黄河羊曲水电站下坝址集中卸荷带成因机制及其工程效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
羊曲水电站下坝址坝基岩体内一定深度发育了大量的拉裂缝,且呈密集分布状,分布范围广泛,在空间上具有一定的宽度与延展性,称之为集中卸荷现象,异于坡体自外而内的正常卸荷现象。羊曲水电站下坝址坝基岩体集中卸荷带内拉裂缝较为发育,张裂明显,岩体多呈拉裂、架空状,加之岩溶、缓倾结构面的影响,岩体多较为破碎,岩体质量明显较集中卸荷带外部差。
     本文对黄河羊曲水电站勘探资料以及区域地质资料,并进行现场勘察的基础上,进行了大量相关资料的收集,在此基础上对羊曲下坝址集中卸荷带的成因机制以及工程效应进行研究。研究表明:
     (1)对羊曲水电站区域地质背景资料进行分析同时,对区域内大地构造、构造运动历史、黄河河谷演化历史进行了分析;
     (2)对羊曲水电站下坝址野狐峡段地形地貌、地层岩性、地质构造、水文地质条件、风化卸荷特征、岩溶发育状况等工程地质条件进行了分析;
     (3)主要根据现场平硐勘察资料以及相关风化卸荷分带标准,对坝基岩体进行了定性、定量的风化卸荷分带;
     (4)对集中卸荷带的发育分布特征、拉裂缝的走向性特征、拉裂状况、成因类型、力学机制进行了分析;
     (5)根据区域地质资料及下坝址工程地质条件,在区域构造历史分析研究的基础上,研究表明其主要是在羊曲特殊区域地质构造条件下,早期构造运动中灰岩地层蓄积地应力的在河谷下切过程中,能量快速释放,卸荷回弹追踪早期陡倾断层、结构面沿缓倾结构面蠕滑拉裂,最终形成集中卸荷带。也就是说,羊曲下坝址集中卸荷带是岩体浅表生改造作用的产物;
     (6)利用FLAC3D对开挖、坝体载荷作用下进行三维计算分析表明,集中卸荷可能导致塑性破坏区的分布的扩展以及边坡不稳定性的增加,坝肩部位塑性区扩展,可能形成潜在不稳定体,应进行支护和加固处理。
The basement rock of the YangQu Hydropower station on The Yellow River was found many high-destiny tension cracks in it, and this phenomenon was a common thing in this canyon. It was have a certain width and tractility in the space of basement rock, so called it concentration unloading. The character which the unloading rock was in the certain horizon depth around is distinguishing form the normal unloading rock with surface unloading. There is large quantity of tension crack with clear width, and the rock has much cracks, and among the rocks was much space, so the rock mass was shatter to pieces and the rock mass quality was not good as the no-concentration-unloading zone.
     This article was based on the field investigation, and the interrelated date searching, such as the exploration data and the areal geology data of the YangQu Hydropower station on the Yellow River. And then the research which was based on those above on the concentration unloading zone mechanism of the YangQu lower reaches dam site and the interrelated engineering effect. Study maily on these fllow points:
     (1) Based on analyze of the areal geology data and interrelated date searching, the article was analyze on the areal tectonic geology structure, historical geotectonic, history of the Yellow River, etc.
     (2) This article was analyzed on the engineering conditions such as topography and physiognomy of Yehu Gorge, the formation lithology, the geological structure, the geohydrologic condition, the weathering and unloading characterizations, the karsts conditions and so on.
     (3) Based on the experimental tunnel investigation data and interrelated standard, the article was separate the different weathering and unloading zone with the qualitative and quantitative research.
     (4) Research on the concentration unloading zone development and distribution characterization, and the trend of the tension crack in the zone, the cracking condition, the tension crack cause type of formation, the mechanics of tension crack.
     (5) According the areal geology data, the engineering condition and the historical regional structure research, it shows that the concentration unloading zone formation factor was mainly a product of the special geological of this area. In the earlier period tectogenesis, the strain energy was to store up in the limestone. The strain energy was release in the cutting valley progress. The unloading effective was on the earlier high steep pitch fault or discontinues, it cause the creep-cracking on the gently dipping structure face, and form the concentration unloading zone at last. In other words, the concentration unloading zone of the dam site of the YangQu powerstation was a product of epigenetic Reformation of Rock Mass.
     (6) Using the FLAC3D, the article analyzed the stress and strain field of the nature condition, the excavation condition and the dam-load condition.
     Through the analyze of this article, the concentration unloading zone formation was mainly caused by the strong earthquake force, which is the initial factor of the tension crack by the shaking of the fault and fracture face, then the unloading and rebounding effective in the strong gorge vertical process.
