羊水来源多潜能干细胞的培养鉴定及其定向分化能力的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
再生医学的飞速发展使干细胞在现代医学的基础研究与临床应用中发挥越来越重要的作用。因伦理道德问题,胚胎干细胞的研究和临床应用受到了极大的制约;成体干细胞自身分化潜能和增殖能力均有限,只能分化出部分细胞和组织。羊水干细胞的发现为干细胞的研究开辟了新的领域。羊水来源干细胞有望作为一种新的种子细胞,应用于组织工程领域的研究与细胞治疗。虽然羊水干细胞的培养方法不断改进,但利用现有技术获得的干细胞并不适合应用于人体器官再生医学的研究。通过免疫磁珠法分选获得的干细胞虽然纯度高,但细胞易受动物抗体的污染;连续传代培养法虽可避免干细胞被其他成分污染,但体外培养周期长。我们在实验中通过改良培养方法,建立了一种高速有效的获得羊水干细胞的新方法。
     目的:
     1.通过改良培养方法,建立一种高速有效的人羊水来源多潜能干细胞的体外培养体系,并对其生物学特性进行探讨。
     2.对培养的羊水干细胞进行鉴定。
     3.在适宜的培养条件下诱导羊水干细胞向成骨细胞、脂肪细胞、神经细胞进行分化,检测其体外分化能力。
     方法:
     1.取人孕中期羊水标本进行原代培养,细胞贴壁后挑选出长梭形、呈纤维样细胞,将其称之为起始细胞,利用起始细胞产生干细胞集落。
     2.流式细胞仪和RT-PCR技术检测胚胎干细胞和间充质干细胞部分标志基因Oct-4、SSEA-4、Nanog、CD29、CD44、CD105和CD117的表达情况,鉴定分离培养的羊水干细胞。
     3.使用特定培养基,在适宜条件下诱导羊水干细胞向成骨细胞、脂肪细胞、神经细胞进行分化。分别用茜素红S染色、油红O染色以及免疫细胞化学方法对分化出的细胞进行鉴定。
     结果:
     1.应用改良后的培养方法,获得的羊水干细胞集落均一性好。体外增殖能力强,倍增时间仅为24h,明显快于常规使用的培养方法。
     2.流式细胞仪检测细胞表达Oct-4、SSEA-4、CD29、CD44、CD105、CD117等胚胎干细胞和间充质干细胞标志基因,不表达造血干细胞表面标志基因CD45、CD133。RT-PCR结果显示细胞中Oct-4基因mRNA和Nanog基因mRNA均明显表达。
     3.成骨诱导3周后茜素红S染色见细胞内有钙结节的形成;成脂诱导3周后油红O染色见细胞内有大量脂滴形成;向神经细胞诱导后免疫细胞化学方法检测细胞巢蛋白(Nestin)的表达呈阳性。
     结论:
     1.将改良的培养方法与常规方法良好的结合,使细胞的培养周期明显缩短,获得的羊水干细胞集落均一性好,纯度高。此方法培养得到的干细胞可以作为一种理想的再生医学的种子细胞。
     2. AFS表达胚胎干细胞和间充质干细胞部分标志基因,体外增值能力强,符合多潜能干细胞的特点。
     3.在适宜的培养条件下,羊水干细胞可以向成骨细胞、脂肪细胞、神经细胞分化。
With the rapid growth of regenerative medicine, stem cells have played more and more important role in the basic research and clinical application of modern medicine. Because of ethical problem,the research of embryonic stem cells and clinical application has greatly restricted; adule stem cells have limited ability to differentiate into some cells and tissues. When the human amniotic fluid-derived stem cells have been discovered , they pioneer a new field for study the stem cells. Human amniotic fluid-derived stem cells (hAFS) may be a potential source of cells for tissue engineering and cellular therapy. Although several hAFS cells derivation techniques have now been developed, the existing techniques are unsuitable for hAFS cells production for medical purposes because these methods often result in contamination with other cell types or contamination with antibodies raised from animals. Additionally, these techniques require a long period of time for stem cell production. Hence, a better method which allows utilization of these cells for cell-based therapy needs to be developed. In the current study, we present an improved method as an efficient technique that is suitable to derive hAFS cells for therapeutic purposes.
