猪羊水干细胞生物学特性检测及其特异性诱导分化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
羊水来源干细胞(amniotic fluid stem cells,AFScs)是一种存在于胎儿羊水中Oct4阳性的多能性干细胞。该细胞具有增殖能力强、分化潜能高和免疫原性低等优点,在生物学和医学研究领域具有广泛的应用前景。本实验从不同怀孕期长白二元杂交母猪的羊水标本中分离猪羊水干细胞,探讨了猪胎龄对细胞贴壁率和细胞活性的影响,并筛选优化了猪AFS细胞的培养体系。同时,通过RT-PCR、流式细胞仪、免疫荧光及体内外诱导分化等技术对猪AFS细胞进行生物学特性检测,并在体外特异性诱导猪AFS细胞向心肌细胞分化。上述研究为大动物羊水干细胞的基础研究和临床应用提供了可借鉴的材料。
     一、猪AFS细胞培养方法的建立
     收集长白二元杂交怀孕母猪的羊水标本,离心收集细胞,加入猪AFS细胞培养液培养。对血清浓度及基础培养液进行筛选,以期获得最佳的培养体系,并且探讨了胎龄对细胞贴壁率和细胞活性的影响。
     结果表明:基础培养液α-MEM+10%胎牛血清为猪AFS细胞的最佳培养体系;胎龄对细胞贴壁率和细胞活性均有明显影响,综合分析,从胎龄为40-70d的猪胎儿羊水中分离出的羊水干细胞贴壁率高,增殖能力强且细胞活性好。
     二、猪AFS细胞的生物学特性研究
     对分离培养的猪AFS细胞进行生长曲线和细胞周期检测,并通过RT-PCR、免疫荧光、流式细胞仪等技术对其生物学特性进行研究。
     结果表明:猪羊水干细胞在体外培养过程中,3天后达到对数增长期,6天后细胞增殖达到顶峰,表现出了极强的增殖能力;流式细胞周期检测显示处于G1期和S期的细胞比例较高,且在体外多次传代后仍保持正常的二倍体核型;猪AFS细胞表达胚胎干细胞标志基因Oct4、Nanog、SSEA-4、Tra-60、Tra-81、CD117和主要组织相容性抗原HLA-ABC,不表达SSEA-1,表达间充质特异标志基因CD44、CD90、CD166,不表达造血干细胞标志基因CD45、CD34。
     三、猪AFS细胞体内外诱导分化研究
     在体外将猪AFS细胞形成类胚体,并通过AP染色和RT-PCR对形成的类胚体进行检测;特异性诱导猪AFS细胞向脂肪细胞、神经细胞、精原细胞和心肌细胞分化,以检测其体外分化潜能;通过裸鼠注射实验检测猪AFS细胞的体内分化潜能;
     结果表明:猪AFS细胞在体外能形成类胚体,AP染色阳性,且表达三胚层特异标志基因;在体外猪AFS细胞可诱导为脂肪细胞、神经细胞、精原细胞和心肌细胞,经检测有目的细胞基因的表达;将猪AFS细胞注射到裸鼠皮下6-8周后,注射部位未发现肿瘤结节的形成,说明猪AFS细胞在体内无致瘤性。
Amniotic Fluid Stem(AFS)cells a pluripotent stem cells which exist in amniotic fluid and express Oct4. These cells show many charming features, such as robust proliferation potention, pluripotent ability and low immunogenicity, and have wildly promise in the fields of biology and medicine. This study isolated the porcine AFS cells from amniotic fluid in different development stage embryos of landrace crossbred, and investigated the relationship of age of embryos to the adhere-rate and activity of porcine AFS cells, and further optimized the cultrue condition of porcine AFS cells. Further more, characterization of porcine AFS cells using PT-PCR, Flow-cytometry, immunofluorescence and differentiation in vivo and vitro,. These results has provided useful experience for the basic research and application of amniotic fluid stem cells of large animals.
