim Jae Hyeok, Lee Byeong Joo. Effect of Alloying Elements (Al, Co, Fe, Ni) onthe Solubility Of hydrogen in Vanadium: A Thermodynamic Calculation[J]. International Journal ofHydrogen Energy,2012,37(9):7836-7847.
    [36] Yabuuchi Kiyohiro, Kasada Ryuta, Kimura Akihiko. Effect of Alloying Elements on IrradiationHardening Behavior and Microstructure Evolution in Bcc Fe[J]. Journal of Nuclear Materials,2013,442(1-3): S790-S795.
    [37] Baghbaderani H Ahmadian, Sharafi S, Chermahini M Delshad. Investigation of NanostructureFormation Mechanism and Magnetic Properties in Fe45Co45Ni10System Synthesized byMechanical Alloying[J]. Powder Technology,2012,230:241-246.
    [38] Sch ublin R, Haghighat S M Hafez. Molecular Dynamics Study of Strengthening by NanometricVoid and Cr Alloying in Fe[J]. Journal of Nuclear Materials,2013,442(1-3): S643-S648.
    [39] Krifa M, Mhadhbi M, Escoda L, et al. Phase Transformations During Mechanical Alloying ofFe–30%Al–20%Cu[J]. Powder Technology,2013,246:117-124.
    [40] Popa F, Isnard O, Chicina I, V Pop. Thermal Evolution of the Ni3fe Compound Obtained byMechanical Alloying as Probed by Differential Scanning Calorimetry[J]. Journal of Alloys andCompounds,2013,554:39-44.
    [41] Adabavazeh Z, Karimzadeh F, Enayati M H. Thermodynamic Analysis of (Ni, Fe)3Al Formationby Mechanical Alloying[J]. The Journal of Chemical Thermodynamics,2012,54:406-411.
    [42] Palmer T A, Elmer J W. Direct Observations of the Formation and Growth of Austenite fromPearlite and Allotriomorphic Ferrite in a C–Mn Steel Arc Weld[J]. Scripta Materialia,2005,53(5):535-540.
    [43] Mandal Durbadal, Ghosh M, Pal J, et al. Evolution of Microstructure and Mechanical Propertiesunder Different Austempering Holding Time of Cast Fe–1.5Si–1.5Mn–V Steels[J]. Materials&Design,2014,54:831-837.
    [44] Offerman S E, Wilderen Ljg W Van, Dijk N H van, et al. In-Situ Study of Pearlite Nucleation andGrowth During Isothermal Austenite Decomposition in Nearly Eutectoid Steel[J]. Acta Materialia,2003,51(13):3927-3938.
    [45] Wang Bin, Liu Zhenyu, Zhou Xiaoguang, et al. Precipitation Behavior of Nanoscale Cementite in0.17%Carbon Steel During Ultra Fast Cooling (UFC) and Thermomechanical Treatment(TMT)[J]. Materials Science and Engineering: A,2013,588:167-174.
    [46] Lan Peng, Zhang Jiaquan. Study on the Mechanical Behaviors of Grey Iron Mould by Simulationand Experiment[J]. Materials&Design,2014,53:822-829.
    [47]谷臣清.材料工程基础[M].北京:机械工业出版社,2004:219-224.
    [48]吕知清.钢中渗碳体特性的理论计算与实验研究[D].秦皇岛:燕山大学博士学位论文,2008:2-22.
    [49] Dick A, K rmann F, Hickel T, Neugebauer J. Ab Initio Based Determination of ThermodynamicProperties of Cementite Including Vibronic, Magnetic, and Electronic Excitations[J]. PhysicalReview B,2011,84(12):125101.
    [50] Garvik N, Carrez Ph, Cordier P. First-Principles Study of the Ideal Strength of Fe3C Cementite[J].Materials Science and Engineering: A,2013,572:25-29.
    [51] Yan Jia Yi, Zhang Wen Zheng, Borgenstam Annika. Observations of Surface Relief of ProeutectoidWidmanst tten Cementite Plates in a Hypereutectoid Carbon Steel[J]. Metallurgical and MaterialsTransactions A,2013,44(9):4143-4149.
    [52] Fra Edward, Górny Marcin, Lopez Hugo F, Kawalec Magdalena. Role of Sulfur on the Transitionfrom Graphite to Cementite Eutectic in Cast Iron[J]. Metallurgical and Materials Transactions A,2013,44(6):2512-2522.