     Objective
     1. To establish an improved device of culture amniotic fluid-derived multipotential stem cells in vitro and study their biological characteristics.
     2. The phenotypes of hAFS cells were tested by flow cytometry.
     3. Inducing hAFS cells into neurogenic, adipogenic and osteogenic by definite culture medium to detection their differentiation potentiality.
     Methods
     1. The technique starts by selecting adherent stem cells from second-trimester human amniotic fluid primary culture. A selective individual hAFS cell is called a "starter cell". The starter cell is used as a beginner cell for generating a clonal hAFS cell line.
     2. hAFS cell markers were characterized using flow cytometry analysis and RT-PCR technique, the tested antibody marker of some embryonic stem cells and mesenchymal stem cells such as: Oct-4、SSEA-4、Nanog、CD29、CD44、CD105 and CD117.
     3. Inducing amniotic fluid-derived stem cells into neurogenic, adipogenic and osteogenic by definite culture medium, The osteogenesis was assessed by determinating cell mineralization,using alizarin red S staining. The Oil Red O staining was used for detection of intracellular lipid droplet formation for evaluating adipogenesis. For evaluation of neural differentiation, the neuron specific marker nestin was used.
     Results
     1. The hAFS cells derived by our technique proliferated rapidly and have a high purity, with a population doubling time of 24h,it is significantly accelerated compared with the previous research.
     2. The hAFS cells showed high positive signals for embryonic stem cells and mesenchymal stem cells markers :Oct-4、SSEA-4、CD29、CD44、CD105and CD117. These cells show a negative signal for hematopoietic stem cell markers CD45 and CD133 by flow cytometry. RT-PCR show that the mRNA of Oct-4 and Nanog were expressed.
     3. Osteogenic differentiation for 3 weeks , calcium mineralization were appeared in cytoplasm of hAFS-derived osteogenic cells, they verified by a photochemical reaction using alizarin red S .For adipogenic differentiation, the appearance of endogenous lipid droplets was observed by staining with Oil Red O after 3 weeks of culture, the lipid droplets appeared in cytoplasm and bright red. For neurogenic differentiation, the cells showed positive staining for neuron-specific marker nestin. Above all,hAFS cells can differentiation into neurogenic,adipogenic and osteogenic in vitro.
     Conclusions
     1. The starter cell method as a simple approach to provide good quality hAFS cells that fit the requirements for use in therapeutic purposes. This technique should allow for future cell-based therapy.
     2. hAFS cells have a great potential for proliferation, which express both embryonic and mesenchymal stem cells markers. Their characteristics are in accord with multipotential stem cells.
     3. AFS cells have the ability to differentiate into neurogenic, adipogenic and osteogenic in suitable condition in vitro.
引文
[1] Nagy A, Gocza E, Diaz EM,et al. Embryonic stem cells alone are able to support fetal development in the mouse[J].Development, 1990,110(3):815-821.
    [2] Reubino? BE, Pera MF, Fong CT, et al. Embryonic stem cell lines from human blastocysts somatic di?erentiation in vitro[J]. Nat Biotechnol 2000,18(4):399-404.
    [3] Aejaz HM, Aleem AK, Parveen N, et al .Stem Cell Therapy–Present Status[J].Transplan Proc, 2007,39(3):694–699.
    [4] Prusa AR, Marton E, Rosner M, et al. Oct -4 expressing cells in human amniotic fluid: a new source for stem cell research[J]? Hum Reprod, 2003, 18(7): 1489-1493.