     1. Establishment the culture system to isolation of porcine AFS cells
     Collected porcine AFS cells through centrifugation from amniotic fluid which derived from fetus,and cultured these cells in specific AFS cells medium. Using several kinds of basic medium and different concentration of FBS, the optimized culture system was selected. Besides, probed the effect of fetus age to the adhere-rate of cells and cell activity. The result suggested thatα-MEM plus 10% FBS is the best culture condition for porcine AFS cells, and the effect of fetus age to the adhere-rate of cells and cell active is visible. The AFS cells derived from amniotic fluid of 40d-70d fetus prefer to adhere, and also has great proliferated potency.
     2. Characterization of porcine AFS cells
     The growth curve and cell cycle of porcine AFS cells was detected, and characterized the biological features of which using PT-PCR, immunofluorescence and flow cytometry porcine. The result showed that porcine AFS cells displayed robust proliferated potential in vitro culture, and 3 days later cell accessed to exponential growth, after 6 days, the number of cells reached culmination. The result of flow cytometry revealed that porcine AFS cells had normal karyocyte and high proportion of which stayed in the G1 and S stage. Furthermore, porcine AFS cells expressed many marker genes of ES cells, such as Oct4、Nanog、SSEA-4、Tra-60、Tra-81 and CD117 plus crucial MHC antigen HLA-ABC, but not for SSEA1. Besides these cells also expressed mesenchymal stem cells markers CD44, CD90 and CD166, and none of hematopoietic stem cells markers CD45 and CD 34.
     3. Induction of porcine AFS cells to differentiate
     Formed embryoid bodies (EBs) through suspended culture in vitro, and followed detection of EBs using AP staining and RT-PCR, and induced to differentiate into adipocytes、neurocytes、premeiotic germ-like cells and myocardial cells. Furthermore, porcine AFS cells were injected into nude mouse and detected the differentiated capability of which in vivo. The results diplayed that porcine AFS cells had the ability of Ebs formation in vitro and the EBs were positive for AP staining and expressed many markers of three germ layers. Furthermore, porcine AFS cells could be induced to differentiate into adipocytes、neurocytes、premeiotic germ-like cells and myocardial cells in vitro and expressed specific genes in target cells. After injected porcine AFS cells into subcutaneous of nude mouse, 6-8 weeks later, none of teratoma was appeared in the body, which suggested that porcine AFS cells have not the risk of tumorigenicity.
引文
冯建勋,腊晓林,马艳,毕晓娟,温浩. 2009.两步法分离和培养人羊水来源胚胎间充质干细胞的生物学特征.中国组织工程研究与临床康复,13(45):8854-8860
    李现铎,耿红全,潘骏,谢华,陈方. 2005.羊水细胞作为组织工程种子细胞可能性的探讨.中华医学杂志, 85(7):464-467
    李现铎,耿红全,朱哲,潘骏,谢华,陈方. 2006.孕中期羊水来源胎儿间充质干细胞的分离与培养及其生物学特性研究,中华医学杂志, 86(7):481-483
    刘慧. 2009.羊水来源干细胞的生物学特性分析及向肝细胞诱导分化的研究.【博士论文】.北京:军医进修学院
    潘骏,李现铎,朱哲,耿红全,谢华,陈方. 2007.羊水来源胎儿间充质干细胞定向诱导为脂肪细胞的研究.中国临床解剖学杂志, 25(1):64-67
    王晗,陈帅,程祥,窦忠英,王华岩. 2008.通过形成类胚体诱导人羊水多能干细胞向心肌细胞分化.生物工程学报, 24(9):1582-1587
    王晗,窦忠英,王华岩. 2008.人源羊水干细胞的培养、鉴定及影响因素分析.农业生物技术学报, 16(5):804-809
    无. 2007.科学家首次用羊水干细胞培育出人类心脏瓣膜.中国组织工程研究与临床康复, 11(10):1882
    徐伟,陶勇,朱亮,白海,陈宏权. 2009.早期胎猪的生长发育及其与胎龄的相关性分析.黑龙江动物繁殖,17(4):1-2
    郑月茂,贺小英,何小宁. 2009.转增强型绿色荧光蛋白基因(EGFP)猪羊水干细胞的体外分化.农业生物技术学报, (5):792-796
    朱哲,潘骏,李现铎,耿红全,陈方. 2006.孕中期羊水来源胎儿间充质干细胞体外诱导为平滑肌细胞的研究.中华小儿外科杂志, 27(12):617-621
    朱哲,潘骏,张亮,耿红全,谢华,陈方. 2007.免疫磁珠分离羊水来源OCT-4阳性胎儿干细胞的实验研究.中华小儿外科杂志, 28(11):598-601
    Ames Dhai. 2003. Cloning stem cells-change on the horizon. Science in Africa.