    [53] Nematollahi Gh Ali, Pezold Johann Von, Neugebauer J rg, Raabe Dierk. Thermodynamics ofCarbon Solubility in Ferrite and Vacancy Formation in Cementite in Strained Pearlite[J]. ActaMaterialia,2013,61(5):1773-1784.
    [54] Zhang Xiaodan, Godfrey Andrew, Hansen Niels, et al. Evolution of Cementite Morphology inPearlitic Steel Wire During Wet Wire Drawing[J]. Materials Characterization,2010,61(1):65-72.
    [55] Xiong Yi, Sun Shu Hua, Li Yong, et al. Effect of Warm Cross-Wedge Rolling on Microstructureand Mechanical Property of High Carbon Steel Rods[J]. Materials Science and Engineering: A,2006,431(1-2):152-157.
    [56] Min Na, Li Wei, Li Hongyan, Jin Xuejun. Atom Probe and M ssbauer Spectroscopy Investigationsof Cementite Dissolution in a Cold Drawn Eutectoid Steel[J]. Journal of Materials Science&Technology,2010,26(9):776-782.
    [57] Todaka Yoshikazu, Umemoto Minoru, Ohno Akifumi, et al. Dissolution of Cementite in CarbonSteels by Ball Drop Deformation and Laser Heating[J]. Journal of Alloys and Compounds,2007,434-435:497-500.
    [58] Lee W B, Cho K T, Kim K H, et al. The Effect of the Cementite Phase on the Surface Hardeningof Carbon Steels by Shot Peening[J]. Materials Science and Engineering: A,2010,527(21-22):5852-5857.
    [59] Ivanisenko Yu, Lojkowski W, Valiev R Z, Fecht H J. The Mechanism of Formation ofNanostructure and Dissolution of Cementite in a Pearlitic Steel During High Pressure Torsion[J].Acta Materialia,2003,51(18):5555-5570.
    [60] Zhou L, Liu G, Ma X L, Lu K. Strain-Induced Refinement in a Steel with Spheroidal CementiteSubjected to Surface Mechanical Attrition Treatment[J]. Acta Materialia,2008,56(1):78-87.
    [61] Hono K, Ohnuma M, Murayama M, et al. Cementite Decompositon in Heavily Drawn PearliticSteel Wires[J]. Scripta Materialia,2001,44:977-983.
    [62] Gavriljuk V. Comment on “Cementite Decomposition in Heavily Drawn Pearlite Steel Wire”[J].Scripta Materialia,2002,46:175-177.
    [63] Lv Z Q, Sun S H, Wang Z H, et al. Effect of Alloying Elements Addition on Coarsening Behaviorof Pearlitic Cementite Particles after Severe Cold Rolling and Annealing[J]. Materials Science andEngineering: A,2008,489(1-2):107-112.
    [64] Lv Zhi Qing, Jiang Ping, Wang Zhen Hua, et al. XRD Analysis on Dissolution Behavior ofCementite in Eutectoid Pearlitic Steel During Cold Rolling[J]. Materials Letters,2008,62(17-18):2825-2827.
    [65] Ande Chaitanya Krishna, Sluiter Marcel H F. First-Principles Prediction of Partitioning ofAlloying Elements between Cementite and Ferrite[J]. Acta Materialia,2010,58(19):6276-6281.
    [66] Zhu Chen, Xiong X Y, Cerezo A, et al. Three-Dimensional Atom Probe Characterization of AlloyElement Partitioning in Cementite During Tempering of Alloy Steel[J]. Ultramicroscopy,2007,107:808-812.
    [67] Umemoto M, Todaka Y, Takahashi T, et al. High Temperature Deformation Behavior of BulkCementite Produced by Mechanical Alloying and Spark Plasma Sintering[J]. Materials Science andEngineering A,2004,375-377:894-898.
    [68] Umemoto M, Liu Z G, Masuyama K, Tsuchiya K. Influence of Alloy Additions on Production andProperties of Bulk Cementite[J]. Scripta Materialia,2001,45:391-397.
    [69] Umemoto M, Huang B, Tsuchiya K, Suzuki N. Formation of Nanocrystalline Structure in Steels byBall Drop Test[J]. Scripta Materialia,2002,46:383-388.
    [70] Umemoto M, Liu Z G, Masuyama K, et al. Nanostructured Fe-C Alloys Produced by BallMilling[J]. Scripta Materialia,2001,44:1741-1745.