    [5] De Coppi, Bartsch GJ, Siddiqui MM, et al. Isolation of amniotic stem cell lines with potential for therapy[J].Nat Biotechnol, 2007,25(1):100-106.
    [6] Kim I, Lee Y, Kim H, et a1.Human amniotic fluid-derived stem cells have haracteristics of multipotent stem cells[J].Cell Prolif, 2007,40 (1):75-90.
    [7] Kolambkar Y M, Peister A, Soker S, et al.Chondrogenic differentiation of amniotic ?uid-derived stem cells[J].J Mol Histol, 2007,38(5): 405-413.
    [8] Hoehn H,Salk D. Morphological and biochemical heterogeneity of amniotic fluid cells in culture[J]. Methods Cell Biol, 1982, 26:11-34.
    [9] Gosden CM.Amniotic fluid cell types and culture[J].Br Med Bull, 1983,39(4):348-354.
    [10] Prusa AR, Hengstschl?ger M. Amniotic fluid cells and human stem cell research:A new connection[J]. Med Sci Monit, 2002,8(11): 253–257.
    [11]顾潇,陈必良.羊水多潜能干细胞的研究现状及前景展望[J].中国妇幼健康研究,2011,22(1):116-118.
    [12] Siegel N, Rosner M, Hanneder, et al. Stem Cells in Amniotic Fluid as New Tools to Study Human Genetic Diseases[J].Stem Cell Rev,2007, 3(4):256-264.
    [13] Fauza D. Amniotic fluid and placental stem cells[J]. Best Pract Res Clin Obstet Gynaecol.2004, 18(6):877-891.
    [14] Delo DM, DeCoppi P, Bartsch G, et al.Amniotic fluid and placental stem cells[J]. Methods Enzymol, 2006,419:426–438.
    [15] Sakuragawa N, Misawa H, Ohsugi K, et al.Evidence for active acetylcholine metabolism in human amniotic epithelial cells: Applicable to intracerebral allografting for neurologic disease[J]. Neurosci Lett, 1997,232(1):53-56.
    [16] Elwan MA, Sakuragawa N. Evidence for synthesis and release of catecholamines by human amniotic epithelial cells[J].Neuroreport, 1997, 8(16):3435-3438.
    [17] Sakuragawa N, Elwan, MA, Fujii T, et al.Possible dynamic neurotransmitter metabolism surrounding the fetus[J]. J Child Neurol, 1999,14(4): 265-266.
    [18] Miki T, Lehmann T, Cai H, et al. Stem cell characteristics of amniotic epithelial cells[J]. Stem Cells, 2005, 23(10): 1549–1559.
    [19] Ilancheran S, Michalska A, Peh G, et al. Stem cells derived from human fetal membranes display multilineage differentiation potential[J]. Biol Reprod, 2007,77(3):577-588.
    [20] Amit M, Carpenter MK, Inokuma MS, et al. Clonally derived human embryonic stem cell lines maintain pluripotency and proliferative potential for prolonged periods of culture[J]. Dev Biol,2000,227 (2):271–278.
    [21] Mosquera A, Fernandez JL, Campos A, et al. Simultaneous decrease of telomere length and telomerase activity with ageing of human amniotic fluid cells[J]. J Med Genet, 1999,36(6):494–496.
    [22] Prusa AR, Marton E, Rosner M, et al .Stem cell marker expression in human trisomy 21 amniotic fluid cells and trophoblasts[J]. J Neural Transm Suppl, 2003,67:235-242.
    [23] Bossolasco P, Montemurro T, Cova L, et al. Molecular and phenotypic characterization of human amniotic fluid cells and their differentiation potential[J]. Cell Res,2006, 16(4):329-336.
    [24] Karlmark KR, Freilinger A, Marton E, et a1.Activation of ectopic Oct-4 and Rex-1 promoters in human amniotic fluid cells[J]. Int J of Mol Med,2005, 16(6):987–992.
