Zonulin在动脉粥样硬化发病机制中的作用研究与甘氨鹅脱氧胆酸细胞毒性的体外实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景:
     本论文包括两个部分的内容。
     第一部分:zonulin在动脉粥样硬化发病机制中的作用研究
     动脉粥样硬化的形成机制一直是心血管疾病研究的焦点之一。除了内皮损伤学说,泡沫细胞形成机制与平滑肌细胞增生理论等经典观点以外,越来越多的证据显示机体持续慢性系统炎症状态与动脉粥样硬化的形成密切相关,最近针对肠道菌群与冠心病发病之间联系的报道也为粥样硬化的形成机制提供了新的观点。肠道菌群通过何种机制参与动脉粥样硬化形成,其促进动脉粥样硬化形成依赖于何种条件,以及在与此相关的发病机制中是否存在可供干预的靶点成为最近粥样硬化机制研究的热点问题。
     研究报道在粥样硬化斑块中检测到细菌DNA,其中部分为肠源性细菌产物。针对慢性牙周炎患者患冠心病的机制研究也提示反复菌血症能显著增加冠心病发病率。如能明确细菌是否参与无明显反复感染患者的动脉粥样硬化发病机制,并进一步了解细菌如何进入人体并参与动脉动脉粥样硬化发病机制,可为粥样硬化形成机制的细菌学说提供更多的证据。在此基础上寻找可干预细菌进入人体的关键环节,试通过对关键靶点进行干预减少细菌进入人体的机会,将为预防和治疗动脉粥样硬化提供新的思路。
     Zonulin是肠道上皮细胞合成的一种功能蛋白,能够通过调节肠上皮细胞间紧密连接蛋白的结构而改变肠上皮间隙的通透性。研究发现克隆病患者中存在肠道zonulin水平升高与患冠心病几率增加的并存现象,如果zonulin水平升高可增加患冠心病的机会,那么zonulin很可能通过调节肠道上皮屏障的通透性而增加细菌进入人体的机会。为此,本研究用Western Blot方法研究动脉粥样硬化患者血清中Zonulin的表达水平改变,用基于细菌16s rDNA的高通量测序方法寻找无反复感染动脉粥样硬化患者血液中的细菌DNA产物,并试图在体外建立的肠上皮细胞屏障模型中研究部分细菌通过肠上皮屏障的机制。通过上述研究寻找肠道细菌与动脉粥样硬化形成的具体联系机制,以期为动脉粥样硬化的诊治提供新的思路。
     第二部分:甘氨鹅脱氧胆酸细胞毒性的体外实验研究
     妊娠肝内胆汁淤积综合征(intrahepatic cholestasis of pregnancy ICP)是一组妊娠合并症,发病率因地而异,在长江流域地区可高达4-6%,是该地区危害母婴健康的重要妊娠期疾病。胆酸对于母亲与胎儿的损伤成为ICP母婴损害的主要原因。机体内生理浓度范围内的胆酸对细胞及组织并无毒性作用,但是胆酸升高到一定浓度时,可以产生明显的细胞毒性。胆酸对于细胞的损伤主要以诱导细胞死亡为主,其中最常见的是细胞凋亡。近期研究发现胆酸还可以诱导细胞发生坏死,甚至可能是最近才报道的程序性坏死。研究胆酸对于循环及呼吸系统主要功能细胞的细胞毒性,有助于从细胞水平阐明胆酸对于循环及呼吸系统的功能损害及其分子机制,为揭示ICP相关的子代心肺损伤提供理论基础。
     ICP患者子代并发症中,以早产、胎儿宫内窘迫以及新生儿肺损伤最为常见,危害也最大。早产是一系列新生儿并发症的重要原因,胎儿宫内窘迫则是造成子代神经功能损伤的主要原因之一。胆酸对于胎儿血管结构及功能的影响可能是ICP相关早产与宫内窘迫的发病机制。在胎儿血管结构中,与母儿循环中胆酸最直接接触的是血管内皮细胞。而胆酸对于人脐静脉内皮细胞(HUVEC)是否具有损伤作用目前尚未见报道。胆酸诱导的肺泡上皮细胞损伤主要与ICP相关的新生儿肺损伤有关:当母亲患有ICP时,孕妇血中胆酸水平明显增高,羊水及胎儿血中胆酸亦相应升高,胆酸长时间浸润并损伤肺组织,是ICP致新生儿肺损伤的关键因素。基于AECⅡ在肺部的重要作用,研究胆酸对AECⅡ的细胞毒性作用将可能为ICP新生儿肺损伤作出解释。
     甘氨鹅脱氧胆酸(Glycochenodeoxycholate,GCDC)是胆酸的一种类型,被发现有强烈的诱导细胞死亡作用,可诱导肝细胞等一系列细胞死亡。但目前尚未见GCDC诱导HUVEC与AECⅡ死亡的报道。
     研究目的:
     1.检测动脉粥样硬化患者血清Zonulin的表达水平改变。
     2.在动脉粥样硬化患者循环中寻找肠道细菌DNA产物并鉴定。
     3.建立肠上皮细胞屏障体外模型并以此为基础研究细菌通过肠上皮屏障的机制。
     4.明确GCDC能否诱导HUVEC与AECⅡ细胞死亡,及其诱导死亡的具体机制。
     5.研究GCDC对HUVEC与AECⅡ结构与功能的影响。
     材料方法:
     1.采用Western Blot方法检测动脉粥样硬化患者血清中的Zonulin表达变化。
     2.用基于ROCHE454平台的细菌16s rDNA的高通量测序方法寻找无反复感染动脉粥样硬化患者血液中的细菌DNA产物。
     3.以Caco-2细胞培养结合Transwell方法建立肠上皮细胞屏障体外模型,用电镜及激光共聚焦等方法观察细菌通过该屏障的具体机制。
     4.采用DAPI染色,流式细胞学annexin V/PI染色分析,活性caspase3酶免疫荧光染色等方法检测GCDC诱导HUVEC与AECⅡ细胞凋亡与坏死情况。
     5.用Real-time PCR等法观察GCDC对HUVEC与AECⅡ结构与功能的影响。
     结果:
     1.动脉粥样硬化患者血清中存在Zonulin,且其表达水平显著高于对照组。Westernblot结果显示:zonulin为分子量约47KD的蛋白分子,血清中检测到与阳性对照肠上皮细胞中位置相同的条带,且分子量符合zonulin特征。动脉粥样硬化患者与正常对照相比较,血清zonulin的表达增高(n=8,P<0.05)。
     2.无感染表现的动脉粥样硬化患者血液中检测到细菌16s rDNA产物。高通量测序结果显示多种肠道来源的细菌16s rDNA在无感染表现的动脉粥样硬化患者血液中检测出,其中以拉恩氏菌属、沙雷氏菌属与荧光假单胞菌属含量最高。
     3.体外成功建立了肠上皮细胞屏障模型,微小肠道细菌可能主要从细胞间隙通过肠道上皮屏障。Caco-2细胞经培养21d后分化成熟,细胞间紧密连接形成,跨上皮细胞电阻值显著升高,形成细胞屏障。粘质沙雷氏菌可在不损害细胞的条件下通过肠上皮细胞屏障。
     4.采用细胞原代培养方法,体外成功培养出HUVEC与新生大鼠AECⅡ细胞。并对所培养细胞进行了特异性鉴定。GCDC在体外能够诱导原代培养的新生鼠肺泡Ⅱ型上皮细胞(AECII)死亡,包括凋亡和坏死。GCDC诱导的AECII死亡具有浓度依赖性,线粒体形态与功能变化参与细胞死亡过程。
     5. GCDC处理的HUVEC出现ET-1的水平变化,3d内以降低ET-1为主,长时间处理后ET-1的变化反而升高。GCDC可有效抑制中AECⅡ肺表面活性物质的分泌。GCDC处理后的AECⅡ出现肺表面活性物质含量的降低。
     结论:
     1.肠道部分微小体积菌群可能参与动脉粥样硬化的发病机制,其可能经肠上皮细胞间隙通过肠上皮细胞屏障。
     2. Zonulin在动脉粥样硬化患者血清中表达升高,可能与其具有调节肠上皮细胞间紧密连接通透性功能有关。
     3. ICP相关新生儿肺损伤的发病机制包括GCDC诱导AECⅡ发生凋亡与坏死,以及GCDC抑制AECⅡ肺表面活性物质分泌。
     4. ICP相关的早产与胎儿宫内窘迫与GCDC调节HUVEC分泌ET-1相关。
Background:
     Part1. Role of zonulin in the pathogenesis of atherosclerosis
     Pathogenesis of atherosclerosis is a hot topic of cardiovascular disease. Chronicsystemic inflammation was regarded as an important cause of atherosclerosis. Recent studydiscover the relationship between gut microbiota and atherosclerosis and present new ideafor the pathogenesis of atherosclerosis. However, the following problems are waiting to besolved for further study on atherosclerosis formation: How does gut microbiota induceatherosclerosis? What are the necessary conditions for its effect? Is there any key moleculein the process which can be regulated.