    [71] Wang C X, Lv Z Q, Fu W T, et al. Electronic Properties, Magnetic Properties and Phase Stabilityof Alloyed Cementite (Fe,M)3C (M=Co, Ni) from Density-Functional Theory Calculations[J].Solid State Sciences,2011,13:1658-1663.
    [72] Lv Z Q, Fu W T, Sun S H, et al. First-Principles Study on the Electronic Structure, MagneticProperties and Phase Stability of Alloyed Cementite with Cr or Mn[J]. Journal of Magnetism andMagnetic Materials,2011,323:915-919.
    [73] Lv Z Q, Zhang F C, Sun S H, et al. First-Principles Study on the Mechanical, Electronic andMagnetic Properties of Fe3C[J]. Computational Materials Science,2008,44:690-694.
    [74] Lv Z Q, Fu W T, Sun S H, et al. Structural, Electronic and Magnetic Properties of Cementite-TypeFe3X (X=B, C, N) by First-Principles Calculations[J]. Solid State Sciences,2010,12(3):404-408.
    [75]刘月玲. Cr/Mn掺杂合金渗碳体结构与性能的理论预测[D].秦皇岛:燕山大学工学硕士学位论文,2012:11-43.
    [76] Wu Qiong, Li Shusuo. Alloying Element Additions to Ni3Al: Site Preferences and Effects onElastic Properties from First-Principles Calculations[J]. Computational Materials Science,2012,53(1):436-443.
    [77] Xiao H B, Yang C P, Wang R L, et al. Effect of Alloying Element Al Substitution on Ni-Mn-SnShape Memory Alloy by First-Principle Calculations[J]. Journal of Applied Physics,2012,112(12):123723.
    [78] Michler Thorsten, Naumann J rg, Sattler Erich. Influence of Copper as an Alloying Element onHydrogen Environment Embrittlement of Austenitic Stainless Steel[J]. International Journal ofHydrogen Energy,2012,37(17):12765-12770.
    [79] Fang Xin, Fan Tongxiang, Zhang Di. Work of Adhesion in Al/SiC Composites with AlloyingElement Addition[J]. Metallurgical and Materials Transactions A,2013,44A:5192-5201.
    [80] Christensen A, Carter Emily A. Adhesion of Ultrathin ZrO2(111) Films on Ni(111) from FirstPrinciples[J]. The Journal of Chemical Physics,2001,114(13):5816.
    [81] Christensen A, Carter Emily A. First-Principles Study of the Surfaces of Zirconia[J]. PhysicalReview B,1998,58:8050-8064.
    [82] Liao Xiao Yuan, Cao Dong Bo, Wang Sheng Guang, et al. Density Functional Theory Study of CoAdsorption on the (100),(001) and (010) Surfaces of Fe3C[J]. Journal of Molecular Catalysis A:Chemical,2007,269(1-2):169-178.
    [83] Liao Xiao Yuan, Wang Sheng Guang, Ma Zhong Yun, et al. Density Functional Theory Study ofH2Adsorption on the (100),(001) and (010) Surfaces of Fe3C[J]. Journal of Molecular Catalysis A:Chemical,2008,292:14-20.
    [84] Bao Li Li, Huo Chun Fang, Deng Chun Mei, Li Yong Wang. Structure and Stability of the CrystalFe2C and Low Index Surfaces[J]. Journal of fuel chemistry and technology,2009,37(1):104-108.
    [85] Paparazzo E. How Old Is Surface Science?[J]. Journal of Electron Spectroscopy and RelatedPhenomena,2004,134(1):9-24.
    [86] Chen Han Taw, Lin Jing Hong, Xu Xiao Jie. Analytical Estimates of Surface Conditions in LaserSurface Heating Process with Experimental Data[J]. International Journal of Heat and MassTransfer,2013,67:936-943.
    [87] Chen Wei Min, Xie Wen, Zhang Li Jun, et al. Diffusion-Controlled Growth of FCC-Free SurfaceLayers on Cemented Carbides: Experimental Measurements Coupled with Computer Simulation[J].International Journal of Refractory Metals and Hard Materials,2013,41:531-539.
    [88] Uscinowicz Robert. Experimental Identification of Yield Surface of Al–Cu Bimetallic Sheet[J].Composites Part B: Engineering,2013,55:96-108.
    [89] Zhang Weibin, Du Yong, Peng Yingbiao, et al. Experimental Investigation and Simulation of theEffect of Ti and N Contents on the Formation of FCC-Free Surface Layers in WC–Ti(C,N)–CoCemented Carbides[J]. International Journal of Refractory Metals and Hard Materials,2013,41:638-647.