    [25] Siegel N, Rosner M, Hanneder M, et a1. Human amniotic fluid stem cells: A new perspective[J]. Amino Acids,2008,35(2):291-293.
    [26] Tsai MS, Lee JL, Chang YJ, et al. Isolation of human multipotent mesenchymal stem cells from second-trimester amniotic fluid using a novel two-stage culture protocol[J]. Hum Repro,2004,19(6): 1450-1456.
    [27] Tsai MS, Hwang SM, et al.Clonal Amniotic Fluid-Derived Stem Cells Express Characteristics of Both Mesenchymal and Neural StemCells[J], Biol Reprod, 2006,74:545-551.
    [28]王启伟,叶玲玲,刘红等.羊水多潜能干细胞的体外培养及其生物学特性[J].中国组织工程研究与临床康复, 2008,12(38):7531-7534.
    [29]王晗,窦忠英,王华岩.人源羊水干细胞的培养、鉴定及影响因素分析[J].农业生物技术学报,2008,16(5):804-809.
    [30] Zheng YB, Gao ZL, et al.Characterization and hepatogenic differentiation of mesenchymal stem cells from human amniotic fluid and human bone marrow: a comparative study[J].Cell Biol Int, 2008,32(11):1439-1448.
    [31] Kunisaki SM, Fuchs JR, Steigman SA, et al.A comparative analysis of cartilage engineered from different perinatal mesenchymal progenitor cells[J]. Tissue Eng, 2007,13 (11):2633-2644.
    [32] In’t Anker PS, Scherjon SA, Kleijburg-van Der KeurC, et al. Amniotic fluid as a novel source of mesenchymal stem cells for therapeutic transplantation[J]. Blood , 2003 ,102(4):1548–1549.
    [33] Noort WA, Kruisselbrink AB, In’t Anker PS, et al.Mesenchymal stem cells promote engraftment of human umbilical cord blood-derived CD34(+) cells in NOD/SCID mice. Expe Hematol, 2002,30(8):870-880.
    [34] De Gemmis P, Lapucci C, Bertelli M, et al.A real-time PCR approach to evaluate adipogenic potential of amniotic fluid-derived human mesenchymal stem cells[J].Stem Cells Dev, 2006,15(5):719-728.
    [35] Rehni AK, Singh N, Jaggi AS, et al. Amniotic fluid derived stem cells ameliorate focal cerebral ischaemia-reperfusion injury induced behavioural deficits in mice[J].Behav Brain Res, 2007,183(1): 95-100.
    [36] Tsai, MS, Hwang SM, Chen KD, et al. Functional network analysis on the transcriptomes of mesechymal stem cells derived from amniotic fluid, amniotic membrane, cord blood, and bone marrow[J]. Stem Cells, 2007,25(10):2511–2523.
    [37] De Coppi P, Callegari A, Chiavegato A, et al. Amniotic fluid and bone marrow derived mesenchymal stem cells can be converted to smooth muscle cells in the cryo-injured rat bladder and prevent compensatory hypertrophy of surviving smooth muscle cells[J].J Urol, 2007,177(1):369–376.
    [38] Prusa AR, Marton E, RosnerM, et al. Neurogenic cell in human amniotic fluid[J]. Am J Obstet Gynecol, 2004, 191(1):309-314.
    [39] Jaiswal N, Haynesworth SE, Caplan AI, et al. Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro[J]. J Cell Biochem ,1997,64(2):295-312.
    [40] Takahashi K, Yamanaka S.Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors[J]. Cell, 2006,126(4):663-676.
    [41] Yu J, Vodyanik MA, Smuga-Otto K, et al.Induced pluripotent stem cell lines derived from human somatic cells[J]. Science ,2007;318 (5858): 1917-1920.
    [42] Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors[J].Cell, 2007,131(5): 861- 872.