    Baksh D, Yao R, Tuan R S. 2007. Comparison of proliferative and multilineage differentiation potential of human mesenchymal stem cells derived from umbilical cord and bone marrow. Stem Cells, 25(6): 1384-1392
    Baxter M A, Wynn R F, Jowitt S N, Wraith J E, Fairbairn L J, Bellantuono I. 2004. Study of telomere length reveals rapid aging of human marrow stromal cells following in vitro expansion. Stem Cells, 22(5): 675-682
    Bossolasco P, Montemurro T, Cova L, Zangrossi S, Calzarossa C, Buiatiotis S, Soligo D, Bosari S, Silani V, Deliliers G L, Rebulla P, Lazzari L. 2006. Molecular and phenotypic characterization of human amniotic fluid cells and their differentiation potential. Cell Res, 16(4): 329-336
    Bryan T M, Englezou A, Dunham M A, Reddel R R. 1998. Telomere length dynamics in telomerase-positive immortal human cell populations. Exp Cell Res, 239(2): 370-378
    Carpenter M K, Rosler E, Rao M S. 2003. Characterization and differentiation of human embryonic stemcells. Cloning Stem Cells, 5(1): 79-88
    Castro J, Merino C, Zurita M. 2002. Molecular characterization and developmental expression of the TFIIH factor p62 gene from Drosophila melanogaster: effects on the UV light sensitivity of a p62 mutant fly. DNA Repair (Amst), 1(5): 359-368
    Chambers I, Colby D, Robertson M, Nichols J, Lee S, Tweedie S, Smith A. 2003. Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell, 113(5): 643-655
    Chiavegato A, Bollini S, Pozzobon M, Callegari A, Gasparotto L, Taiani J, Piccoli M, Lenzini E, Gerosa G, Vendramin I, Cozzi E, Angelini A, Iop L, Zanon G F, Atala A, De Coppi P, Sartore S. 2007. Human amniotic fluid-derived stem cells are rejected after transplantation in the myocardium of normal, ischemic, immuno-suppressed or immuno-deficient rat. J Mol Cell Cardiol, 42(4): 746-759
    Cipriani S, Bonini D, Marchina E, Balgkouranidou I, Caimi L, Grassi Z G, Barlati S. 2007. Mesenchymal cells from human amniotic fluid survive and migrate after transplantation into adult rat brain. Cell Biol Int, 31(8): 845-850
    Cowan C A, Klimanskaya I, McMahon J, Atienza J, Witmyer J, Zucker J P, Wang S, Morton C C, McMahon A P, Powers D, Melton D A. 2004. Derivation of embryonic stem-cell lines from human blastocysts. N Engl J Med, 350(13): 1353-1356
    De Coppi P, Bartsch G J, Siddiqui M M, Xu T, Santos C C, Perin L, Mostoslavsky G, Serre A C, Snyder E Y, Yoo J J, Furth M E, Soker S, Atala A. 2007. Isolation of amniotic stem cell lines with potential for therapy. Nat Biotechnol, 25(1): 100-106
    De Gemmis P, Lapucci C, Bertelli M, Tognetto A, Fanin E, Vettor R, Pagano C, Pandolfo M, Fabbri A. 2006. A real-time PCR approach to evaluate adipogenic potential of amniotic fluid-derived human mesenchymal stem cells. Stem Cells Dev, 15(5): 719-728
    Eiges R, Benvenisty N. 2002. A molecular view on pluripotent stem cells. FEBS Lett, 529(1): 135-141
    Ferrari G, Cusella-De A G, Coletta M, Paolucci E, Stornaiuolo A, Cossu G, Mavilio F. 1998. Muscle regeneration by bone marrow-derived myogenic progenitors. Science, 279(5356): 1528-1530
