表达H9亚型禽流感病毒HA基因的重组禽痘病毒的构建及其免疫效力的评估
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
禽流感(Avian Influenza,AI)是由A型流感病毒引起的禽类的感染和/或疾病综合征,分为高致病性禽流感(HPAI)和低致病性禽流感(LPAI)。H9亚型低致病性禽流感近年来在我国部分地区广泛流行,给养禽业造成了严重的经济损失。重组病毒载体疫苗是防制禽流感的疫苗之一,许多株表达各种亚型禽流感病毒HA基因的重组禽痘病毒疫苗免疫后均可对相应亚型的不同毒株(包括高、低致病力毒株)的攻击产生近100%的免疫保护性,而且重组病毒载体疫苗应用后不会干扰以传统检测方法为基础的禽流感疫情监测,具有较好的应用前景。
     本实验构建的禽痘病毒通用转移载体pSY681- gfp-gpt含有黄嘌呤鸟嘌呤磷酸转移酶(gfp)和绿色荧光蛋白(gpt)两个报告基因及背对的禽痘病毒晚期启动子P11和早期启动子P7.5,P11启动gfp和gpt两个基因,P7.5用于启动外源基因,在早期启动子P7.5下游引入NotI和Afl II两个酶切位点,用于外源基因的插入。将H9亚型禽流感病毒的HA基因插入到此载体,从而构建出表达HA基因的重组禽痘病毒转移载体pSY681- gfp-gpt-HA。应用TransIT?-LT1 Transfection Reagent将此转移载体转染已感染禽痘病毒S-FPV-017的鸡胚成纤维细胞,利用gfp和gpt同时进行双重筛选、数轮蚀斑纯化后获得了重组病毒rFPV -HA9。通过PCR、Western-blot鉴定,结果证明,rFPV -HA9能稳定表达AIV HA蛋白。用该重组病毒进行鸡翅刺种免疫21日龄SPF鸡,免疫3周后,每只鸡用106EID50的H9亚型LPAIV A/Chicken/Shanghai/10/01(H9N2)攻毒,分别于攻毒后第3、5、7天采集喉头及泄殖腔拭子进行病毒分离、滴定检测排毒情况,同时检测免疫后、攻毒前及攻毒后血清HI抗体、AGP抗体的动态变化,对重组病毒的免疫保护效果进行全面评估。结果,免疫组在免疫后一周就检测到了HI抗体,免疫后三周HI抗体水平达到了7log2以上,而且其AGP抗体均为阴性;攻毒后,免疫组在第三天只有15 %的鸡只在喉头有低水平的一过性的排毒,第五天全部停止排毒,其AGP抗体均为阴性。而对照组鸡只攻毒后第三天和第五天100%排毒,其AGP抗体均为阳性。通过Hl抗体水平和抑制排毒效力反应了本实验构建的重组禽痘病毒能够产生很好的免疫保护力。
     总之,通过本实验成功构建了以gfp和gpt为双重筛选标记的禽痘病毒通用转移载体pSY681- gfp-gpt,为禽流感重组活载体疫苗的研发提供了技术平台。获得了免疫原性较好的表达H9亚型禽流感病毒HA基因重组禽痘病毒,此重组活载体疫苗可为我国H9亚型禽流感的防制提供了新的疫苗储备。
Avian influenza(AI)is an infectious disease syndrome caused by type A influenza virus, which including highly pathogenic avian influenza (HPAI) and low pathogenic avian influenza (LPAI). In recent years,the widespread H9 subtye avian influenza virus has caused great economic loss in poultry industry[0] in China.The recombinant virus is a potential vaccine to control avian influenza ,several different recombinant fowlpox virus(rFPV) expressing AIV HA gene demonstrated effective protection against homologous AIV challenge in chickens.