    [90] Maji Kuntal, Pratihar D K, Nath A K. Laser Forming of a Dome Shaped Surface: ExperimentalInvestigations, Statistical Analysis and Neural Network Modeling[J]. Optics and Lasers inEngineering,2014,53:31-42.
    [91]刘志林,李志林,刘伟东.界面电子结构与界面性能[M].北京:科学出版社,2002:7-28.
    [92]曾谨言.量子力学导论[M].北京:北京大学出版社,1998:37-47.
    [93]李承斌.过渡金属及其碳、氮化物力学性质的第一性原理研究[D].武汉:武汉大学博士学位论文,2005:1-15.
    [94] Born M, Huang K. Dynamical Theory of Crystal Lattices[M]. Oxford: Oxford University Press,1954:23-58.
    [95] Thomas L S. The Calculation of Atomic Fields[J]. Proc.Cambridge Philos.Soc,1927,23:542.
    [96] Fermi E. A Statistical Method for the Determination of Some Atomic Properties and Application ofThis Method to the Theory of the Periodic System of Elements[J]. Zeitschrift fur Physik,1928,48:73-79.
    [97] Perrot F. Hydrogen-Hydrogen Interaction in an Electron Gas[J]. J.Phys.Condens.Matter,1994,6:431-446.
    [98] Wang L W, Teter M P. Kinetic-Energy Functional of the Electron Density[J]. Physical Review B,1992,45:013196.
    [99] Weiszcaker C F Von. Zur Theorie Dier Kernmassen[J]. Zeitschrift fur Physik,1935,96:431.
    [100]孙源.多铁材料结构与性质的第一性原理研究[D].吉林:吉林大学工学博士学位论文,2009:1-22.
    [101] Hohenberg P, Kohn W. Inhomogeneous Electron Gas[J]. Physical Review B,1964,136:864-871.
    [102] Kohn W, Sham L J. Self-Consistent Equations Including Exchange and Correlation Effects[J].Physical Review A,1965,140:1133-1138.
    [103] Payne M C, Teter M P, Allan D C, et al. Iterative Minimization Techniques for Ab InitioTotal-Energy Calculations: Molecular Dynamics and Conjugate Gradients[J]. Reviews ofModification Physics,1992,64:1045.
    [104] Stowasser R, Hoffmann R. What Do the Kohn-Sham Orbitals and Eigenvalues Mean[J]. Journalof the American Chemical Society,1999,121:3414.
    [105] Hoffmann R. An Extended Huckel Theory[J]. Journal of Chemical Physics,1963,39:1397-1412.
    [106]蔡永茂.过度金属氧化物电子结构与性质的第一性原理研究[D].吉林:吉林大学工学博士学位论文,2011:1-18.
    [107] Becke A D. Density-Functional Exchange-Energy Approximation with Correct AsymptoticBehavior[J]. Physical Review A,1988,38:3098-3100.
    [108] Burke K, Perdew J P, Wang Y. Derivation of a Generalized Gradient Approximation[M]. NewYork: Plenum Press,1998:2-26.
    [109] Perdew J P. Density-Functional Approximation for the Correlation Energy of the InhomogeneousElectron Gas[J]. Physical Review B,1986,33:8822-8824.
    [110] Perdew J P, Burke K, Ernzerhof M. Generalized Gradient Approximation Made Simple[J].Physical Review Letters,1996,77:3865-3868.
    [111] Vanderbilt D. Soft Self-Consistent Pseudopotentials in a Generalized Eigenvalue Formalism[J].Physical Review B,1990,41:7892-7895.
    [112] im nek Antonín. How to Estimate Hardness of Crystals on a Pocket Calculator[J]. PhysicalReview B,2007,75(17):172108.
    [113] Qiao L, Zeng Y, Qu C Q, et al. Adsorption of Oxygen Atom on Zn-Terminated (0001) Surface ofWurtzite ZnO: A Density-Functional Theory Investigation[J]. Physica E: Low-dimensionalSystems and Nanostructures,2013,48:7-12.
    [114] Wei Wei, Dai Ying, Guo Meng, Huang Baibiao. Au Adsorption and Au-Mediated Charge Transferon the SrO-Termination of SrTiO3(001) Surface[J]. Applied Surface Science,2011,257(15):6607-6611.