     Bacteria DNA was found in the plaque of athesclerosis, some of them are from the gut.Study on chronic periodontitis induced coronary artery disease (CAD) suggested recurrentbacteremia could increase the incidence of CAD. To investigate the role of bacteria inpathigenesis of atherosclerosis in non-infection patients, and understand how does gutmicrobiota enter human circulation, could present more evidence for the theory of bacteriainduced atherosclerosis. To find out the key step of gut microbiota translocation, and stopthe key point of bacteria entrance could be a possible way to prevent and treatatherosclerosis.
     Zonulin was a protein produced and secreted by gut epithelium. Zonulin could regulategut permeability via change the structure of tight junction(TJ) between the gut epithelium.Zonulin was reported as an elevated protein with increased incidence of CAD in Crohnsdisease. If elevated zonulin can increase the incidence of CAD, the possible explainationwill be the function of increase the entrance of gut microbiota to the circulation.
     So, western blot was used to detect the expression of serum zonulin in atherosclerosispatients. High-throughput sequencing with bacteria16s rDNA detection was applied to findevidence of bacteria in non-infected atherosclerosis patients. After that, gut epithelium barrier model was construced with Caco-2cell culture in vitro to study the mechanism ofbacteris entrance through gutepithelium. These studies focus on the role of zonulin andcould construct the relationship between gut microbiota and atherosclerosis.
     Part2. Cell toxicity study of Glycochenodeoxycholate in vitro
     Intrahepatic cholestasis of pregnancy is a constant pregnant complication in great areasincluding Yangzi river and around, with an incidence of4-6%. ICP is dangerous to mothersand babies. The pathogenesis of ICP is unclear, but the mothers all had risk a significanthigher serum bile acid level. The elevated bile acid could cause mother and infant injury.Since physiological concentration bile acid is nontoxical to human body, abnormal highlevel bile acid could induce cell toxicity. Bile acid could induce cell death and cause injuryto human body. Most common discovered cell death is cell apoptosis. However, recentstudy showed bile acid also could induce cell necrosis, or programmed cell necrosis, whichis named as necroptosis. To study the cell toxicity of bile acid to cells from vascule and thelung will be much helpful to discover the molecular mechanism of bile acid inducedvascular and lung injury, and give theoretical basis for ICP relevant fetal and newborninjury.
     Bile acid induced cell death was confirmed in hepatocyte, myocardium, pancreatic celland tumor cells. The results were considered as an important pathogenesis of cholestasiscomplications. Preterm birth, fetal distress and newborn lung injury are the most constantcomplications of ICP, also the most dangerous types. Preterm birth could bring a lot ofsevere complications, fetal distress could cause future neurological development disable.There may be started from bile acid induced vascular injury. Vascular endothelium was thefirst barrier of the body from circulatory bile acid. However, there is no report about thepossible effect of bile acid to HUVEC. Bile acid induced alveolar epithelium death couldlead to newborn lung injury: when mothers got ICP, bile acid level were elevated both inmaternal serum and amniotic fluid. Fetal lung was infiltrated by amniotic fluid directly.Because AECⅡ is a multifunctional cell in the alveoli, the effect of bile acid toAECⅡ could possiblyexplain bile acid induced newborn lung injury.
     The cell toxicity of elevated bile acid level in ICP mother could be the cause of fetaland newborn conlication. Discovering the mechanism of bile acid induced HUVEC andAECⅡ injury could be a complementationof bile acid cell toxicity, also be much helpful for theory base of ICP relevated fetal and newborncomplications. New diagnosis andtherapy strategy could be made with these results.