     In this study fowlpox virus transfer vector pSY681- gfp-gpt with two reported genes(gfp and gpt) and two promoters ,P7.5(early) and P11(Later) in a back to back style was constructed. P11 initiated the expression of gfp gene and gpt gene, P7.5 was used for intiating exogenous gene. Two restriction sites NotI and Af1 II were inserted into downsteam of the early promoter P7.5, which were used for insertion of exogenous gene. HA gene of H9 subtype avian Influenza virus was inserted into designed site, then the recombinant vector pSY681-gfp-gpt-HA was transfected into CEF cells which infected with S-FPV-017 previously . Fowlpox virus recombinants were selected by gfp and gpt following several cycles purification.The results of PCR and Western-blot indicated that recombinant FPV could eficiently express HA gene of AIV in CEF.Twenty-one-days old SPF chickens were inoculated with the recombinant virus and challenged three weeks later with 106EID50 of LPAIV isolate per chicken.In order to evaluate the protection efficacy, throat and cloacal swabs were detected for virus existing in 3,5,7 days after challenge.HI test was also conducted before and after challenge.HI antibody could be dectected one week after inoculation and reached the level of 7log2 in three weeks. There was low virus shedding rate in the inoculation groups(15%) while 100% in control group. The high antibody level(HI test) and low virus shedding rate reflected that the recombinant fowlpox virus could produce satisfactary immune protection effect.
     The successfully construction of the universal transfer vector pSY681- gfp-gpt with dual selection system(gpt and gfp) would greatly improve the development of live vector vaccine for AI.The recombinant virus rFPV -HA9 also could be a candidate vaccine for the control of Avian influenza.
引文
[1] Hinshaw, V. G., Webster, R. G., Turner, B. The perpetuation of orthomyxoviruses and paramyxoviruses in Canadian waterfowl. Can. J. Microbiol. 1980, 26(5):622-629.
    [2] Subbarao, K., Klimov, A., Katz, J., Regnery, H., et al. Characterization of an Avian Influenza A (H5N1) Virus isolated from a child with a fatal respiratory illness. Science 1998, 279(5349):393-396.
    [3] Peiris, M., Yuen, K. Y., Leung, C. W., Chan, K. H., Ip, P. L., Lai, R. W., Orr, W. K., Shortridge, K. F. Human infection with influenza H9N2. Lancet 1999, 354(9182):916-917.
    [4] Guo, Y. J., Li, J. W., Cheng, I. Discovery of humans infected by avian influenza A (H9N2) virus. Chin .J. Exp. Clin. Virol. 1999, 13(2):105-108.
    [5] Webster, R. G., Hinshaw, V. S., Bean, W. J., Van Wyke, K. L., Geraci, J. R., St. Aubin, D. J., Retursson, G. Characterization of an influenza A virus from seal. Virology 1981, 113(2):712-724.
    [6] Subbarao, K., Chen, H., Swayne, D., Mingay, L., Fodor, E., Brownlee, G., Xu, X., Lu, X., Katz, J., Cox, N., Matsuoka, Y. Evaluation of a genetically modified reassortant H5N1 influenza A virus vaccine candidate generated by plasmid-based genetics. Virology 2003, 305(1):192-200.
    [7] Chen W., P. A. Calvo, D. Malide, J. Gibbs, U. Schubert, I. Bacik, S. Basta, R. O. Neill, J. Schickli, P. Palese, P. Henklein, J. R. Bennink, and J. W. Yewdell. A novel influenza A virus mitochondrial protein that induces cell death. Nature Medicine 2001; 7: 1306-1312.
    [8] Baker A. T, J. N. Varghese, W. G. Laver, et al. Three-dimensional structure of neuraminidase of subtype N9 from an avian influenza virus. Proteins, 1987, 2:111-117.
    [9] Fouchier, R. A. M., Munster, V., Wallensten, A., Bestebroer, T. M., Herfst, S., Smith, D., Rimmelzwaan, G. F., Olsen, B., Osterhaus, A. D. M. E. Characterization of a Novel Influenza A Virus Hemagglutinin Subtype (H16) Obtained fromBlack-Headed Gulls. J. Virol. 2004, 79(5):2814-2822.
    [10] Wilson, I. A., Skehel, J. J., Wiey, D. C. Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3 angstroms resolution. Nature 1981, 289(5796):366-373.
    [11] Steinhauer, D. A. Role of hemagglutinin cleavage for the pathogenicity of influenza virus. Virology 1999, 258(1):1-20.
    [12] Bosch F.X., Garten W., Klenk H.D., Rott R. Proteolytic cleavage of influenza virus hemagglutinins: primary structure of the connecting peptide between HA1 and HA2 determines proteolytic cleavability and pathogenicity of avian influenza viruses. Virology, 1981,113 (3):725–735.