    [43] Okita K, Nakagawa M, Hyenjong H, et al. Generation of mouse induced pluripotent stem cells without viral vectors[J]. Science, 2008,322(5903):949-953.
    [44] Stadtfeld M, Nagaya M, Utikal J, et al. Induced pluripotent stem cells generated without viral integration[J]. Science, 2008, 322(5903): 945-949.
    [45] Li W,Wei W, Zhu S,et al.Generation of rat and human induced pluripotent stem cells by combining genetic reprogramming and chemical inhibitors[J]. Cell Stem Cell, 2009,4(1):16-19.
    [46] Huangfu D,Osafune K, Maehr R, et al. Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2[J]. Nat Biotechnol,2008, 26(11): 1269-1275.
    [47] Yu J,Hu K,Smuga-Otto K, et al. Human induced pluripotent stem cells free of vector and transgene sequences[J]. Science,2009, 324(5928): 797-801.
    [48] Woltjen K, Michael IP,Mohseni P, et al. piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells[J]. Nature, 2009,458(7239): 766-770.
    [49] Kaji K, Norrby K, Paca A, et al. Virus-free induction of pluripotency and subsequent excision of reprogramming factors[J]. Nature, 2009,458(7239): 771-775.
    [50] Soldner F, Hockemeyer D, Beard C, et al. Parkinson's disease patient-derived induced pluripotent stem cells free of viral reprogramming factors[J].Cell,2009,136(5):964-977.
    [51] Li C, Zhou J, Shi G, et al. Pluripotency can be rapidly and efficiently induced in human amniotic fluid-derived cells[J]. Hum Mol Genet, 2009,18(22):4340-4349.
    [52] Perin L,Giuliani S, Jin D, et al.Renal differentiati on of amniotic fluid stem cells[J]. Cell Prolif,2007,40(6):936-948.
    [53] Perin L, Sedrakyan S, Giuliani S, et al. Protective effect of human amniotic fluid stem cells in an immunodeficient mouse model of acute tubular necrosis[J]. PLoS One,2010,5(2):e9357.
    [54] Hauser PV, De Fazio R, Bruno S, et al. Stem cells derived from human amniotic fluid contribute to acute kidney injury recovery[J]. Am J Pathol, 2010 ,177(4):2011-2021.
    [55] Siegel N, Rosner M, Unbekandt M, et al. Contribution of human amniotic fluid stem cells to renal tissue formation depends on mTOR[J]. Hum Mol Genet, 2010,19(17):3320-3331.
    [56] Schmidt D, Achermann J, Odermatt B, et al . Cryopreserved amniotic fluid-derived cells: a lifelong autologous fetal stem cell source for heart valve tissue engineering[J]. J Heart Valve Dis, 2008, 17(4): 446-455.
    [57] Schmidt D,Achermann J,Odermatt B,et al.Prenatally fabricated autologous human living heart valves based on amniotic fluid derived progenior cells as single cell source[J].Circulation,2007, 116(11): 164-170.
    [58] Sartore S, Lenzi M, Angelini A, et al. Amniotic mesenchymal cells autotransplanted in a porcine model of cardiac ischemia do not differentiate to cardiogenic phenotypes[J]. Eur J Cardiothorac Surg, 2005,28(5):677-684.
    [59] Chiavegato A,Bollini S, PozzobonM, et al.Human amniotic fluid-derived stem cells are rejected after transplantation in the myocardium of normal, ischemic, immunosuppressed or immunodeficient rat[J]. J Mol Cell Cardiol,2007,42(4):746-759.
    [60] Yeh YC, Wei HJ, Lee WY, et al.Cellular cardiomyoplasty with humanamniotic fluid stem cells:in vitro and in vivo studies[J]. Tissue Eng Part A,2010,16(6):1925-1936.
    [61] Delo DM, Guan X, Wang Z, et al. Calcification after myocardial infarction is independent of amniotic fluid stem cell injection[J]. Cardiovasc Pathol,2011,20(2):69-78.