     Glycochenodeoxycholate (GCDC) was a type of bile acid, with strong cell toxicity tohepatocyte and some other types of cells. However, the cell toxicity of GCDC to HUVECand AECⅡ was not reported.
     Objects:
     1. To discover the relationship between zonulin and atherosclerosis.
     2. Find evidence of gut microbiota in the circulation of atherosclerosis patients.
     3. Constrct epithelium barrier model in vitro to study the mechanism of bacteriatranslocation through gut gepithelium.
     4. To detect GCDC toxicity newborn rat AECⅡ and the mechanism of GCDC inducedHUVEC and AECⅡ deathin vitro.
     5. To study the following structure and function injury of GCDC to HUVEC.
     Material and Methods:
     1. Western blot was applied to detect the expression of zonulin in the serum ofatherosclerosis patients.
     2. High-throughput sequencing with bacteria16s rDNA detection was applied to findevidence of bacteria in non-infected atherosclerosis patients.
     3. Gut epithelium barrier model was construced with Caco-2cell culture in vitro tostudy the mechanism of bacteris entrance through gutepithelium.
     4. DAPI staining, flow cytometry, caspase3activity detection, mitochondrialmorphology analysis were applied to detect cell apptosis and necrosis.
     5. Real-time PCR was applied to detect endothelium-1level in HUVEC andpulmonary surfactant assay were applied to GCDC treated AECⅡ.
     Results:
     1. Zonulin was detected in atherosclerosis patients, it was higher expressed thancontrol. Western blot results showed: zonulin was a47KD protein, it was detected in theserum, which showed a band in the same position with positive contrl, gutepithelium.Serum zonulin in atherosclerosis patients was higher expressed than control.(n=8, P<0.05)
     2. Bacteria16s rDNA wasdetected from non-infected athroslerosis blood.High-throughput sequencing for bacteria16s rDNA detection showed the category of bacteria was most from the gut: Rahnella, Serratia and Pseudomonas ranked the top3in allbacterias.
     3. Gut epithelium barrier model was successfully construced with21d of Caco-2cellculture in vitro. Caco-2cell differentiated to mature gut epithelium with tight junction.TEER value increased fignificantly. study the mechanism of bacteris entrance throughgutepithelium. Serratia pass through gut epithelial barrier without cell injury.
     4. HUVEC and rat AECII were isolated, primary culture and identified. A majority ofapoptotic cells (annexin V-positive cells) was arise in AECII cells treated with GCDC.GCDC produced a dose-dependent increase in cell cytotoxicity measured as ATP releaseand LDH release. Mitochondrial dysfunction and oxidative stress in rat AEC II treated withGCDC.
     5. GCDC could regulate ET-1secretion: ET-1in GCDC treated HUVEC was lower in1d and3d, but elevated in5d. GCDC inhibit surfactant secretion from isolated AEC II.
     Conclusion:
     1. Gut bacteria in short diameter may be related to atherosclerosis formation, theypossibly pass through gut epithelial barrier from the space between epithelium.
     2. Zonulin was elevated in serum of atherosclerosis patients, possibly because it couldregulate the permeability of tight junction in gut epithelium barrier.
     3. GCDC induced AECⅡ death and inhibition of pulmonary surfactant secretioncontributed to ICP related newborn lung injury.
     4. GCDC regulated HUVEC ET-1expression might contribute ICP related pretermbirth and intrauterine distress.
引文
1. Fava F, Lovegrove JA, Gitau R, Jackson KG, Tuohy KM. The gut microbiota and lipidmetabolism: implications for human health and coronary heart disease. Curr Med Chem.2006;13(25):3005-21.
    2. Wong JM, Esfahani A, Singh N, Villa CR, Mirrahimi A, Jenkins DJ, Kendall CW. Gutmicrobiota, diet, and heart disease. J AOAC Int.2012Jan-Feb;95(1):24-30.
    3. Karlsson FH, F k F, Nookaew I, Tremaroli V, Fagerberg B, Petranovic D, B ckhed F,Nielsen J. Symptomatic atherosclerosis is associated with an altered gut metagenome.Nat Commun.2012;3:1245.
    4. Moschen AR, Wieser V, Tilg H. Dietary Factors: Major Regulators of the Gut'sMicrobiota. Gut Liver.2012Oct;6(4):411-6.
    5. Kelsen JR, Wu GD. The gut microbiota, environment and diseases of modern society.Gut Microbes.2012Jul-Aug;3(4):374-82.
    6. Wang D, Xia M, Yan X, Li D, Wang L, Xu Y, Jin T, Ling W. Gut microbiotametabolism of anthocyanin promotes reverse cholesterol transport in mice viarepressing miRNA-10b. Circ Res.2012Sep28;111(8):967-81. Epub2012Jul19.
    7. Caesar R, F k F, B ckhed F. Effects of gut microbiota on obesity and atherosclerosisvia modulation of inflammation and lipid metabolism. J Intern Med.2010Oct;268(4):320-8.
    8. Koren O, Spor A, Felin J, F k F, Stombaugh J, Tremaroli V, Behre CJ, Knight R,Fagerberg B, Ley RE, B ckhed F. Human oral, gut, and plaque microbiota in patientswith atherosclerosis. Proc Natl Acad Sci U S A.2011Mar15;108Suppl1:4592-8.
    9. Sanz Y, Santacruz A, Gauffin P. Gut microbiota in obesity and metabolic disorders.Proc Nutr Soc.2010Aug;69(3):434-41.
    10. Vrieze A, Holleman F, Zoetendal EG, de Vos WM, Hoekstra JB, Nieuwdorp M. Theenvironment within: how gut microbiota may influence metabolism and bodycomposition. Diabetologia.2010Apr;53(4):606-13.
    11. Karlsson C, Ahrné S, Molin G, Berggren A, Palmquist I, Fredrikson GN, Jeppsson B.Probiotic therapy to men with incipient arteriosclerosis initiates increased bacterialdiversity in colon: a randomized controlled trial. Atherosclerosis.2010Jan;208(1):228-33.
    12. Cani PD, Delzenne NM. The role of the gut microbiota in energy metabolism andmetabolic disease. Curr Pharm Des.2009;15(13):1546-58. Review.
    13. Klaus DA, Motal MC, Burger-Klepp U, Marschalek C, Schmidt EM, Lebherz-EichingerD, Krenn CG, Roth GA. Increased plasma zonulin in patients with sepsis. Biochem Med(Zagreb).2013;23(1):107-11.
