蒙古羊羊水源干细胞的分离鉴定及其定向成骨分化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究旨在分离鉴定蒙古羊羊水源干细胞(Amniotic fluid-derived stem cells,AFSC),并对其生物学特征及分化潜能进行探究,为以AFSC为种质资源生产克隆羊、转基因羊奠定理论基础。
     经过培养不同孕期蒙古羊AFSC,发现羊水采集时间对AFSC的贴壁率及细胞活性影响较大,孕中期AFSC贴壁率比孕早期的高,细胞活性比孕晚期的强,采集AFSC的最佳时期为孕中期。
     15% FBS可维持孕中期蒙古羊AFSC增殖50代以上,其形态及生物特性保持不变,细胞生长速度及增殖能力无明显差异。
     细胞培养初期,通过机械分离法,并有效配合胰蛋白酶消化时间,去除成纤维状细胞中混杂的上皮样细胞,可在5代之内纯化。纯化的AFSC形态上为梭型,细胞汇合有方向性,集落呈典型涡旋状排列。
     利用RT-PCR检测不同代数AFSC,结果表明蒙古羊AFSC表达干细胞标志基因Oct-4, Nanog, SH2, SSEA-1, CD117和HLA-A等。
     蒙古羊AFSC悬浮培养时,可形成典型的类胚体,并表达三胚层标志基因fgf5 (外胚层)、α-fetoprotein (内胚层)和ζ-globin (中胚层)。
     利用地塞米松、抗坏血酸、β-甘油磷酸钠对蒙古羊AFSC诱导后细胞生长相对变缓,边缘变模糊,局部出现复层生长,并形成颗粒状结节。诱导三周后细胞碱性磷酸酶活性显著增加,茜素红染色呈红色,表明诱导成功。
     研究结果表明本试验从蒙古羊羊水中分离得到的细胞具有一定的干细胞特性,在体外有很强的增殖和分化能力,并在特定条件下可形成成骨细胞。
The aim of this study was to isolate and identify Mongolian sheep amniotic fluid-derived stem cells, and to detect the biological characteristics and differentiation potential of AFSC. This study lay a theoretical foundation for generating the cloned sheep and the transgenic sheep which derived from AFSC.
     The Mongolian sheep AFSC from different gestation stage were cultured, the result showed that the adhere-rate and activity of cells was greatly affected by the time of amniotic fluid acquisition. The adhere-rate of cells in the mid-gestation was higher than that of early gestation. The activity of cells in the mid-gestation was higher than that of late-gestation. The best time of AFSC acquisition was the mid-gestation.
     Biological characteristics and configuration of AFSC after a long-term cultivation with 50th or more cell passage sustained stable when 15% FBS added in cell medium.
     AFSC could be purified within 5th passage by mechanical separation combinated with defined digesting time with trypsin to remove the epithelioid cells from fibrous cells. These cells were shuttle-type, cell confluence directional, and the colony was vortex-like arrangement.
     The result showed that Oct-4, Nanog, SH2, SSEA-1, CD117 and HLA-A were expressed in different passage AFSC by RT-PCR. AFSC were able to form the embryoid body in vitro, which express marker genes of three embryonic germ layers including fgf5 (ectoderm)、α-fetoprotein (endoderm) andζ-globin (mesoderm)。
     AFSC were induced by dexamethasone,β-glycerophosphate and ascorbic acid. As a result, cells growth was reduced, the edges blurred and multilayer growth and nodules occurred over time. Three weeks after induction, the activity of alkaline phosphatase increased remarkably and Alizarin red staining showed red. These results showed that induction into osteoblasts have been successfully.
     In summary, these results show that the AFSC obtained in this study have stem cell characteristic, strong proliferation and differentiation potency, and could be induced to differentiate into osteoblasts under certainly condition.