    Gang E J, Bosnakovski D, Figueiredo C A, Visser J W, Perlingeiro R C. 2007. SSEA-4 identifies mesenchymal stem cells from bone marrow. Blood, 109(4): 1743-1751
    Gosden C M. 1983. Amniotic fluid cell types and culture. Br Med Bull, 39(4): 348-354
    Gosden C M, Brock D J. 1977. Morphology of rapidly adhering amniotic-fluid cells as an aid to the diagnosis of neural-tube defects. Lancet, 1(8018): 919-922
    Gospodarowicz D, Moran J S, Owashi N D. 1977. Effects of fibroblast growth factor and epidermal growth factor on the rate of growth of amniotic fluid-derived cells. J Clin Endocrinol Metab, 44(4): 651-659
    Greenebaum E, Mansukhani M M, Heller D S, Timor-Tristsch I. 1997. Open neural tube defects: immunocytochemical demonstration of neuroepithelial cells in amniotic fluid. Diagn Cytopathol, 16(2): 143-144
    Guillot P V, O'Donoghue K, Kurata H, Fisk N M. 2006. Fetal stem cells: betwixt and between. Semin Reprod Med, 24(5): 340-347
    Hart A H, Hartley L, Ibrahim M, Robb L. 2004. Identification, cloning and expression analysis of the pluripotency promoting Nanog genes in mouse and human. Dev Dyn, 230(1): 187-198
    Hellmann A P, Rohleder U, Eichmann C, Pfeiffer I, Parson W, Schleenbecker U. 2006. A proposal for standardization in forensic canine DNA typing: allele nomenclature of six canine-specific STR loci. JForensic Sci, 51(2): 274-281
    Henderson J K, Draper J S, Baillie H S, Fishel S, Thomson J A, Moore H, Andrews P W. 2002. Preimplantation human embryos and embryonic stem cells show comparable expression of stage-specific embryonic antigens. Stem Cells, 20(4): 329-337
    Hoehn H, Salk D. 1982. Morphological and biochemical heterogeneity of amniotic fluid cells in culture. Methods Cell Biol, 26: 11-34
    In T A P, Scherjon S A, Kleijburg-van D K C, de Groot-Swings G M, Claas F H, Fibbe W E, Kanhai H H. 2004. Isolation of mesenchymal stem cells of fetal or maternal origin from human placenta. Stem Cells, 22(7): 1338-1345
    In T A P, Scherjon S A, Kleijburg-van D K C, Noort W A, Claas F H, Willemze R, Fibbe W E, Kanhai H. H. 2003. Amniotic fluid as a novel source of mesenchymal stem cells for therapeutic transplantation. Blood, 102(4): 1548-1549
    Jaiswal N, Haynesworth S E, Caplan A I, Bruder S P. 1997. Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro. J Cell Biochem, 64(2): 295-312
    Karlmark K R, Freilinger A, Marton E, Rosner M, Lubec G, Hengstschlager M. 2005. Activation of ectopic Oct-4 and Rex-1 promoters in human amniotic fluid cells. Int J Mol Med, 16(6): 987-992
    Kaviani A, Guleserian K, Perry T E, Jennings R W, Ziegler M M, Fauza D O. 2003. Fetal tissue engineering from amniotic fluid. J Am Coll Surg, 196(4): 592-597
    Kaviani A, Perry T E, Dzakovic A, Jennings R W, Ziegler M M, Fauza D O. 2001. The amniotic fluid as a source of cells for fetal tissue engineering. J Pediatr Surg, 36(11): 1662-1665
    Kehler J, Tolkunova E, Koschorz B, Pesce M, Gentile L, Boiani M, Lomeli H, Nagy A, McLaughlin K J, Scholer H R, Tomilin A. 2004. Oct4 is required for primordial germ cell survival. EMBO Rep, 5(11): 1078-1083