    14. Russo F, Linsalata M, Clemente C, Chiloiro M, Orlando A, Marconi E, Chimienti G,Riezzo G. Inulin-enriched pasta improves intestinal permeability and modifies thecirculating levels of zonulin and glucagon-like peptide2in healthy young volunteers.Nutr Res.2012Dec;32(12):940-6.
    15. Liu ZH, Huang MJ, Zhang XW, Wang L, Huang NQ, Peng H, Lan P, Peng JS, Yang Z,Xia Y, Liu WJ, Yang J, Qin HL, Wang JP. The effects of perioperative probiotictreatment on serum zonulin concentration and subsequent postoperative infectiouscomplications after colorectal cancer surgery: a double-center and double-blindrandomized clinical trial. Am J Clin Nutr.2013Jan;97(1):117-26.
    16. Lamprecht M, Bogner S, Schippinger G, Steinbauer K, Fankhauser F, Hallstroem S,Schuetz B, Greilberger JF. Probiotic supplementation affects markers of intestinalbarrier, oxidation, and inflammation in trained men; a randomized, double-blinded,placebo-controlled trial. J Int Soc Sports Nutr.2012Sep20;9(1):45.
    17. Fasano A. Intestinal permeability and its regulation by zonulin: diagnostic andtherapeutic implications. Clin Gastroenterol Hepatol.2012Oct;10(10):1096-100.
    18. Fasano A. Zonulin, regulation of tight junctions, and autoimmune diseases. Ann N YAcad Sci.2012Jul;1258:25-33. doi:10.1111/j.1749-6632.2012.06538.x. Review.
    19. Moreno-Navarrete JM, Sabater M, Ortega F, Ricart W, Fernández-Real JM. Circulatingzonulin, a marker of intestinal permeability, is increased in association withobesity-associated insulin resistance. PLoS One.2012;7(5):e37160.
    20. Fasano A. Leaky gut and autoimmune diseases. Clin Rev Allergy Immunol.2012Feb;42(1):71-8. doi:10.1007/s12016-011-8291-x. Review.
    21. Ivarsson Y, Wawrzyniak AM, Wuytens G, Kosloff M, Vermeiren E, Raport M,Zimmermann P. Cooperative phosphoinositide and peptide binding by PSD-95/discslarge/ZO-1(PDZ) domain of polychaetoid, Drosophila zonulin. J Biol Chem.2011Dec30;286(52):44669-78.
    22. Aziz I, Evans KE, Papageorgiou V, Sanders DS. Are patients with celiac diseaseseeking alternative therapies to a gluten-free diet? J Gastrointestin Liver Dis.2011Mar;20(1):27-31.
    23. Fasano A. Zonulin and its regulation of intestinal barrier function: the biological door toinflammation, autoimmunity, and cancer. Physiol Rev.2011Jan;91(1):151-75. doi:
    10.1152/physrev.00003.2008. Review.
    24. Lammers KM, Khandelwal S, Chaudhry F, Kryszak D, Puppa EL, Casolaro V, FasanoA. Identification of a novel immunomodulatory gliadin peptide that causes interleukin-8release in a chemokine receptor CXCR3-dependent manner only in patients with coeliacdisease. Immunology.2011Mar;132(3):432-40.
    25. Tripathi A, Lammers KM, Goldblum S, Shea-Donohue T, Netzel-Arnett S, Buzza MS,Antalis TM, Vogel SN, Zhao A, Yang S, Arrietta MC, Meddings JB, Fasano A.Identification of human zonulin, a physiological modulator of tight junctions, asprehaptoglobin-2. Proc Natl Acad Sci U S A.2009Sep29;106(39):16799-804.
    26. Visser J, Rozing J, Sapone A, Lammers K, Fasano A. Tight junctions, intestinalpermeability, and autoimmunity: celiac disease and type1diabetes paradigms. Ann N YAcad Sci.2009May;1165:195-205.
    27. Wex T, M nkemüller K, Kuester D, Fry L, Kandulski A, Malfertheiner P. Zonulin isnot increased in the cardiac and esophageal mucosa of patients with gastroesophagealreflux disease. Peptides.2009Jun;30(6):1082-7.
    28. Duerksen DR, Wilhelm-Boyles C, Veitch R, Kryszak D, Parry DM. A comparison ofantibody testing, permeability testing, and zonulin levels with small-bowel biopsy inceliac disease patients on a gluten-free diet. Dig Dis Sci.2010Apr;55(4):1026-31.
    29. Guttman JA, Finlay BB. Tight junctions as targets of infectious agents. BiochimBiophys Acta.2009Apr;1788(4):832-41.
    30. Deli MA. Potential use of tight junction modulators to reversibly open membranousbarriers and improve drug delivery. Biochim Biophys Acta.2009Apr;1788(4):892-910.
    31. Fasano A. Physiological, pathological, and therapeutic implications of zonulin-mediatedintestinal barrier modulation: living life on the edge of the wall. Am J Pathol.2008Nov;173(5):1243-52.
    32. Arrieta MC, Madsen K, Doyle J, Meddings J. Reducing small intestinal permeabilityattenuates colitis in the IL10gene-deficient mouse. Gut.2009Jan;58(1):41-8.
    33. Teshima CW, Meddings JB. The measurement and clinical significance of intestinalpermeability. Curr Gastroenterol Rep.2008Oct;10(5):443-9. Review.
    34. Lammers KM, Lu R, Brownley J, Lu B, Gerard C, Thomas K, Rallabhandi P,Shea-Donohue T, Tamiz A, Alkan S, Netzel-Arnett S, Antalis T, Vogel SN, Fasano A.Gliadin induces an increase in intestinal permeability and zonulin release by binding tothe chemokine receptor CXCR3. Gastroenterology.2008Jul;135(1):194-204.e3.
    35. Alaedini A, Green PH. Autoantibodies in celiac disease. Autoimmunity.2008Feb;41(1):19-26.
    36. Barbeau WE, Bassaganya-Riera J, Hontecillas R. Putting the pieces of the puzzletogether-a series of hypotheses on the etiology and pathogenesis of type1diabetes.Med Hypotheses.2007;68(3):607-19.
    37. De Magistris MT. Zonula occludens toxin as a new promising adjuvant for mucosalvaccines. Vaccine.2006Apr12;24Suppl2:S2-60-1.