引文
1 Prusa AR, Hengstschlager M. Amniotic fluid cells and human stem cell research: a new connection.[J]Med Sci Monit 2002;8 (11):RA253-257
    2 Steele MW, Breg WR, Jr. Chromosome analysis of human amniotic-fluid cells. [J] Lancet 1966;1 (7434):383-385
    3 Sarkar S, Chang HC, Porreco RP, Jones OW. Neural origin of cells in amniotic fluid. [J]Am J Obstet Gynecol 1980;136 (1):67-72
    4 Kan YW, Dozy AM. Antenatal diagnosis of sickle-cell anaemia by D.N.A. analysis of amniotic-fluid cells. [J]Lancet 1978;2 (8096):910-912
    5 Gosden CM. Amniotic fluid cell types and culture.[J]Br Med Bull 1983;39 (4):348-354
    6 Brock DJ. Amniotic fluid tests for fetal neural tube defects. [J]Br Med Bull 1983;39 (4):373-377
    7 Smith AD. Amniotic-fluid acetylcholinesterase and neural-tube defects: plea for standardisation. [J]Lancet 1979;2 (8137):307-308
    8 Chubb IW, Pilowsky PM, Springell HJ, Pollard AC. Acetylcholinesterase in human amniotic fluid: An index of fetal neural development? [J]Lancet 1979;1 (8118):688-690
    9 Buamah PK, Taylor P, Ward AM. Concanavalin A binding of alpha-fetoprotein in amniotic fluid as an aid in the diagnosis of neural tube defects. [J]Clin Chem 1981;27 (10):1658-1660
    10 Milunsky A. Clinical Genetics.[M] New York,Plenum Press,1979.215-220
    11 Hoehn H, Salk D. Morphological and biochemical heterogeneity of amniotic fluid cells in culture. [J]Methods Cell Biol 1982;26:11-34
    12 Olver RE, Strang LB. Ion fluxes across the pulmonary epithelium and the secretion of lung liquid in the foetal lamb. [J]Journal of Physiology 1974;241:327-357
    13 Mescher EJ, Platzker AC, Ballard PL. Ontogeny of tracheal fluid, pulmonary surfactant, and plasma corticoids in the fetal lamb. [J]Journal of Applied Physiology 1975;39:1017-1021
    14 Muller F, Dommergues M, Ville Y. Amniotic fluid digestive enzymes: diagnostic value in fetal gastrointestinal obstructions. [J]Prenatal Diagnosis 1994;14:973-979
    15 Burghard R, Gordjani N, Leititis J, Bald R. Protein analysis in amniotic fluid and fetal urine for the assessment of fetal renal function and dysfunction. [J] Fetal Therapy 1987;2:188-196
    16 Sakuragawa N, Thangavel R, Mizuguchi M. Expression of markers for both neuronal and glial cells in human amniotic epithelial cells. [J]Neurosci Lett 1996;209:9-12
    17 Sakuragawa N, Nisawa H, Ohsugi K. Evidence for active acetylcholine metabolism in human amniotic epithelial cells: Applicable to intracerebral allografting for neurologic disease. [J]Neurosci Lett 1997;23:53-56
    18 Elwan MA, Sakuragawa N, 1997. Evidence for synthesis and release of catecholamines by human amniotic epithelial cells. [J]Neuroreport;8:3435-3438
    19 Sakuragawa N, Elwan MA, Fujii T. Kawashima K: Possible dynamic neurotransmitter metabolism surrounding the fetus. [J]J Child Neurology 1999;11:265-266
    20 Uchida S, Inanaga Y, Kobayashi M. Neurotrophic function of conditioned medium from human amniotic epithelial cells. [J]J Neurosc Res 2006;62:585-590
    21 Marx CE, Vance BJ, Jarskog F. Nerve growth factor, brain-derived neurotrophic factor, and neurotrophin-3 levels in human amniotic fluid. [J]Am J Obstet Gynecol 1999;181:1225-1230
    22 Sandler TW. Plastic and Reconstructive Surgery. [M]Baltimore, 1995.131
    23 Thakar N, Priest RE, Priest JH. Estrogen production by cultured amniotic fluid cells. [J]Clin Res 1982;30:888
    24 De Coppi P, Bartsch G, Jr., Siddiqui MM, Xu T, Santos CC, Perin L, Mostoslavsky G, Serre AC, Snyder EY, Yoo JJ, Furth ME, Soker S, Atala A. Isolation of amniotic stem cell lines with potential for therapy. [J]Nat Biotechnol 2007;25 (1):100-106
    25 Whitsett CF, Priest JH, Priest RE, Marion J. HLA typing of cultured amniotic fluid cells. [J]Am J Clin Pathol 1983;79 (2):186-194