    [13] Deshpande, K. L., Fried, V. A., Ando, M., Webster, R. G. Glycosylation affects cleavage of an H5N2 influenza virus haemagglutinin and regulates virulence. Proc. Natl. Acad. Sci. USA 1987, 84(1):36-40.
    [14] Kawaoka Y, Naeve C.W, Webster R.G. Is virulence of H5N2 influenza viruses in chickens associated with loss of carbohydrate from the hemagglutinin? Virology, 1984, 139:303-316
    [15] Weis, W., Brown, J. H., Cusack, S., Paulson, J. C., Skehel, J. J. Wiley, D. C. Structure of the influenza virus haemagglutinin complex with its receptor sialic acid. Nature 1988, 333(6172):426-431.
    [16] Gambaryan, A. S., Piskarev, V. E., Yamskov, I. A., Sakharov, A. M., Tuzikov, A. B., Bovin, N. V., Nifantev, N. E., Matrosovich, M. N. Human influenza virus recognition of oligosaccharides. FEBS Letters 1995, 366(1):57-60.
    [17] Connor, R. J., Kawaoka, Y., Webster, R. G., Paulson, J. C. Receptor specificity in human, avian and equine H2 and H3 influenza virus isolates. Virology 1994, 205(1):17-23.
    [18] Vines, A., Wells, K., Matrosovich, M., Castrucci, M. R., Ito, T., Kawaoka, Y. The role of influenza A virus haemagglutinin residues 226 and 228 in receptor specificity and host range restriction. J. Virol. 1998, 72(9):7626-7631.
    [19] Matrosovich, M., Tuzikov, N., Bovin, A., Gambaryan, A., Klimov, A., Castrucci, M.R., Donatelli, I., Kawaoka, Y. Early alterations of the receptor-binding properties of H1, H2, H3 avian influenza virus haemagglutinins after their introduction into mammals. J. Virol. 2000, 74(18):8502-8512.
    [20] Ohuchi, M., Ohuchi, R., Feldmann, A., Klenk, H. K. Regulation of receptor binding affinity of influenza virus haemagglutinin by its carbohydrate moiety. J. Virol. 1997, 71(11):8377-8384.
    [21] Baigent, S. J., Bethell, R. C., McCauley, J. W. Genetic analysis reveals that both haemagglutinin and neuraminidase determine the sensitivity of naturally occurring avian influenza viruses to zanamivir in vitro. Virology 1999, 263(2):323-338.
    [22] Baigent, S. J., and McCauley, J. W. Glycosylation of haemagglutinin and stalk-length of neuraminidase combine to regulate the growth of avian influenza viruses in tissue culture. Virus Res. 2001, 79(1-2):177-185.
    [23] Inkster, M. D., Hinshaw, V. S., Schulze, I. T. The haemagglutinins of duck and human H1 influenza viruses differ in sequence conservation and in glycosylation. J. Virol. 1993, 67(12):7436-7443.
    [24] Blok, J., and Air, G. M. Variation in the membrane-insertion and stalk sequences in eight sub-types of influenza type A virus neuraminidase. Biochem. 1982, 21(17):4001-4007.
    [25] Hatta M, Asano Y, Masunaga K, et al. Mapping of functional domains on influenza A virus RNA polymerase PB2 molecule using monoclonal antibodies. Arch Virol. 2000,145: 1947-1961
    [26] Subbarao, E. K., London, W., Murphy, B. R. A single amino acid in the PB2 gene of influenza A virus is a determinant of host range. J. Virol. 1993, 67(4):1761-1764.
    [27] Li, Z., Y. Jiang, P. Jiao, et al. The NS1 gene contributes to the virulence of H5N1 avian influenza viruses. J. Virol., 2006, 80(22):11115-11123.
    [28] Horimoto, Y., Yamazaki, Y., Fukushima, T., et al. Evolutionary characterization of the six internal genes of H5N1 human influenza A virus. J. Gen. Virol. 2000, 81(5):1293-1303.
    [29] Naffakh, N., Massin, P., Escriou, N., et al. Genetic analysis of the compatibilitybetween olymerase proteins from humans and avian strains of influenza A viruses. J. Gen. Virol. 2000, 81(5):1283-1291.