    38. Feng, X. L.; Guo, S.; Hipgrave, D.; Zhu, J.; Zhang, L.; Song, L.; Yang, Q.; Guo, Y.;Ronsmans, C. China's facility-based birth strategy and neonatal mortality: apopulation-based epidemiological study. Lancet378:1493-1500.
    39. Heron, M. Deaths: leading causes for2007. Natl Vital Stat Rep59:1-95.
    40. Zecca, E.; De Luca, D.; Marras, M.; Caruso, A.; Bernardini, T.; Romagnoli, C.Intrahepatic cholestasis of pregnancy and neonatal respiratory distress syndrome.Pediatrics117:1669-1672;2006.
    41. Zecca, E.; De Luca, D.; Baroni, S.; Vento, G.; Tiberi, E.; Romagnoli, C. Bileacid-induced lung injury in newborn infants: a bronchoalveolar lavage fluid study.Pediatrics121:e146-149;2008.
    42. Moya, F.; Sinha, S.; D'Agostino, R. B., Sr. Surfactant-replacement therapy forrespiratory distress syndrome in the preterm and term neonate: congratulations andcorrections. Pediatrics121:1290-1291; author reply1291-1292;2008.
    43. Hofmann, A. F. Cholestatic liver disease: pathophysiology and therapeutic options.Liver22Suppl2:14-19;2002.
    44. Perez, M. J.; Briz, O. Bile-acid-induced cell injury and protection. World JGastroenterol15:1677-1689;2009.
    45. Sokol, R. J.; Straka, M. S.; Dahl, R.; Devereaux, M. W.; Yerushalmi, B.; Gumpricht, E.;Elkins, N.; Everson, G. Role of oxidant stress in the permeability transition induced inrat hepatic mitochondria by hydrophobic bile acids. Pediatr Res49:519-531;2001.
    46. Ljubuncic, P.; Fuhrman, B.; Oiknine, J.; Aviram, M.; Bomzon, A. Effect of deoxycholicacid and ursodeoxycholic acid on lipid peroxidation in cultured macrophages. Gut39:475-478;1996.
    47. Sola, S.; Brito, M. A.; Brites, D.; Moura, J. J.; Rodrigues, C. M. Membrane structuralchanges support the involvement of mitochondria in the bile salt-induced apoptosis ofrat hepatocytes. Clin Sci (Lond)103:475-485;2002.
    48. Billington, D.; Evans, C. E.; Godfrey, P. P.; Coleman, R. Effects of bile salts on theplasma membranes of isolated rat hepatocytes. Biochem J188:321-327;1980.
    49. Chen, J.; Chen, Z.; Narasaraju, T.; Jin, N.; Liu, L. Isolation of highly pure alveolarepithelial type I and type II cells from rat lungs. Lab Invest84:727-735;2004.
    50. Richards, R. J.; Davies, N.; Atkins, J.; Oreffo, V. I. Isolation, biochemicalcharacterization, and culture of lung type II cells of the rat. Lung165:143-158;1987.
    51. Liu, L.; Wang, M.; Fisher, A. B.; Zimmerman, U. J. Involvement of annexin II inexocytosis of lamellar bodies from alveolar epithelial type II cells. Am J Physiol270:L668-676;1996.
    52. Rust, C.; Wild, N.; Bernt, C.; Vennegeerts, T.; Wimmer, R.; Beuers, U. Bileacid-induced apoptosis in hepatocytes is caspase-6-dependent. J Biol Chem284:2908-2916;2009.
    53. Spivey, J. R.; Bronk, S. F.; Gores, G. J. Glycochenodeoxycholate-induced lethalhepatocellular injury in rat hepatocytes. Role of ATP depletion and cytosolic freecalcium. J Clin Invest92:17-24;1993.
    54. Sokol, R. J.; Devereaux, M.; Khandwala, R. A. Effect of dietary lipid and vitamin E onmitochondrial lipid peroxidation and hepatic injury in the bile duct-ligated rat. J LipidRes32:1349-1357;1991.
    55. Togashi, H.; Shinzawa, H.; Wakabayashi, H.; Nakamura, T.; Yamada, N.; Takahashi, T.;Ishikawa, M. Activities of free oxygen radical scavenger enzymes in human liver. JHepatol11:200-205;1990.
    56. Arnoult, D. Mitochondrial fragmentation in apoptosis. Trends Cell Biol17:6-12;2007.
    57. De Paepe, M. E.; Mao, Q.; Ghanta, S.; Hovanesian, V.; Padbury, J. F. Alveolarepithelial cell therapy with human cord blood-derived hematopoietic progenitor cells.Am J Pathol178:1329-1339.
    58. De Luca, D.; Minucci, A.; Tripodi, D.; Piastra, M.; Pietrini, D.; Zuppi, C.; Conti, G.;Carnielli, V. P.; Capoluongo, E. Role of distinct phospholipases A2and theirmodulators in meconium aspiration syndrome in human neonates. Intensive Care Med37:1158-1165.
    59. D'Ovidio, F.; Mura, M.; Ridsdale, R.; Takahashi, H.; Waddell, T. K.; Hutcheon, M.;Hadjiliadis, D.; Singer, L. G.; Pierre, A.; Chaparro, C.; Gutierrez, C.; Miller, L.; Darling,G.; Liu, M.; Post, M.; Keshavjee, S. The effect of reflux and bile acid aspiration on thelung allograft and its surfactant and innate immunity molecules SP-A and SP-D. Am JTransplant6:1930-1938;2006.
    60. Porembka, D. T.; Kier, A.; Sehlhorst, S.; Boyce, S.; Orlowski, J. P.; Davis, K., Jr. Thepathophysiologic changes following bile aspiration in a porcine lung model. Chest104:919-924;1993.
    61. Brown, E. S. Aspiration and lung surfactant. Anesth Analg46:665-672;1967.
    62. Pathak, B.; Sheibani, L.; Lee, R. H. Cholestasis of pregnancy. Obstet Gynecol ClinNorth Am37:269-282.
    63. De Luca, D.; Minucci, A.; Zecca, E.; Piastra, M.; Pietrini, D.; Carnielli, V. P.; Zuppi, C.;Tridente, A.; Conti, G.; Capoluongo, E. D. Bile acids cause secretory phospholipase A2activity enhancement, revertible by exogenous surfactant administration. Intensive CareMed35:321-326;2009.