    Kim J, Lee Y, Kim H, Hwang K J, Kwon H C, Kim S K, Cho D J, Kang S G, You J. 2007. Human amniotic fluid-derived stem cells have characteristics of multipotent stem cells. Cell Prolif, 40(1): 75-90
    Kolambkar Y M, Peister A, Soker S, Atala A, Guldberg R E. 2007. Chondrogenic differentiation of amniotic fluid-derived stem cells. J Mol Histol, 38(5): 405-413
    Kunisaki S M, Armant M, Kao G S, Stevenson K, Kim H, Fauza D O. 2007. Tissue engineering from human mesenchymal amniocytes: a prelude to clinical trials. J Pediatr Surg, 42(6): 974-979
    Kurozumi K, Nakamura K, Tamiya T, Kawano Y, Kobune M, Hirai S, Uchida H, Sasaki K, Ito Y, Kato K, Honmou O, Houkin K, Date I, Hamada, H . 2004. BDNF gene-modified mesenchymal stem cells promote functional recovery and reduce infarct size in the rat middle cerebral artery occlusion model. Mol Ther, 9(2): 189-197
    Lee B C, Kim M K, Jang G, Oh H J, Yuda F, Kim H J, Hossein M S, Kim J J, Kang S K, Schatten G, Hwang W S. 2005. Dogs cloned from adult somatic cells. Nature, 436(7051): 641
    Lee D, Seo J, Oh Y, Kim J, Ko Y. 2008. Analysis of follicular lymphoma by dual-color fluorescence in situ hybridization. Virchows Arch, 452(1): 75-81
    Lendahl U, McKay R D. 1990. The use of cell lines in neurobiology. Trends Neurosci, 13(4): 132-137
    Li C, Zhou J, Shi G, Ma Y, Yang Y, Gu J, Yu H, Jin S, Wei Z, Chen F, Jin Y. 2009. Pluripotency can be rapidly and efficiently induced in human amniotic fluid-derived cells. Hum Mol Genet, 18(22):4340-4349
    Ludwig T E, Levenstein M E, Jones J M, Berggren W T, Mitchen E R, Frane J L, Crandall L J, Daigh C A, Conard K R, Piekarczyk M S, Llanas R A, Thomson J A. 2006. Derivation of human embryonic stem cells in defined conditions. Nat Biotechnol, 24(2): 185-187
    Miao Z, Jin J, Chen L, Zhu J, Huang W, Zhao J, Qian H, Zhang X. 2006. Isolation of mesenchymal stem cells from human placenta: comparison with human bone marrow mesenchymal stem cells. Cell Biol Int, 30(9): 681-687
    Miki T, Lehmann T, Cai H, Stolz D B, Strom S C. 2005. Stem cell characteristics of amniotic epithelial cells. Stem Cells, 23(10): 1549-1559
    Mitsui K, Tokuzawa Y, Itoh H, Segawa K, Murakami M, Takahashi K, Maruyama M, Maeda M, Yamanaka S. 2003. The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell, 113(5): 631-642
    Nadler H L, Gerbie A. 1971. Present status of amniocentesis in intrauterine diagnosis of genetic defects. Obstet Gynecol, 38(5): 789-799
    Neuhuber B, Gallo G, Howard L, Kostura L, Mackay A, Fischer I. 2004. Reevaluation of in vitro differentiation protocols for bone marrow stromal cells: disruption of actin cytoskeleton induces rapid morphological changes and mimics neuronal phenotype. J Neurosci Res, 77(2): 192-204
    Niwa H, Miyazaki J, Smith A G. 2000. Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat Genet, 24(4): 372-376
    O'Donoghue K, Chan J. 2006. Human fetal mesenchymal stem cells. Curr Stem Cell Res Ther, 1(3): 371-386