引文
[1]刘世锦.从战略高度促进西部水电开发[J].调查研究报告2007,58
    [2]潘家铮,何璟.中国大坝50年[M].北京:中国水利水电出版社,2000
    [3]孙耀明等.西南某水电站谷底深厚覆盖层与卸荷松弛带特征及其成因机制分析[J].工程地质学报, 2008
    [4]刘华军等.氡(RaA)测试技术在某岩质边坡卸荷深裂缝带研究中的应用[J].中国地质灾害与防治学报, 2004
    [5] Tmahr. Deep—Reaching gravitational deformations of high mountain slopes [J]. Bulletin of Engineering Geology and the Environment, 1977
    [6] A. Tibaldi. A giant deep-seated slope deformation in the Italian Alps studied by paleoseismological and morphometric techniques [J]. Geomorphology. 2004(58):27–28.
    [7] V Rizzo, M Leggeri. Slope instability and sagging reactivation at Maratea Engineering [J]. Geology, 2004
    [8] F. Agliardi. Structural constraints on deep-seated slope deformation kinematics [J]. Engineering Geology 2001(59): 83-86
    [9] M Chigira. Long-term gravitational deformation of rocks by mass rock creep [J]. Engineering Geology, 1992
    [10] R. Dikau. HRSC-A data: a new high-resolution data set with multipurpose applications in physical geography [J]. Progress in Physical Geography, 2007
    [11] Broili. New knowledges on the geomorphology of the Vaiont slide slip surfaces [J]. Felsmech. Ingenieurgeologie, 1967
    [12] K Kawamura etc. Structural and fabric analyses of basal slip zone of the Jin’nosuke-dani landslide, northern central Japan: its application to the slip mechanism of devolvement [J]. Landslides, 2007
    [13] Federico Agliardi etc. Onset and timing of deep-seated gravitational slope deformations in the eastern Alps, Italy [J]. Geomorphology,2008
    [14] F. Dramis. Deep-seated gravitational slope deformations, related landslides and tectonics [J]. Engineering Geology, 38(3-4), 1994, pp 231-243.
    [15] Samyr El Bedoui etc. Deep-seated failure propagation in a fractured rock slope over 10,000 years:The La Clapi`ere slope, the south-eastern French Alps [J]. Geomorphology,2008
    [16] Tomá? Pánek etc. Late Holocene catastrophic slope collapse affected by deep-seated gravitational deformation in flysch: Ropice Mountain, CzechRepublic [J]. Geomorphology,2008
    [17] T Mahr, A Nem ?o k. Deep-seated creep deformations in the crystalline cores of the tatry Mts [J]. Bulletin of Engineering Geology and the Environment, 1977
    [18] W Savage, J Wasowski. A plastic flow model for the Acquara–Vadoncello landslide in Senerchia, Southern Italy [J]. Engineering Geology, 2006
    [19] M.J.Bovis, SG Evans. Extensive deformations of rock slopes in southern Coast Mountains, southwest British Columbia [J]. Engineering Geology, 1996
    [20]祁生文,伍法权.锦屏一级水电站普斯罗沟在岸深部裂缝成因的工程地质分析[J].岩土工程学报, 2002.
    [21]陈鸿.大渡河中下游典型岸坡深部裂缝形成机制及工程效应研究[R].全国博硕士论文库, 2005.
    [22]陈鸿等.瀑布沟水电站库首右岸深部裂缝成因分析[J].工程地质学报, 2005.
    [23]杨永明.苗家坝水电站坝区加坡典型楔形体的变形破坏特征[J].甘肃电力, 1995
    [24]冯原.马步坎高边坡稳定性评价[J].中南水电, 1991
    [25]王士天等.雅砻江锦屏水电站重大工程地质问题研究[M].成都科技大学出版社.
    [26]黄润秋等.中国西南地壳浅层动力学过程及其工程环境效应研究[M].四川大学出版社.2001.
    [27]祁生文等.从工程地质类比的角度看锦屏一级水电站左岸深部裂缝的形成[J].岩石力学与工程学报2004,23(8):1380~1384.
    [28]李天斌.岩质工程高边坡稳定性及其控制的系统研究[R].成都,2003:264-365.
    [29]王小群,王兰生,徐进.西南某电站岸坡深部裂缝形成机制的物理模拟试验[J].岩土工程学报,2004. 26(3):389-392.
    [30]李雪峰等.大柳树松动岩体波速特征研究[J].岩石力学与工程学报.2006(25):597-598.