    [30] Almond, J. W. A single gene determines the host range of influenza viruses. Nature 1977, 270(5638): 617-618.
    [31] 殷震,刘景华 主编.动物病毒学(第二版),北京:科学出版社,1997.
    [32] 卡尔尼克 主编,高福,苏敬良 主译.禽病学(第十版).北京:中国农业大学出版社,1999.
    [33] Zebedee S. L., Lamb R. A., Influenza virus M2 protein: monoclonal antibody restriction of virus growth and detection of M2 in virions. J. Virol 1989,62:2762-2772
    [34] Ludwig, S., Wang, X., Ehrhardt, C., et al. The influenza A virus NS1 protein inhibits activation of Jun N-terminal kinase and AP-1 transcription factors. J. Virol. 2002, 76(21):11166-11171.
    [35] Werner, O. Avian in?uenza - situation in Germany 1995-/1997. In Proceedings of the Joint Fourth Annual Meetings of the National Newcastle Disease and Avian In?uenza Laboratories of Countries of the European Union, 1997. Brussels, Belgium. 1998, 9-10.
    [36] Werner, O. Avian in?uenza - situation in Germany 1997/1998. In Proceedings of the Joint Fifth Annual Meetings of the National Newcastle Disease and Avian In?uenza Laboratories of Countries of the European Union, 1998. Vienna, Austria. 1999, 10-11.
    [37] Fioretti, A., Menna, L. F., Calabria, M. The epidemiological situation of avian in?uenza in Italy during 1996-1997. In Proceedings of the Joint Fourth Annual Meetings of the National Newcastle Disease and Avian In?uenza Laboratories of Countries of the European Union, Brussels, Belgium. 1998, 17-22
    [38] Campbell, G. Report of the Irish national reference laboratory for 1996 and 1997. In Proceedings of the Joint Fourth Annual Meetings of the National Newcastle Disease and Avian In?uenza Laboratories of Countries of the European Union. Brussels, Belgium. 1998, 13.
    [39] Halvorson, D.A., Frame, D. D., Friendshuh, A. J., Shaw, D.P. Outbreaks of low pathogenicity avian in?uenza in USA. In Proceedings of the 4th International Symposium on Avian In?uenza. Athens, GA, USA 1998, 36-46.
    [40] Lee, C. W., Song, C. S., Lee, Y. J., et al. Sequence analysis of the haemagglutinin gene of H9N2 Korean avian in?uenza viruses and assessment of the pathogenic potential of isolate MS96. Avian Dis. 2000, 44(3):527-535.
    [41] Nili, H. Asasi, K. Avian In?uenza (H9N2) outbreak in Iran. In: Proceedings of the Fifth International Symposium on Avian In?uenza, Athens, Georgia, April 14-17, 2002. Avian Dis. 2003, 47:828-831.
    [42] Mase, M., Imada, T., Sanada, et al. Imported parakeets harbor H9N2 influenza A viruses that are genetically closely related to those transmitted to humans in Hong Kong. J. Virol. 2001, 75(7):3490-3494.
    [43] 陈伯伦,张泽纪,陈伟斌.鸡 A 型禽流感病毒的分离与血清学初步鉴定,中国兽医杂志. 1994, 20(10):3-5.
    [44] 付朝阳. H9 亚型禽流感油乳剂灭活疫苗体液及细胞免疫应答的监测研究: [硕士论文],哈尔滨:中国农业科学院哈尔滨兽医研究所,2001.
    [45] 唐秀英,付朝阳,冯菊艳.H9 亚型禽流感的流行与防制,预防兽医学进展,2000,2(4):1-4.
    [46] 陈福勇,夏春.禽流感 A/鸡/北京/1/96(H9N2)株核蛋白基因克隆和序列分析,中国预防兽医学报,1999,21(2): 130-133.
    [47] Liu, J. H., Okazaki, K., Shi, et al. Kida, H. Phylogenetic analysis of neuraminidase gene of H9N2 influenza viruses prevalent in chickens in China during 1995-2002. Virus Genes 2003, 27(2):197-202.
    [48] Lu, J. H., Liu, X. F., Shao, W. X., et al. Genetic Characterization of the Entire Genome of an H9N2 Avian Influenza Virus A/Chicken/Shanghai/F/98. Acta Microbiologica Sinica 2003, 43:434-441.