    64.Zecca, E.; De Luca, D.; Marras, M.; Barbato, G.; Romagnoli, C. Intrahepatic cholestasisof pregnancy and bile acids induced lung injury in newborn infants. Curr PediatrRev:167-176.;2007.
    1. Kim ND, Im E, Yoo YH, Choi YH. Modulation of the cell cycle and induction ofapoptosis in human cancer cells by synthetic bile acids. Curr Cancer Drug Targets.2006;6(8):681-9.
    2. Pinton P, Giorgi C, Siviero R. Calcium and apoptosis: ER-mitochondria Ca2+transfer inthe control of apoptosis. Oncogene.2008;27(50):6407-18.
    3. Giorgi C, Romagnoli A, Pinton P. Ca2+signaling, mitochondria and cell death. CurrMol Med.2008;8(2):119-30.
    4. Julia VG, Sarah EF, Svetlana GV, Tatiana KS, Alexei VT,Ole HP, and Oleg VG. BileAcids Induce Ca2+Release from both the endoplasmic reticulum and acidicintracellular calcium stores through activation of inositol trisphosphate receptors andryanodine receptors. The Journal of biological chemistry.2006;281(52):40154–40163.
    5. Kourtis N, Tavernarakis N. Autophagy and cell death in model organisms. Cell DeathDiffer.2009;16(1):21-30.
    6. Li Y, Ajjai A,Helen S,Parmesh D,Eric F,Sarah W, Eric HB,Michael JL. Regulation ofan ATG7-beclin1program of autophagic cell death by caspase-8. Science.2004;304(5676):1500-2.
    7. Boya P, Kroemer G. Lysosomal membrane permeabilization in cell death. Oncogene.2008;27(50):6434-51.
    8. Lei Y, Rebecca S, Beatriz G. Lysosomal and Mitochondrial Pathways in H2O2-Inducedpoptosis of Alveolar Type II Cells. Journal of Cellular Biochemistry.2005.94:433–445.
    9. Stefano S, Cristina M, Marco S. The role of autophagy in neonatal tissues. Just aresponse to amino acid starvation? Autophagy.2008;4(5),727-730.
    10. Jain L, Eaton DC. Physiology of fetal lung fluid clearance and the effect of labor. SeminPerinatol.2006;30(1):34-43.
    11. Ali C, Maria EG, Hajime H, Ariel F, Steven F. Bronk, Robert R, Makiko T, andGregory JG. Cathepsin B inactivation attenuates hepatic injury and fibrosis duringcholestasis. J Clin Invest.2003;112(2):152–159.
    12. Lozano R, Naghavi M, Foreman K, et al. Global and regional mortality from235causesof death for20age groups in1990and2010: a systematic analysis for the GlobalBurden of Disease Study2010. Lancet.2012Dec15;380(9859):2095-128.
    13. Levesque BM, Kalish LA, LaPierre J, Welch M, Porter V. Impact of implementing5potentially better respiratory practices on neonatal outcomes and costs.Pediatrics.2011Jul;128(1):e218-26.
    14. De Luca D, Piastra M, Tosi F, Pulitanò S, Mancino A, Genovese O, Pietrini D, Conti G.Pharmacological therapies for pediatric and neonatal ALI/ARDS: an evidence-basedreview. Curr Drug Targets.2012Jun;13(7):906-16.
    15. Zecca E, De Luca D, Marras M, Caruso A, Bernardini T, Romagnoli C.Intrahepaticcholestasis of pregnancy and neonatal respiratory distress syndrome. Pediatrics.2006May;117(5):1669-72.
    16. Zecca E, De Luca D, Baroni S, Vento G, Tiberi E, Romagnoli C.Bile acid-induced lunginjury in newborn infants: a bronchoalveolar lavage fluid study. Pediatrics.2008Jan;121(1):e146-9.
    17. Mittal A, Hickey AJ, Chai CC, Loveday BP, Thompson N, Dare A, Delahunt B, CooperGJ, Windsor JA, Phillips AR. Early organ-specific mitochondrial dysfunction ofjejunum and lung found in rats with experimental acute pancreatitis. HPB (Oxford).2011May;13(5):332-41.
    18. Hu Z, Gao M, Zhao J, Shi Y, Wang L, Song H, Li Rui, Zeng C. Glycochenodeoxy-cholate induces rat alveolar epithelial type II cell death and inhibits surfactant secretionin vitro. Free Radic Biol Med.2012Jul1;53(1):122-8.
    19. Rook M, Vargas J, Caughey A, Bacchetti P, Rosenthal P, Bull L. Fetal outcomes inpregnancies complicated by intrahepatic cholestasis of pregnancy in a NorthernCalifornia cohort. PLoS One.2012;7(3):e28343.
    20.彭珠芸,俞丽丽,郑英茹,史源,胡章雪。妊娠肝内胆汁淤积综合征相关新生儿肺损伤的危险因素分析。第三军医大学学报。2012,34(2):134-136.
    21. Higuchi H, Gores GJ. Bile acid regulation of hepatic physiology: IV. Bile acids anddeath receptors. Am J Physiol Gastrointest Liver Physiol.2003May;284(5):G734-8.
    22. Duprez L, Takahashi N, Van Hauwermeiren F, Vandendriessche B, Goossens V,Vanden Berghe T, Declercq W, Libert C, Cauwels A, Vandenabeele P. RIPkinase-dependent necrosis drives lethal systemic inflammatory response syndrome.Immunity.2011Dec23;35(6):908-18.
    23. Elder AS, Saccone GT, Dixon DL. Lung injury in acute pancreatitis: mechanismsunderlying augmented secondary injury. Pancreatology.2012Jan-Feb;12(1):49-56.
    24. Peter ME. Programmed cell death: Apoptosis meets necrosis. Nature.2011Mar17;471(7338):310-2.
    25. Lee EW, Seo J, Jeong M, Lee S, Song J. The roles of FADD in extrinsic apoptosis andnecroptosis. BMB Rep.2012Sep;45(9):496-508.
    26. Li J, McQuade T, Siemer AB, Napetschnig J, Moriwaki K, Hsiao YS, Damko E,Moquin D, Walz T, McDermott A, Chan FK, Wu H. The RIP1/RIP3necrosome forms afunctional amyloid signaling complex required for programmed necrosis. Cell.2012Jul20;150(2):339-50.