    Pan G J, Chang Z Y, Scholer H R, Pei D. 2002. Stem cell pluripotency and transcription factor Oct4. Cell Res, 12(5-6): 321-329
    Park I H, Zhao R, West J A, Yabuuchi A, Huo H, Ince T A, Lerou P H, Lensch M W, Daley G Q. 2008. Reprogramming of human somatic cells to pluripotency with defined factors. Nature, 451(7175): 141-146
    Peng H H, Wang T H, Chao A S, Chang S D. 2007. Isolation and differentiation of human mesenchymal stem cells obtained from second trimester amniotic fluid; experiments at Chang Gung Memorial Hospital. Chang Gung Med J, 30(5): 402-427
    Perin L, Giuliani S, Jin D, Sedrakyan S, Carraro G, Habibian R, Warburton D, Atala A, De Filippo R E. 2007. Renal differentiation of amniotic fluid stem cells. Cell Prolif, 40(6): 936-948
    Perrier A L, Tabar V, Barberi T, Rubio M E, Bruses J, Topf N, Harriso N L, Studer L. 2004. Derivation of midbrain dopamine neurons from human embryonic stem cells. Proc Natl Acad Sci U S A, 101(34): 12543-12548
    Prusa A R, Marton E, Rosner M, Bernaschek G, Hengstschlager M. 2003. Oct-4-expressing cells in human amniotic fluid: a new source for stem cell research?. Hum Reprod, 18(7): 14891-14893
    Prusa A R, Marton E, Rosner M, Bettelheim D, Lubec G, Pollack A, Bernaschek G, Hengstschlager M. 2004. Neurogenic cells in human amniotic fluid. Am J Obstet Gynecol, 191(1): 309-314
    Prusa A R, Marton E, Rosner M, Freilinger A, Bernaschek G, Hengstschlager M. 2003. Stem cell marker expression in human trisomy 21 amniotic fluid cells and trophoblasts. J Neural Transm Suppl, (67): 235-242
    Prusa A R, Hengstschl Ger M. 2002. Amniotic fluid cells and human stem cell research–a new connection. Signature, 8(11): 257
    Rehni A K, Singh N, Jaggi A S, Singh M. 2007. Amniotic fluid derived stem cells ameliorate focal cerebral ischaemia-reperfusion injury induced behavioural deficits in mice. Behav Brain Res, 183(1): 95-100
    Rodan G A. 1991. Mechanical loading, estrogen deficiency, and the coupling of bone formation to bone resorption. J Bone Miner Res, 6(6): 527-530
    Rosenblatt J D, Lunt A I, Parry D J, Partridge T. 1995. Culturing satellite cells from living single muscle fiber explants. In Vitro Cell Dev Biol Anim, 31(10): 773-779
    Roubelakis M G, Pappa K I, Bitsika V, Zagoura D, Vlahou A, Papadaki H A, Antsaklis A, Anagnou N P. 2007. Molecular and proteomic characterization of human mesenchymal stem cells derived from amniotic fluid: comparison to bone marrow mesenchymal stem cells. Stem Cells Dev, 16(6): 931-952
    Sakuragawa N, Elwan M A, Fujii T, Kawashima K. 1999. Possible dynamic neurotransmitter metabolism surrounding the fetus. J Child Neurol, 14(4): 265-266
    Sartore S, Lenzi M, Angelini A, Chiavegato A, Gasparotto L, De Coppi P, Bianco R, Gerosa G. 2005. Amniotic mesenchymal cells autotransplanted in a porcine model of cardiac ischemia do not differentiate to cardiogenic phenotypes. Eur J Cardiothorac Surg, 28(5): 677-684
    Sato Y, Araki H, Kato J, Nakamura K, Kawano Y, Kobune M, Sato T, Miyanishi K, Takayama T, Takahashi M, Takimoto R, Iyama S, Matsunaga T, Ohtani S, Matsuura A, Hamada H, Niitsu Y. 2005. Human mesenchymal stem cells xenografted directly to rat liver are differentiated into human hepatocytes without fusion. Blood, 106(2): 756-763