    [49] Liu, J. H., Okazaki, K., Mweene, et al. Genetic conservation of hemaggluinin gene of H9 influenza virus in chicken population in Mainland China. Virus Genes 2004, 29(3):329-334.
    [50] Li, K. S., Xu, K. M., Peiris, et al. Characterization of H9 subtype influenza viruses from the ducks of southern China: a candidate for the next influenza pandemic in humans? J. Virol. 2003, 77(12):6988-6994.
    [51] Choi, Y. K., Ozaki, H., Webby, R. J., et al. Continuing evolution of H9N2 influenza viruses in southeastern China. J. Virol. 2004, 78(16):8609-8614.
    [52] Li C, Yu K, Tian G, et al. Evolution of H9N2 influenza viruses from domestic poultry in Mainland China. Virology, 2005, 340:70-83.
    [53] Peiris, M., Yam, W. C., Chan, K. H., et al. Influenza A H9N2: aspects of laboratory diagnosis. J. Clin. Microbiol. 1999, 37(10):3426-3427.
    [54] Peiris, J. S., Guan, Y., Markwell, D., et al. K. F. Cocirculation of avian H9N2 and contemporary "human" H3N2 influenza A viruses in pigs in southeastern China: potential for genetic reassortment? J. Virol. 2001, 75(20):9679-9686.
    [55] 李海燕,于康震,杨焕良等.中国猪体内 H5N1 和 H9N2 亚型禽流感病毒的分离和鉴定.中国预防兽医学报,2004,26:1-6.
    [56] Xu, C. T., Fan, W. X., Rong, W., Zhao, H. K. Isolation and identification of swine influenza recombinant A/Swine/Shandong/1/2003(H9N2) virus. Microbes Infect. 2004, 6(10):919-925.
    [57] Lin, Y. P., Shaw, M., Gregory, V., et al. Avian-to-human transmission of H9N2 subtype influenza A viruses: relationship between H9N2 and H5N1 human isolates. Proc. Natl. Acad. Sci USA 2000, 97(17):9654-9658.
    [58] Beard C. W., Schnitzlein W. M., Tripathy D. N.. Effect of route of administration on the efficacy of a recombinant fowlpox virus against H5N2 avian influenza. Avian Dis. 1992, 36:1052-1055
    [59] Webster R.G., Kawaoka Y., Taylor J., et al. Efficacy of nucleoprotein and haemagglutinin antigens expressed in fowlpox virus as vaccine for influenza in chickens. Vaccine 1991, 9:303-308
    [60] Swayne D.E., Beck J.R., Kinney N.. Failure of a recombinant fowlpox virus vaccine containing an avian influenza hemagglutinin gene to provide consistent protection against influenza in chickens preimmunized with a fowl pox vaccine. Avian Dis2000, 44:132-137
    [61] 贾永清,乔传玲,于康震等,表达禽流感病毒 HA 基因重组禽痘病毒的构建,中国畜牧兽医学会禽病学分会第十次学术研讨会论文集,2000,98-101
    [62] 马文军.禽流感病毒血凝素基因重组禽痘病毒的构建:[硕士研究论文].哈尔滨:中国农业科学院哈尔滨兽医研究,1999
    [63] 乔传玲,姜永萍,李呈军等,禽流感重组禽痘病毒 rFPV-HA9-NA 活载体疫苗的研究. 免疫学杂志. 2003 ,19(1) :46-49
    [64] Robinson, H. L., Boyle, C. A., Feltquate, et a1.DNA immunization for influenza virus: studies using hemagglutinin- and ucleoprotein- expressing DNAs. J. Infect. Dis. 1997, 176:(S1): S50-55
    [65] Tulman,E.R.,Afonso,C.L.,Lu,Z.,et a1.The genome of canarypox virus.J Virol 2004,78(1):53-66
    [66] Afonso,C.L.,Tulman,E.R.,Lu,Z.,et a1.The genome of fowlpox virus.J Virol 2000,74(8): 15-31
    [67] Boyle D. B., Couper B. E. H., Identification and cloning of the fowlpox virus thymidine kinase gene using vaccinia virus. J Gen Virol, 1986, 67: 1591-1600
    [68] Boyle D. B., Couper B. E. H.. Construction of rFPV as a vector for poultry vaccines. Virus Gene. 1988, 10:343-356