    26 Torricelli F, Brizzi L, Bernabei PA. Identification of hematopoietic progenitor cells in human amniotic fluid before the 12th week of gestation. [J] Italian Journal of Anatomy and Embryology 1993;98:119-126
    27 Streubel B, Martucci-Ivessa G, Fleck T, Bittner RE. In vitro transformation of amniotic cells to muscle cells-background and outlook. [J]Wiener Medizinische Wochenschrift 1996;146:216-217
    28 Macek M, Hurych J, Rezacova D. Collagen synthesis in long-term amniotic fluid cell cultures. [J]Nature 1973;243:289-290
    29 Hurych J, Macek M, Beniac F, Rezacova D. Biochemical characteristics of collagen produced by long term cultivated amniotic fluid cells. [J]Human Genetics 1976;31:335-340
    30 Kaviani A, Jennings RW, Fauza DO. Amniotic fluid-derived fetal mesenchymal cells differentiate into myogenic precursors in vitro. [J]Journal of the American College of Surgeons 2002;195:S29
    31 In′t Anker PS, Scherjon SA, Kleijburg-van der Keur C. Amniotic fluid as a novelsource of mesenchymal stem cells for therapeutic transplantation. [J]Blood 2003;102:1548-1549
    32 Prusa AR, Marton E, Rosner M, Bernaschek G, Hengstschlager M. Oct-4-expressing cells in human amniotic fluid: a new source for stem cell research? [J]Hum Reprod 2003;18 (7):1489-1493
    33 Pittenger MF, Mackay AM, Beck SC. Multilineage potential of adult human mesenchymal stem cells. [J]Science 1999;284:143-147
    34 Martin FH, Suggs SV, Langley KE. Primary structure and functional expression of rat and human stem cell factor DNAs. [J]Cell 1990;63:203-211
    35 Takeda J, Seino S, Bell GI. Human Oct3 gene family: cDNA sequences, alternative splicing, gene organization, chromosomal location, and expression at low levels in adult tissues. [J]Nucleic Acids Research 1992;20:4612-4620
    36 Mosquera A, Fernandez JL, Campos A. Simultaneous decrease of telomerase lenghtthand telomerase activity with ageing of human amniotic fluid cells. [J]Journal of Medical Genetics 1999;36
    37 Valli A, Rosner M, Fuchs C, Siegel N, Bishop CE, Dolznig H, Madel U, Feichtinger W, Atala A, Hengstschlager M. Embryoid body formation of human amniotic fluid stem cells depends on mTOR. [J]Oncogene 2010;29 (7):966-977
    38王晗,陈帅,程祥,窦忠英,王华岩.通过形成类胚体诱导人羊水多能干细胞向心肌细胞分化. [J]生物工程学报2008 (09):1582-1587
    39 Braude P, Pickering S, Flinter F. Preimplantation genetic diagnosis. [J]Nature Reviews Genetics 2002;3:941-955
    40 Roubelakis MG, Pappa KI, Bitsika V. Molecular and Proteomic Characterization of Human Mesenchymal Stem Cells Derived from Amniotic Fluid:Comparison to Bone Marrow Mesenchymal Stem Cells. [J]Stem Cells Dev 2007;16 (6):931-952
    41 Skottman H, Stromberg AM, Matilainen E, Inzunza J, Hovatta O, Lahesmaa R. Unique gene expression signature by human embryonic stem cells cultured under serum-free conditions correlates with their enhanced and prolonged growth in an undifferentiated stage. [J]Stem Cells 2006;24 (1):151-167
    42 Inzunza J, Gertow K, Stromberg MA, Matilainen E, Blennow E, Skottman H, Wolbank S, Ahrlund-Richter L, Hovatta O. Derivation of human embryonic stem cell lines in serum replacement medium using postnatal human fibroblasts as feeder cells. [J] Stem Cells 2005;23 (4):544-549
    43 In 't Anker PS, Scherjon SA, Kleijburg-van der Keur C, de Groot-Swings GM, Claas FH, Fibbe WE, Kanhai HH. Isolation of mesenchymal stem cells of fetal or maternalorigin from human placenta. [J]Stem Cells 2004;22 (7):1338-1345
    44 Tsai MS, Lee JL, Chang YJ, Hwang SM. Isolation of human multipotent mesenchymal stem cells from second-trimester amniotic fluid using a novel two-stage culture protocol. [J]Hum Reprod 2004;19 (6):1450-1456
    45 Kim J, Lee Y, Kim H, Hwang KJ, Kwon HC, Kim SK, Cho DJ, Kang SG, You J. Human amniotic fluid‐derived stem cells have characteristics of multipotent stem cells. [J]Cell Proliferation 2007;40 (1):75-90