    [115] Gutshall Paul L, Gross Gordon E. Cleavage Surface Energy of NaCl and MgO in Vacuum[J].Journal of Applied Physics,1965,36(8):2459.
    [116] Azuma Kisaburo, Oda Takuji, Tanaka Satoru. First-Principles Calculations for the SurfaceTermination of Li2TiO3(001) Surfaces[J]. Journal of Nuclear Materials,2013,442(1-3):S705-S709.
    [117] Chetty N, Martin Richard. First-Principles Energy Density and Its Applications to Selected PolarSurfaces[J]. Physical Review B,1992,45(11):6074-6088.
    [118] Zhang Jian Min, Pang Qing, Xu Ke Wei, Ji Vincent. First-Principles Study of the (110) PolarSurface of Cubic PbTiO3[J]. Computational Materials Science,2009,44(4):1360-1365.
    [119] Sun Chenghua, Du Aijun, Liu Gang, et al. Formation Energies of Low-Indexed Surfaces of TinDioxide Terminated by Nonmetals[J]. Solid State Communications,2010,150(19-20):957-960.
    [120] Pulci O, Marsili M, Gori P, et al. Geometry and Electronic Band Structure of Surfaces: The Caseof Ge (111):Sn and C (111)[J]. Applied Physics A,2006,85(4):361-369.
    [121] Wang Z, Kong X, Zuo J. Induced Growth of Asymmetric Nanocantilever Arrays on PolarSurfaces[J]. Physical Review Letters,2003,91(18):185502.
    [122] Parkinson Gareth S, Novotny Zbyněk, Jacobson Peter, et al. A Metastable Fe (α) Termination atthe Fe3O4(001) Surface[J]. Surface Science,2011,605(15-16): L42-L45.
    [123] Kong Xiang Yang, Wang Zhong Lin. Polar-Surface Dominated ZnO Nanobelts and theElectrostatic Energy Induced Nanohelixes, Nanosprings, and Nanospirals[J]. Applied PhysicsLetters,2004,84(6):975.
    [124] Huijben Mark, Brinkman Alexander, Koster Gertjan, et al. Structure-Property Relation ofSrTiO3/LaAlO3Interfaces[J]. Advanced Materials,2009,21(17):1665-1677.
    [125] Zhang R Q, Lifshitz Y, Ma D D, et al. Structures and Energetics of Hydrogen-Terminated SiliconNanowire Surfaces[J]. Journal of Chemical Physics,2005,123(14):144703.
    [126] Zhang Jian Min, Pang Qing, Xu Ke Wei, Ji Vincent. First-Principles Study of the (110) PolarSurface of Cubic PbTiO3[J]. Computational Materials Science,2009,44:1360-1365.
    [127] Rout K, Mohapatra M, Anand S. A Critical Analysis of Cation Adsorption from Single andBinary Solutions on Low Surface Area β-MnO2[J]. Applied Surface Science,2013,270:205-218.
    [128] Wang Jiajia, Li Zhaosheng, Zou Zhigang. Na Adsorption on SrTiO3(001) Surface and ItsInteraction with Water: A DFT Calculation[J]. Applied Surface Science,2013,270:359-363.
    [129] Chen Li Jiang, Tang Yuanhao, Cui Lixia, et al. Charge Transfer and Formation of Ce3+UponAdsorption of Metal Atom M (M=Cu, Ag, Au) on CeO2(100) Surface[J]. Journal of PowerSources,2013,234:69-81.
    [130] Addou R, Shukla A K, Deniozou Th, et al. Structural Investigation of Pb Adsorption on the (010)Surface of the Orthorhombic T-Al3(Mn,Pd) Crystal[J]. Surface Science,2013,611:74-79.
    [131] Wang Qianjin, Wang Jinbin, Zhong Xiangli, et al. First-Principle Study of Mn Adsorption onZnO Surfaces: Structural and Magnetic Properties[J]. Computational Materials Science,2012,54:105-108.
    [132] Sorescu Dan C. Adsorption and Activation of Co Coadsorbed with K on Fe (100) Surface: APlane-Wave Dft Study[J]. Surface Science,2011,605(3-4):401-414.
    [133] Johnson Donald F, Carter Emily A. First-Principles Assessment of Hydrogen Absorption intoFeal and Fe3Si: Towards Prevention of Steel Embrittlement[J]. Acta Materialia,2010,58(2):638-648.
    [134] Kittel Ch. Introduction to Solid State Physics[M], Wiley, New York,1996, p8, Table9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700