    27. Wang L, Du F, Wang X.TNF-alpha induces two distinct caspase-8activation pathways.Cell.2008May16;133(4):693-703.
    28. Kang TB, Yang SH, Toth B, Kovalenko A, Wallach D. Caspase-8Blocks KinaseRIPK3-Mediated Activation of the NLRP3Inflammasome. Immunity.2013Jan24;38(1):27-40.
    29. Welz PS, Wullaert A, Vlantis K, Kondylis V, Fernández-Majada V, Ermolaeva M,Kirsch P, Sterner-Kock A, van Loo G, Pasparakis M. FADD prevents RIP3-mediatedepithelial cell necrosis and chronic intestinal inflammation. Nature.2011Jul31;477(7364):330-4.
    30. Degterev A, Maki JL, Yuan J. Activity and specificity of necrostatin-1, small-moleculeinhibitor of RIP1kinase. Cell Death Differ.2013Feb;20(2):366.
    31. He S, Wang L, Miao L, Wang T, Du F, Zhao L, Wang X. Receptor interacting proteinkinase-3determines cellular necrotic response to TNF-alpha. Cell.2009Jun12;137(6):1100-11.
    32. Sun L, Wang H, Wang Z, He S, Chen S, Liao D, Wang L, Yan J, Liu W, Lei X, Wang X.Mixed lineage kinase domain-like protein mediates necrosis signaling downstream ofRIP3kinase. Cell.2012Jan20;148(1-2):213-27.
    33. Gardes C, Chaput E, Staempfli A, Blum D, Richter H, Benson GM.DifferentialRegulation of Bile Acid and Cholesterol Metabolism by the Farnesoid-X-Receptor inLdlr-/-Mice vs Hamsters.J Lipid Res.2013Feb21.
    34. Joo JH, Jetten AM. Molecular mechanisms involved in farnesol-induced apoptosis.Cancer Lett.2010Jan28;287(2):123-35.
    35. Ohno T, Shirakami Y, Shimizu M, Kubota M, Sakai H, Yasuda Y, Kochi T, Tsurumi H,Moriwaki H.Synergistic growth inhibition of human hepatocellular carcinoma cells byacyclic retinoid and GW4064, a farnesoid X receptor ligand. Cancer Lett.2012Oct28;323(2):215-22.
    36. Wu L, Li W, Wang Z, Yuan Z, Hyder Q.Bile acid-induced expression of farnesoid Xreceptor as the basis for superiority of internal biliary drainage in experimental biliaryobstruction.Scand J Gastroenterol.2013Feb15.[Epub ahead of print]
    37. Feng XL, Guo S, Hipgrave D, Zhu J, Zhang L, Song L, Yang Q, Guo Y&Ronsmans CChina's facility-based birth strategy and neonatal mortality: a population-basedepidemiological study. Lancet378,1493-1500.
    38. Heron M Deaths: leading causes for2007. Natl Vital Stat Rep59,1-95.
    39. Zecca E, De Luca D, Marras M, Caruso A, Bernardini T&Romagnoli C (2006)Intrahepatic cholestasis of pregnancy and neonatal respiratory distress syndrome.Pediatrics117,1669-1672.
    40. Zecca E, De Luca D, Baroni S, Vento G, Tiberi E&Romagnoli C (2008) Bileacid-induced lung injury in newborn infants: a bronchoalveolar lavage fluid study.Pediatrics121, e146-149.
    41. Moya F, Sinha S&D'Agostino RB, Sr.(2008) Surfactant-replacement therapy forrespiratory distress syndrome in the preterm and term neonate: congratulations andcorrections. Pediatrics121,1290-1291; author reply1291-1292.
    42. Hofmann AF (2002) Cholestatic liver disease: pathophysiology and therapeutic options.Liver22Suppl2,14-19.
    43. Perez MJ&Briz O (2009) Bile-acid-induced cell injury and protection. World JGastroenterol15,1677-1689.
    44. Sokol RJ, Straka MS, Dahl R, Devereaux MW, Yerushalmi B, Gumpricht E, Elkins N&Everson G (2001) Role of oxidant stress in the permeability transition induced in rathepatic mitochondria by hydrophobic bile acids. Pediatr Res49,519-531.
    45. Ljubuncic P, Fuhrman B, Oiknine J, Aviram M&Bomzon A (1996) Effect ofdeoxycholic acid and ursodeoxycholic acid on lipid peroxidation in culturedmacrophages. Gut39,475-478.
    46. Sola S, Brito MA, Brites D, Moura JJ&Rodrigues CM (2002) Membrane structuralchanges support the involvement of mitochondria in the bile salt-induced apoptosis ofrat hepatocytes. Clin Sci (Lond)103,475-485.
    47. Billington D, Evans CE, Godfrey PP&Coleman R (1980) Effects of bile salts on theplasma membranes of isolated rat hepatocytes. Biochem J188,321-327.
    48. Chen J, Chen Z, Narasaraju T, Jin N&Liu L (2004) Isolation of highly pure alveolarepithelial type I and type II cells from rat lungs. Lab Invest84,727-735.
    49. Richards RJ, Davies N, Atkins J&Oreffo VI (1987) Isolation, biochemicalcharacterization, and culture of lung type II cells of the rat. Lung165,143-158.
    50. Liu L, Wang M, Fisher AB&Zimmerman UJ (1996) Involvement of annexin II inexocytosis of lamellar bodies from alveolar epithelial type II cells. Am J Physiol270,L668-676.
    51. Rust C, Wild N, Bernt C, Vennegeerts T, Wimmer R&Beuers U (2009) Bileacid-induced apoptosis in hepatocytes is caspase-6-dependent. J Biol Chem284,2908-2916.
    52. Spivey JR, Bronk SF&Gores GJ (1993) Glycochenodeoxycholate-induced lethalhepatocellular injury in rat hepatocytes. Role of ATP depletion and cytosolic freecalcium. J Clin Invest92,17-24.
    53. Sokol RJ, Devereaux M&Khandwala RA (1991) Effect of dietary lipid and vitamin Eon mitochondrial lipid peroxidation and hepatic injury in the bile duct-ligated rat. JLipid Res32,1349-1357.
    54. Togashi H, Shinzawa H, Wakabayashi H, Nakamura T, Yamada N, Takahashi T&Ishikawa M (1990) Activities of free oxygen radical scavenger enzymes in human liver.J Hepatol11,200-205.