    46 Armstrong L, Hughes O, Yung S. The role of PI3K-AKT,MAPK-ERK and NFkappabeta signalling in the maintenance of human embryonic stem cell pluripotency and viability high lighted by transcriptional profiling and functional analysis. [J] Hum Mo l Genet 2006;15 (11):1894-1913
    47 Moreau JF, Donaldson DD, Bennett F. Leukemia inhibitory factor is identical to the myeloid growth factor human interleukin for DA cells. [J] Nature 1988;336 (6200):690-692
    48丁明文,兰恭赞,李海群.表皮生长因子的研究进展. [J]畜牧兽医杂志2001;20 (5):20-23
    49 Prusa AR, Marton E, Rosner M, Bettelheim D, Lubec G, Pollack A, Bernaschek G, Hengstschlager M. Neurogenic cells in human amniotic fluid. [J] Am J Obstet Gynecol 2004;191 (1):309-314
    50 Shay JW, Wright WE. Hayflick, his limit, and cellular ageing. [J]Nat Rev Mol Cell Biol 2000;1 (1):72-76
    51 Miao Z, Jin J, Chen L. Isolation of mesenchymal stem cells from human placenta:comparison with human bone marrow mesenchymal stem cells. [J]Cell Biolint 2006;30:681-687
    52 Tsai MS, Hwang SM, Tsai YL, Cheng FC, Lee JL, Chang YJ. Clonal amniotic fluid-derived stem cells express characteristics of both mesenchymal and neural stem cells. [J]Biology of reproduction 2006;74 (3):545
    53 Thomson JA, Itskovitz-Eldor J, Shapiro SS. Embryonic stem cell lines derived from human blastocysts. [J]Science 1998;282:1145′1147
    54 Martin GR. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. [J]Proc Natl Acad Sci U S A 1981;78 (12):7634-7638
    55 Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. [J]Nature 1981;292 (5819):154-156
    56 Cowan CA. Derivation of embryonic stem-cell lines from human blastocysts. [J]N.Engl. J. Med. 2004;350:1353-1356
    57 Schmidt D, Achermann J, Odermatt B, Genoni M, Zund G, Hoerstrup SP. Cryopreserved amniotic fluid-derived cells: a lifelong autologous fetal stem cell source for heart valve tissue engineering. [J]J Heart Valve Dis 2008;17 (4):446-455
    58 Pesce M, Scholer HR. Oct-4: gatekeeper in the beginnings of mammalian development. [J]Stem Cells 2001;19 (4):271-278
    59 Bryan TM, Englezou A, Dunham MA, Reddel RR. Telomere length dynamics in telomerase-positive immortal human cell populations. [J]Exp Cell Res 1998;239 (2):370-378
    60 Donovan PJ. High Oct-ane fuel powers the stem cell. [J]Nat Genet 2001;29 (3):246-247
    61 Hellmann AP, Rohleder U, Eichmann C, Pfeiffer I, Parson W, Schleenbecker U. A proposal for standardization in forensic canine DNA typing:allele nomenclature of six canine-specific STR loci. [J]J Forensic Sci 2006;51 (2):274-281
    62 Cipriani S, Bonini D, Marchina E, Balgkouranidou I, Caimi L, Grassi Zucconi G, Barlati S. Mesenchymal cells from human amniotic fluid survive and migrate after transplantation into adult rat brain. [J]Cell Biol Int 2007;31 (8):845-850
    63 Lendahl U, Zimmerman LB, McKay RD. CNS stem cells express a new class of intermediate filament protein. [J]cell 1990;60:585-595
    64 Liao YJ, Jan YN, Jan LY. Heteromultimerization of G-protein-gated inwardly rectifying K+channel proteins GIRK1 and GIRK2 and their altered expression in weaver brain. [J]J Neurosci 1996;16:7137-7150
    65 Suzuki K, Suzuki K. The twitcher mouse: a model for Krabbe disease and for experimental therapies. [J]Brain Pathol 1995;5:249-258
    66 Jaiswal N, Haynesworth SE, Caplan AI, Bruder SP. Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro. [J]J. Cell. Biochem 1997;64:295-312
    67刘慧.羊水来源干细胞的生物学特性分析及向肝细胞诱导分化的研究. [D]北京:军医进修学院, 2009
    68 Chiavegato A, Bollini S, Pozzobon M, Callegari A, Gasparotto L, Taiani J, Piccoli M, Lenzini E, Gerosa G, Vendramin I, Cozzi E, Angelini A, Iop L, Zanon GF, Atala A, De Coppi P, Sartore S. Human amniotic fluid-derived stem cells are rejected after transplantation in the myocardium of normal, ischemic, immuno-suppressed or immuno-deficient rat. [J]J Mol Cell Cardiol 2007;42 (4):746-759