    Schmidt D, Achermann J, Odermatt B, Breymann C, Mol A, Genoni M, Zund G, Hoerstrup S P. 2007. Prenatally fabricated autologous human living heart valves based on amniotic fluid derived progenitor cells as single cell source. Circulation, 116(11 Suppl): I64-70
    Schmidt D, Achermann J, Odermatt B, Genoni M, Zund G, Hoerstrup S P. 2008. Cryopreserved amniotic fluid-derived cells: a lifelong autologous fetal stem cell source for heart valve tissue engineering. J Heart Valve Dis, 17(4): 446-455
    Shamblott M J, Axelman J, Wang S, Bugg E M, Littlefield J W, Donovan P J, Blumenthal P D, Huggins G R, Gearhart J D. 1998. Derivation of pluripotent stem cells from cultured human primordial germ cells. Proc Natl Acad Sci U S A, 95(23): 13726-13731
    Shay J W, Wright W E. 2000. Hayflick, his limit, and cellular ageing. Nat Rev Mol Cell Biol, 1(1): 72-76
    Steele M W, Breg W J. 1966. Chromosome analysis of human amniotic-fluid cells. Lancet, 1(7434): 383-385
    Stenderup K, Justesen J, Clausen C, Kassem M. 2003. Aging is associated with decreased maximal life span and accelerated senescence of bone marrow stromal cells. Bone, 33(6): 919-926
    Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K., Yamanaka S. 2007. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131(5): 861-872
    Taylor R M, Davern T, Munoz S, Han S H, McGuire B, Larson A M, Hynan L, Lee W M, Fontana R J. 2006. Fulminant hepatitis A virus infection in the United States: Incidence, prognosis, and outcomes. Hepatology, 44(6): 1589-1597
    Thakar N, Priest R E, Priest J H. 1982. Estrogen production by cultured amniotic fluid cells. Clin Res, 30: 888A
    Thomson J A, Itskovitz-Eldor J, Shapiro S S, Waknitz M A, Swiergiel J J, Marshall V S, Jones J M. 1998. Embryonic stem cell lines derived from human blastocysts. Science, 282(5391): 1145-1147
    Trounson A. 2007. A fluid means of stem cell generation. Nat Biotechnol, 25(1): 62-63
    Tsai M S, Hwang S M, Tsai Y L, Cheng F C, Lee J L, Chang Y J. 2006. Clonal amniotic fluid-derived stem cells express characteristics of both mesenchymal and neural stem cells. Biol Reprod, 74(3): 545-551
    Tsai M S, Lee J L, Chang Y J, Hwang S M. 2004. Isolation of human multipotent mesenchymal stem cells from second-trimester amniotic fluid using a novel two-stage culture protocol. Hum Reprod, 19(6): 1450-1456
    Uchida S, Inanaga Y, Kobayashi M, Hurukawa S, Araie M, Sakuragawa N. 2000. Neurotrophic function of conditioned medium from human amniotic epithelial cells. J Neurosci Res, 62(4): 585-590
    Whitsett C F, Priest J H, Priest R E, Marion J. 1983. HLA typing of cultured amniotic fluid cells. Am J Clin Pathol, 79(2): 186-194
    Zuk P A, Zhu M, Mizuno H, Huang J, Futrell J W, Katz A J, Benhaim P, Lorenz H P, Hedrick M H. 2001. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng, 7(2): 211-228

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700