    [62] Kakishita K, Elwan MA, Nakao N, et al.Human amniotic epithelial cells produce dopamine and survive after implantation into the striatum of a rat model of Parkinson’s disease: a potential source of donor for transplantation therapy[J].Exp Neurol ,2000,165(1):27-34.
    [63] Cipriani S, Bonini D, Marchina E, et a1.Mesenchymal cells from human amniotic fluid survive and migrate after transplantation into adult rat brain[J]. Cell Biol Int, 2007,31(8):845-850.
    [64] Pan HC,Sin CS,Yang DY, et a1.Human amniotic fluid mesenchymal stem cells in combination with hyperbaric oxygen augment peripheral nerve regeneration[J].Neurochem Res,2009,34(7):1304- 1316.
    [65] Cheng FC, Tai MH, Sheu ML, et a1.Enhancement of regeneration with glia cell line-derived neurotrophic factor-transduced human amniotic fluid mesenchymal stem cells after sciatic nerve crush injury[J]. J Neurosurg, 2010,112(4):868-879.
    [66] Kunisaki SM, Jennings RW, Fauza DO.Fetal cartilage engineering from amniotic mesenchymal progenitor cells[J].Stem Cells Dev,2006, 15(2):245-253.
    [67] Steigman SA, Ahmed A, Shanti RM,et al.Sternal repair with bone grafts engineered from amniotic mesenchymal stem cells[J].J Pediatr Surg. 2009,44(6):1120-1126.
    [68] Minagawa T, Imamura T, Igawa Y, et al. Differentiation of smooth muscle cells from human amniotic mesenchymal cells implanted in the freeze-injured mouse urinary bladder[J]. Eur Urol,2010,58(2): 299-306.
    [69] Ghionzoli M, Cananzi M, Zani A, et al. Amniotic fluid stem cell migration after intraperitoneal injection in pup rats: implication for therapy[J]. Pediatr Surg Int, 2010,26(1):79-84.
    [70]顾潇,陈必良,张建芳等.羊水来源多潜能干细胞的培养鉴定及其定向分化能力的研究[J].解放军医学杂志,2011,36(1):24-26.
    [71] Phermthai T, Odglun Y, Julavijitphong S, et al. A novel method to derive amniotic fluid stem cells for therapeutic purposes[J].BMC Cell Biol, 2010, 11:79.
    [72] Kitazawa A, Shimizu N. Differentiation of mouse embryonic stem cells into neurons using conditioned medium of dorsal root ganglia[J]. J Biosci Bioeng. 2005,100(1):94–99.
    [73] Zhang JQ, Yu XB, Ma BF, et al.Neural differentiation of embryonic stem cells induced by conditioned medium from neural stem cell. Neuroreport. 2006,17(10):981–986.
    [74] Lacham-Kaplan O, Chy H, Trouson A. Testicular cell conditioned medium supports differentiation of embryonic stem cells into ovarian structures containing oocytes. Stem cells. 2006,24(2):266-273.
    [75] Bordoni V,Alonzi T,Zanetta L, et al.Hepatocyte-conditioned medium sustains endothelial differentiation of human hematopoietic- endothelial progenitors. Hepatology. 2007;45(5):1218–1228.
    [76] Daar AS, Greenwood HL.A proposed definition of regenerative medicine[J]. J Tissue Eng Regen Med,2007,1(3):179-184.
    [77] Hipp J, Atala A.Sources of stem cells for regenerative medicine[J]. Stem Cell Rev,2008,4(1):3-11.
    [78] Bruder SP, Jaiswal N, Haynesworth SE, et al.Growth kinetics, self-renewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation[J]. J Cell Biochem, 1997,64(2):278-294.
    [79] Rosen ED, Walkey CJ, Puigserver P, et al. Transcriptional regulation of adipogenesis[J]. Genes Dev,2000,14(11): 1293-1307.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700