    69 Schmidt D, Achermann J, Odermatt B, Breymann C, Mol A, Genoni M, Zund G, HoerstrupSP. Prenatally fabricated autologous human living heart valves based on amniotic fluid derived progenitor cells as single cell source. [J]Circulation 2007;116 (11 Suppl):I64-170
    70 De Gemmis P, Lapucci C, Bertelli M, Tognetto A, Fanin E, Vettor R, Pagano C, Pandolfo M, Fabbri A. A real-time PCR approach to evaluate adipogenic potential of amniotic fluid-derived human mesenchymal stem cells. [J]Stem Cells Dev 2006;15 (5):719-728
    71 Perin L, Giuliani S, Jin D, Sedrakyan S, Carraro G, Habibian R, Warburton D, Atala A, De Filippo RE. Renal differentiation of amniotic fluid stem cells. [J] Cell Prolif 2007;40 (6):936-948
    72 Yen BL, Huang HI, Chien CC. Isolation of multipotent cells from human term placenta. [J]Stem Cells 2005;23 (9):3-9
    73 Pesce M, Scholer HR. Oct-4: gatekeeper in the beginnings of mammalian development. [J]Stem Cells 2001;19 (4):271-278
    74 Jiang Y, Jahagirdar BN, Reinhardt RL. Pluripotency of mesenchymal stem cells derived from adult marrow. [J]Nature 2002;418 (6893):41-49
    75 Schwartz RE, Reyes M, Koodie L. Multipotent adult progenitor cells from bone marrow differentiate into functional hepatocyte-like cells. [J]Clin Invest 2002;109 (10):1291-1302
    76 Wolfrum K, Wang Y, Prigione A, Sperling K, Lehrach H, Adjaye J. The LARGE principle of cellular reprogramming: lost, acquired and retained gene expression in foreskin and amniotic fluid-derived human iPS cells. [J]PLoS One 2010;5 (10):13703
    77 Willadsen SM. Nuclear transplantation in sheep embryos. [J]Nature 1986;320:63-65
    78 Smith LD. Factors affecting the viability of nuclear transplant embryos. [J] Theriogenology 1990;33 (1):153-169
    79谢成侠.中国养牛羊使(附养鹿简史). [M]北京:农业出版社, 1985.15-17
    80山东省畜牧局《山东省畜禽品种志》编写委员会. [M]深圳:海天出版社, 1999.22-28
    81司徒镇强,吴军正.细胞培养. [M]西安:世界图书出版工公司, 1996.21-25
    82王晗.人源羊水干细胞分离培养、生物学特性检测及诱导分化研究. [D]西北农林科技大学, 2008
    83 Kunisaki SM, Armant M, Kao GS. Tissue engineering from human mesenchymal amniocytes:a prelude to clinical trials. [J]J Pediatr Surg 2007;42 (6):974-980
    84 Prusa AR, Marton E, Rosner M, Freilinger A, Bernaschek G, Hengstschlager M. Stem cell marker expression in human trisomy 21 amniotic fluid cells and trophoblasts. [J]J Neural Transm Suppl 2003 (67):235-242
    85安立龙.干细胞和发育生物学.[M]北京:军事医学科学出版社, 2001.87-92
    86 Chambers I, Colby D, Robertson M, Nichols J, Lee S, Tweedie S, Smith A. Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. [J]Cell 2003;113 (5):643-655
    87 Muramatsu T, Muramatsu H. Carbohydrate antigens expressed on stem cells and early embryonic cells. [J]Glycoconj J 2004;21 (1-2):41-45
    88 Pierantozzi E, Gava B, Manini I, Roviello F, Marotta G, Chiavarelli M, Sorrentino V. Pluripotency Regulators in Human Mesenchymal Stem Cells: Expression of NANOG But Not of OCT-4 and SOX-2.[J] Stem Cells and Development. 2011, 20(5): 915-923
    89 van den Elsen PJ, Gobin SJ, van Eggermond MC, Peijnenburg A. Regulation of MHC class I and II gene transcription: differences and similarities. [J] Immunogenetics 1998,48 (3):208-221
    90 Stenberg J, Elovsson M, Strehl R, Kilmare E, Hyllner J, Lindahl A. Sustained embryoid body formation and culture in a non-laborious three dimensional culture system for human embryonic stem cells.[J]Cytotechnology 2011,63(3):227-237
    91 de Peppo GM, Sjovall P, Lenneras M, Strehl R, Hyllner J, Thomsen P, Karlsson C. Osteogenic potential of human mesenchymal stem cells and human embryonic stem cell-derived mesodermal progenitors: a tissue engineering perspective. [J] Tissue Eng Part A;16 (11):3413-3426

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700