    [31]韩文峰等.黄河黑山峡河段开发重大工程地质问题研究[M].科学出版社,2004
    [32]姚增,丁梧秀大柳树岩体地震纵横波破坏效应与震后变形参数特征[J].兰州大学学报(自然科学版). 1997
    [33]姚增,王志硕.黄河大柳树坝址岩体被地震破坏规律研究[J].西北水电. 1996(3):15-17.
    [34]李愿军.深部裂缝带--一种新的地震构造样式[J].中国工程科学. 2006,8(4):17-18.
    [35]冯益民等.西秦岭造山带结构造山过程及动力学:1:100万西秦岭造山带及其邻区大地构造[M].西安地图出版社2002.
    [36]潘保田.贵德盆地地貌演化与黄河上游发育研究[J].干旱区地理. 2003,17(3):44-45.
    [37]侯康明.青藏高原北部NNW向构造活动方式及形成年代地震地质[J]. 1999,21(12):131-132.
    [38]刘志杰.青藏高原隆升与黄河形成演化[J].地理与地理信息科学. 2007, 23(1):801:81-82.
    [39]宋春晖等.青藏高原东北部贵德盆地新生代沉积演化与构造隆升[J].沉积学报. 2001,19(4):497-498.
    [40]杨达源,王云飞.黄河上游的阶地与水系变迁[J].地理科学, 1996,16(2):138-140.
    [41]常宏等.青海南山隆起的沉积证据及其对青海湖一共和盆地构造分异演化的指示[J].地质论评.2009,55(1):50-51.
    [42]程捷,张绪教,田明中等.黄河源区第四纪地质与生态环境[M].地质出版社.2006.
    [43]马寅生.东昆仑活动断裂带玛曲段活动特征及其东延[J].地质通报. 2005.
    [44]钱生华.根据凹陷中心的变化探讨青藏高原现代构造活动特征[J].西北地震学报.2005,17(4):49-51.
    [45]俞洪新.概论青海构造地貌特征与最新构造运动的表现型式[J].1990,1:41-42.
    [46]张倬元等.工程地质分析原理[M].地质出版社.1990.
    [47]侯康明,邓起东1927年古浪8级大震破裂的三维数值理论模拟[J].西北地震学报.
    [48]彭建兵等.构造地质与工程地质的基本关系[J].地学前缘, 2004
    [49]李勇,聂德新,任光明.任光明西南某水电站左坝肩岩体卸荷分带研究[J].地质灾害与环境保护.2003.
    [50]聂德新,任光明等.西南某水电站左坝肩岩体卸荷分带研究[J].地质灾害与环境保护.2003
    [51]任光明.斜坡岩体卸荷分带量化研究[J].成都理工大学学报(自然科学版). 2003(30):336-337.
    [52]王毅等.一种高边坡岩体卸荷分带方法的探讨[J].工程地质学报, 2004
    [53]沈军辉等.斜坡应力分带性测试及其在卸荷分带中的应用[J].岩土工程学报, 2007,29(9):1425-2426.
    [54]蓝宇.边坡岩体的变形与破坏分析[J].大宝山科技. 2004
    [55]哈秋舲,李建林.节理岩体卸荷非线性岩体力学[M].中国建筑工业出版社,1998:5-8.
    [56]黄润秋.复杂反倾向岩质高边坡深部裂缝形成机理分析[J].成都理工学院学报. 2001.
    [57]谢和平等.岩石力学[M].科学出版社. 2004.
    [58]王兰生.浅生时效构造与人类工程[M].地质出版社. 1994.
    [59]夏元祁等.柴达木北缘达肯大坂群与滩间山群的接触关系[J].地层学杂志, 1996
    [60]都昌庭.共和地震震源机制解特征[J].高原地震. 2001,13(4):2-3.
    [61]田中玉.两种典型河谷应力场应力分布特征对比分析[J].地质灾害与环境保护.2002,13(3):60-64.
    [62]徐则民,黄润秋等.河谷应力集中及岩体响应[J].工程勘察.2003,1:4-6.
    [63]陈洪凯.三峡库区的新构造应力场及其对库岸滑坡滑动优势方向的影响地理研究.1997,16(4):16-18.
    [64]王兰生.岩体卸荷与水电工程[J].工程地质学报.2008,16(2):149-151.
    [65]李天斌,王兰生.一种垂向卸荷型浅生时效构造的地质力学模拟[J].山地学报, 2000
    [66]韩文峰等.黄河黑山峡大柳树松动岩体工程地质研究[M].甘肃科学技术出版社. 1993.
    [67]张有天.岩石水力学与工程[M].中国水利水电出版社. 2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700