    55. Arnoult D (2007) Mitochondrial fragmentation in apoptosis. Trends Cell Biol17,6-12.
    56. De Paepe ME, Mao Q, Ghanta S, Hovanesian V&Padbury JF Alveolar epithelial celltherapy with human cord blood-derived hematopoietic progenitor cells. Am J Pathol178,1329-1339.
    57. De Luca D, Minucci A, Tripodi D, Piastra M, Pietrini D, Zuppi C, Conti G, CarnielliVP&Capoluongo E Role of distinct phospholipases A2and their modulators inmeconium aspiration syndrome in human neonates. Intensive Care Med37,1158-1165.
    58. D'Ovidio F, Mura M, Ridsdale R, Takahashi H, Waddell TK, Hutcheon M, HadjiliadisD, Singer LG, Pierre A, Chaparro C, Gutierrez C, Miller L, Darling G, Liu M, Post M&Keshavjee S (2006) The effect of reflux and bile acid aspiration on the lung allograftand its surfactant and innate immunity molecules SP-A and SP-D. Am J Transplant6,1930-1938.
    59. Porembka DT, Kier A, Sehlhorst S, Boyce S, Orlowski JP&Davis K, Jr.(1993) Thepathophysiologic changes following bile aspiration in a porcine lung model. Chest104,919-924.
    60. Brown ES (1967) Aspiration and lung surfactant. Anesth Analg46,665-672.
    61. Pathak B, Sheibani L&Lee RH Cholestasis of pregnancy. Obstet Gynecol Clin NorthAm37,269-282.
    62. De Luca D, Minucci A, Zecca E, Piastra M, Pietrini D, Carnielli VP, Zuppi C, TridenteA, Conti G&Capoluongo ED (2009) Bile acids cause secretory phospholipase A2activity enhancement, revertible by exogenous surfactant administration. Intensive CareMed35,321-326.
    63. Zecca E DLD, Marras M, Barbato G, Romagnoli C.(2007) Intrahepatic cholestasis ofpregnancy and bile acids induced lung injury in newborn infants. Curr Pediatr Rev,167-176
    64. William A. Engle, MD, and the Committee on Fetus and Newborn. Surfactant-Replacement Therapy for Respiratory Distress in the Preterm and Term Neonate.Pediatrics.2008;121;419-432.
    65. Chen A, Shi LP, Zheng JY. Clinical characteristics and outcomes of respiratory distresssyndrome in term and late-preterm neonates. Zhonghua Er Ke Za Zhi.2008;46(9):654-7.
    66. Moya F, Sinha S, D'Agostino RB. Surfactant-replacement therapy for respiratorydistress syndrome in the preterm and term neonate: congratulations and corrections.Pediatrics.2008;121(6):1290-1
    67. Zecca E, De Luca D, Marras M. Intrahepatic cholestasis of pregnancy and neonatalrespiratory distress syndrome. Pediatrics.2006;117(5):1669-72.
    68. Liu J, Shi Y, Dong JY, Zheng T, Li JY, Lu LL, Liu JJ, Liang J, Zhang H, Feng ZC.Clinical characteristics, diagnosis and management of respiratory distress syndrome infull-term neonates. Chin Med J (Engl).2010Oct;123(19):2640-4.
    69. Wang YF, Liu CQ, Gao XR, Yang CY, Shan RB, Zhuang DY, Chen DM, Ni LM, WangH, Xia SW, Chen C, Sun B; Collaborative Study Group for Neonatal RespiratoryDiseases. Effects of inhaled nitric oxide in neonatal hypoxemic respiratory failure froma multicenter controlled trial. Chin Med J (Engl).2011Apr;124(8):1156-63.
    70. González A, Fabres J, D'Apremont I, Urcelay G, Avaca M, Gandolfi C, Kattan J.Randomized controlled trial of early compared with delayed use of inhaled nitric oxidein newborns with a moderate respiratory failure and pulmonary hypertension. JPerinatol.2010Jun;30(6):420-4.
    71. Wang K, Brems JJ, Gamelli RL, Holterman AX. iNOS/NO signaling regulatesapoptosis induced by glycochenodeoxycholate in hepatocytes. Cell Signal.2011Oct;23(10):1677-85.
    72. Li F, Ambrosini G, Chu EY, Plescia J, Tognin S, Marchisio PC, Altieri DC. Control ofapoptosis and mitotic spindle checkpoint by survivin. Nature.1998Dec10;396(6711):580-4.
    73. Li W, Wang H, Kuang CY, Zhu JK, Yu Y, Qin ZX, Liu J, Huang L. An essential rolefor the Id1/PI3K/Akt/NFkB/survivin signalling pathway in promoting the proliferationof endothelial progenitor cells in vitro. Mol Cell Biochem.2012Apr;363(1-2):135-45.
    74. Alphonse RS, Vadivel A, Coltan L, Eaton F, Barr AJ, Dyck JR, Thébaud B. Activationof Akt protects alveoli from neonatal oxygen-induced lung injury. Am J Respir CellMol Biol.2011Feb;44(2):146-54.
    75. Liu HT, Du YG, He JL, Chen WJ, Li WM, Yang Z, Wang YX, Yu C.Tetramethylpyrazine inhibits production of nitric oxide and inducible nitric oxidesynthase in lipopolysaccharide-induced N9microglial cells through blockade of MAPKand PI3K/Akt signaling pathways, and suppression of intracellular reactive oxygenspecies. J Ethnopharmacol.2010Jun16;129(3):335-43.
    76. Doronzo G, Viretto M, Russo I, Mattiello L, Di Martino L, Cavalot F, Anfossi G,Trovati M. Nitric oxide activates PI3-K and MAPK signalling pathways in human andrat vascular smooth muscle cells: influence of insulin resistance and oxidative stress.Atherosclerosis.2011May;216(1):44-53.
    77. Huerta-Yepez S, Vega M, Escoto-Chavez SE, Murdock B, Sakai T, Baritaki S,Bonavida B. Nitric oxide sensitizes tumor cells to TRAIL-induced apoptosis viainhibition of the DR5transcription repressor Yin Yang1. Nitric Oxide.2009Feb;20(1):39-52.
    78. Postolow F, Fediuk J, Nolette N, Hinton M, Dakshinamurti S. Hypoxia and nitric oxideexposure promote apoptotic signaling in contractile pulmonary arterial smooth musclebut not in pulmonary epithelium. Pediatr Pulmonol.2011Dec;46(12):1194-208.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700