    [69] Letellier,C.,Burny,A.,and Meulemans,G.Construction of a pigeonpox virus recombinant: expression of the Newcastle disease virus(NDV) fusion glyeoprotein and protection of chickens against NDV challenge. Arch Virol.1991,118(1-2): 43-56
    [70] Laidlaw, S. M., Anwar, M. A., Thomas, W., et a1.Fowlpox virus encodes nonessential homologs of cellular alpha-SNAP,PC-1,and an orphan human homolog of a secreted nematode protein.J Virol.1998,72(8): 42-51
    [71] Boulanger,D.,Baier,R.,Erfle,V.,et a1. Generation of recombinant fowlpox virus using the non-essential F1 1L orthologue as insertion site and a rapid transient selection strategy.J Virol Methods,2002,106(1): 141-151
    [72] Srinivasan,V.,Schnitzlein,W.M.,and Tripathy.D.N.A consideration of previously uncharaeterized fowl poxvirus unidirectional and bidirectional late promoters forinclusion in homologous recombinant vaccines.Avian Dis 2003,47(2): 286-295
    [73] Parks, R. J., Kre11, P.J., Derbyshire, J.B., et a1.Studies of fowlpox virus recombination in the generation of recombinant vaccines.Virus Res 1994,32(3): 283-297
    [74] Calvert JG, Nazerian K, Witter RL, et al. Fowlpox virus recombinants expressing the envelope glycoprotein of an avian reticuloendotheliosis retrovirus induce neutralizing antibodies and reduce viremia in chickens. J Virol. 1993, 67(6):3069-3076
    [75] Spehner D. R., Drillien R., Lecocy J. P.Construction of fowlpox virus vectors with intergenic insertions: expression of the beta-galactosidase gene and the measles virus fusion gene. J Virol 1990, 64(2):527-33
    [76] Binns M. M., Boursnell M. E. G., Tomley F. M., et al. Analysis of the fowlpox virus gene encoding the 4b core polypeptide and demonstration that it possesses efficient promoter sequences. Virology.1989, 170: 288-291
    [77] Kumar S., Boyle D.B.Activity of a fowlpox virus in late promoter in vaccinia and fowlpox virus recombinants. Arch Virol. 1990, 112: 139-148
    [78] Zantinge J. K., Krell P. J., Derbyshire J. B., et al. Partial transcriptional mapping of the fowlpox virus genome and analysis of the EcoRI L fragment.1996, J Gen Virol. 77: 603-614
    [79] 黄兵,王莉莉.禽痘病毒载体疫苗研究进展.家禽科学, 2005,(12):40-42
    [80] Taylor J., Weinberg R., Languet B., et al. Recombinant fowlpox virus inducing protective immunity in non-avian species 1988, 6:497-503
    [81] Karaca K., Sharma J.M., Winslow B.J., et al. Recombinant fowlpox viruses coexpressing chicken type I IFN and Newcastle disease virus HN and F genes: influence of IFN on protective efficacy and humoral responses of chickens following in ovo or post-hatch administration of recombinant viruses. Vaccine. 1998,16(16):1496-1503
    [82] 陈化兰,马文军,于康震.表达禽流感病毒血凝素基因的重组禽痘病毒的构建,中国农业科学,2000,33(5): 86-90
    [83] 乔传玲,李呈军,李泽君等.鸡痘疫苗对禽流感重组鸡痘病毒疫苗免疫效力的影响. 中国畜牧兽医学会生物制品学分会第九次学术研讨会论文集. 1999 , 364-367
    [84] 程小文.表达绿色荧光蛋白的重组山羊痘病毒的构建以及牛流热 G 蛋白在痘苗病毒中的表达,:[硕士学位论文].南京 :南京农业大学,2003
    [85] 贾永清.表达禽流感病毒 HA 基因重组禽痘病毒的构建及其免疫效力的研究:[博士学位论文].哈尔滨,东北农业大学,2000
    [86] 陈平,陈素娟,彭大新等.高效表达 H9 亚型禽流感病毒 HA基因的重组鸡痘病毒的构建及免疫效力试验.中国兽医学报,2004,216-218

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700